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Abstract

An m-colored digraph is a digraph whose arcs are colored with m

colors. A directed path is monochromatic when its arcs are colored
alike.

A set S ⊆ V (D) is a kernel by monochromatic paths whenever the
two following conditions hold:

1. For any x, y ∈ S, x 6= y, there is no monochromatic directed path
between them.

2. For each z ∈ (V (D) − S) there exists a zS-monochromatic directed
path.

In this paper it is introduced the concept of color-class digraph to prove
that if D is an m-colored strongly connected finite digraph such that:

(i) Every closed directed walk has an even number of color changes,

(ii) Every directed walk starting and ending with the same color
has an even number of color changes, then D has a kernel by
monochromatic paths.

This result generalizes a classical result by Sands, Sauer and Woodrow
which asserts that any 2-colored digraph has a kernel by monochro-
matic paths, in case that the digraph D be a strongly connected di-
graph.
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1. Introduction

For general concepts we refer the reader to [12] and [3]. Let D be a digraph,
a set of vertices S ⊆ V (D) is dominating whenever for every w ∈ V (D) − S

there exists a wS-arc in D. (The topic of domination in graphs has been
deeply studied by several authors, a very complete study of this topic can
be found in [13] and [14]).

Dominating independent sets in digraphs (kernels in digraphs) have
found many applications in several topics of Mathematics (see for example
[1, 2, 5, 6] and [15]) and they have been studied by several authors, surveys
of kernels in digraphs can be found in [4] and [6]. Clearly the concept of
kernel by monochromatic paths is a generalization of that of kernel.

The study of the existence of kernels by monochromatic paths in edge-
colored digraphs begins with the Theorem of Sands, Sauer and Woodrow
proved in [16] which asserts that every 2-colored digraph has a kernel by
monochromatic paths. Sufficient conditions for the existence of kernels by
monochromatic paths in edge-colored digraphs have been obtained mainly
in nearly tournaments and they ask for the monochromaticity or quasi-
monochromaticity of small subdigraphs (due to the difficulty of the prob-
lem), see for example [8, 9, 10, 11, 7, 17] and [18].

In this paper we give a different aproach to obtain suffcient conditions
for the existence of a kernel by monochromatic paths in an edge-colored
digraph. We introduce the concept of color-class digraph of an m-colored
digraph D and study some structural properties of that digraph which imply
that D possesses a kernel by monochromatic paths. As a consequence it is
obtained a wide generalization of the classical result of Sands, Sauer and
Woodrow in the case that the digraph D be strongly connected.

2. The Color-class Digraph of an m-colored Digraph D

In this section the color-class digraph of an m-colored digraph D is defined; it
is proved that some structural properties of this digraph allow us to consider
that the m-colored digraph D is essentially 2-colored and we can conclude
that D has a kernel by monochromatic paths.

Definition. Let D be an m-colored digraph. The color-class digraph of D
denoted CC(D) is defined as follows:

V (CC(D)) = {C1,C2, . . . ,Cm} where Ci is the subdigraph of D whose arcs
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are the arcs of D colored i and the vertices of C; are those vertices of D

which are initial endpoints or terminal endpoints of the arcs colored i; Ci

will be called the color-class i of D (Notice that since D is an m-colored
digraph, we have Ci 6= ∅ for each 1 ≤ i ≤ m).

(Ci,Cj) ∈ A(CC(D)) if and only if there exists two arcs namely f =
(u, v) ∈ A(D) colored i and g = (v,w) ∈ A(D) colored j.

Observe that CC(D) may allow isolated vertices.

Lemma 2.1. Let D be an m-colored digraph. If D is a strongly connected

digraph, then CC(D) is a strongly connected digraph.

Proof. Let Ci,Cj be two different vertices of CC(D). Since D is an m-
colored digraph, there exist f = (u, v) ∈ A(Ci) and g = (z, w) ∈ A(Cj).
If v = z then (Ci,Cj) is a CiCj-directed path in CC(D). If v 6= z then we
have that there exists a vz-directed path contained in D (because D is an
strongly connected digraph). Let T = (v = u1, u1, u2, . . . , un−1 = z) and
P = (u0 = u, v) ∪ T ∪ (un−1 = z, un = w), P = (u0 = u, u1 = v, u2, u3, . . . ,

un−1 = z, un = w). Take ui1 , ui2 , . . . , uik the vertices of P where a color
change occurs. So the walk P has k color changes and (u, T, ui1) ⊆ Ci,
(ui1 , T, ui2) ⊆ Cr2 , (ui2 , T, ui3) ⊆ Cr3 , . . . , (uik−1

, T, uik) ⊆ Crk , (uik , P, w) ⊆

Cj for some {r2, . . . , rk} ⊆ {1, 2, . . . ,m}. Clearly we have that P̂ = (Ci,Cr2 ,

Cr3 ,Cr4 , . . . ,Crk ,Cj) is a CiCj-directed walk in CC(D). Therefore there exists
a CiCj-directed path in CC(D).

Lemma 2.2. Let D be an m-colored digraph with color classes C1,C2, . . . ,

Cm such that neither the pair (C1,C2) nor (C1,C2) are arcs of the color-

class digraph. And, let D̂ the (m − 1)-colored digraph obtained from D by

assigning color 1 to each arc of D colored 2 (Thus the arcs of D colored 2
are now colored 1 in D̂, the rest of the arcs of D remain the same). For any

u, v ∈ V (D) = V (D̂), u 6= v; there exists a uv-monochromatic directed path

in D if and only if there exists a uv-monochromatic directed path in D̂.

Proof. First notice that the digraph D̂ is the same as D except that the arcs
of C2 in D are now colored 1 in D̂; the color classes of D̂ are C′

1,C
′

2, . . . ,C
′

m−1

where C
′

1 = C1 ∪ C2 and C
′

j = Cj+1.
First suppose that there exists a uv-monochromatic directed path con-

tained in D and let P be such that a path. Thus P ⊆ Ci for some
i ∈ {1, 2, . . . ,m}; for i ∈ {3, . . . ,m} we have Ci = C

′

i−1
and for i ∈ {1, 2} we

have Ci ⊆ C
′

1 thus P ⊆ C
′

j for some j ∈ {1, 2, . . . ,m− 1} which means that

P is a uv-monochromatic directed path in D̂.
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Now suppose that T is a uv-monochromatic directed path in D̂. Thus T ⊆ C
′

j

for some j ∈ {1, . . . ,m−1}. When j ∈ {2, . . . ,m−1} we have C
′

j = Cj+1 and
T is a uv-monochromatic directed path in D. So, suppose T ⊆ C

′

1 = C1∪C2;
when T ⊆ C1 or T ⊆ C2 we have that T is a uv-monochromatic directed
path in D. Henceforth we have T ⊆ C1 ∪ C2, T 6⊆ C1 and T 6⊆ C2; assume
without loss of generality that T starts in C1. Let T = (u0, u1, . . . , un) and
g = (ui, ui+1) the first arc of T belonging to C2; hence f = (ui−1, ui) ∈
A(C1) and it follows from the definition of CC(D) that (C1,C2) ∈ A(CC(D))
contradicting our assumption. We conclude that T is a uv-monochromatic
directed path in D.

Corollary 2.3. Let D be an m-colored digraph and D̂ the (m − 1)-colored
digraph obtained from D as in the hypothesis of Lemma 2.2. A set N ⊆
V (D) = V (D̂) is a kernel by monochromatic paths of D if and only if it is

a kernel by monochromatic paths of D̂.

Theorem 2.4 (Sands, Sauer and Woodrow [16]). If D is a 1-colored (mono-

chromatic digraph) or D is a 2-colored digraph, then D has a kernel by

monochromatic paths.

This theorem will be usesul to prove the next theorem which is the main
result of this section

Theorem 2.5. Let D be an m-colored digraph. If CC(D) is a bipartite

digraph, then D has a kernel by monochromatic paths.

Proof. We proceed by induction on |V (CC(D))| (i.e., we proceed by induc-
tion on m).

For m = 1 or m = 2 the result follows directly from Theorem 2.4.
Suppose that if D′ is an (m−1)-colored digraph such that CC(D′) is bipartite
(i.e., that |V (CC(D′))| = m − 1), then D′ has a kernel by monochromatic
paths, for m ≥ 3.

Let D be an m-colored digraph, and let V1, V2 the bipartition of
V (CC(D)) which witnesses that CC(D) is bipartite; so V1 (resp. V2) is an in-
dependent set in CC(D). Since m ≥ 3, m = |V (CC(D))| we have |V1| ≥ 2 or
|V2| ≥ 2; without loss of generality assume that |V1| ≥ 2 and let C1,C2 ∈ V1.
Consider D̂ the (m− 1)-colored digraph obtained from D as in the hypoth-
esis of Lemma 2.2. Clearly CC(D̂) is the digraph obtained from CC(D) by
identifying the vertices C1 and C2. Since CC(D) is bipartite, we have that
CC(D̂) is also bipartite. Thus it follows from the inductive hypothesis that
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D̂ has a kernel by monochromatic paths; let N be such a kernel. Henceforth
it follows from Corollary 2.3 that N is a kernel by monochromatic paths
of D.

3. Kernels by Monochromatic Paths

In this section we study a condition on D which implies that CC(D) is bipar-
tite which from Theorem 2.5 implies that D has a kernel by monochromatic
paths.

Theorem 3.1. Let D be a strongly connected m-colored digraph. If D sat-

isfies the two following conditions:

(a) Every closed directed walk in D possesses an even number of color

changes.

(b) Every directed walk starting end ending in arcs of the same color has

an even number of color changes.

Then every directed cycle in CC(D) has an even length.

Proof. Assume by contradiction that γ = (C0,C1,C2, . . . ,C2n,C0) is an odd
directed cycle in CC(D). Where i is the color associated to Ci. Then, from
the definition of CC(D) we have that there exists arcs fi = (xi, yi), f

′

i =
(x′i, y

′

i) both colored i for i ∈ {0, 1, . . . , 2n} such that y′i = xi+1, y
′

2n = x0.
That means f ′

0 = (x′0, y
′

0) is colored 0 and f1 = (y′0 = x1, y1) is colored
1; f ′

1 = (x′1, y
′

1) is colored 1 and f2 = (y′1 = x2, y2) is colored 2; f ′

2 =
(x′2, y

′

2) is colored 2 and f3 = (y′2 = x3, y3) is colored 3; in general f ′

i =
(x′i, y

′

i) is colored i and fi+1 = (y′i = xi+1, yi+1) is colored i + 1 and f ′

2n =
(x′2n, y

′

2n) is colored 2n and f0 = (y′2n = x0, y0) is colored 0. Since D

is a strongly connected digraph; there exists a directed path, namely Ti

from yi to x′i for each i ∈ {0, 1, . . . , 2n}. Thus we have the directed walks
Wi = (xi, yi) ∪ Ti ∪ (x′i, y

′

i) starting in fi and ending in f ′

i ; since fi and f ′

i

are both colored i we have that Wi has an even number of color changes; for
each i ∈ {0, 1, . . . , 2n}. Now consider the closed directed walk W =

⋃
2n
i=0

Wi

clearly the color changes of W are those of each Wi and those that occur in
xi for each i ∈ {0, 1, . . . , 2n}. Hence the number of color changes of W is
odd contradicting our assumption. (See Figure 1.)

Theorem 3.2 [3]. Let D be a strongly connected digraph; D is a bipartite

digraph if and only if each directed cycle of D has an even length.
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Figure 1.

Theorem 3.3. Let D be a strongly connected m-colored digraph. If D sat-

isfies the two following conditions:

(a) Every closed directed walk in D possesses an even number of color

changes,

(b) Every directed walk starting and ending in arcs of the same color has

an even number of color changes.

Then D has a kernel by monochromatic paths.

Proof. It follows from Theorem 3.1 that very directed cycle of CC(D) has
an even length. From Lemma 2.1 CC(D) is a strongly connected digraph.
Thus from Theorem 3.2 we have that CC(D) is a bipartite digraph. Hence
we conlcude by Theorem 2.5 that D has a kernel by monochromatic paths.

As a direct consequence of Theorem 3.3 we have the following two corollaries.

Corollary 3.4. Let D be a strongly connected m-colored digraph. If D

satisfies the two following conditions:

(a) Every closed directed walk is 1-colored or 2-colored;
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(b) Every directed walk starting and ending in arcs colored alike is 1-colored
or 2-colored.

Then D has a kernel by monochromatic paths.

Corollary 3.5. If D is a strongly connected 2-colored digraph, then D has

a kernel by monochromatic paths.

Clearly Theorem 3.3 is a wide generalization of Theorem 2.4 in the case that
D is a strongly connected digraph

4. Applications

Let D be an m-colored digraph, and let C = {c1, c2, . . . , cm} the set of colors
used to color A(D).

Denote by ξ(v) = {ci ∈ C| there exists an arc colored ci incident with
v} (ξ(v) are the colors that appear in arcs incident from (or toward) v).

(I) Let D be an m-colored digraph such that:

(i) |ξ(v)| ≤ 2 for each v ∈ V (D).

(ii) There exists a fixed color ci such that ci ∈ ξ(v) for each v ∈ V (D).

Then D has a kernel by monochromatic paths.

Proof. Clearly the CC(D) is bipartite.

(II) Let D be an m-colored digraph such that:

(i) |ξ(v)| ≤ 2 for each v ∈ V (D).

(ii) There exist two fixed colors ci, cj such that |{ci, cj}∩ ξ(v)| = 1 for each
v ∈ V (D).

Then D has a kernel by monochromatic paths.

Proof. CC(D) is bipartite.

(III) Let H be a digraph possibly with loops and let D be a digraph whose
arcs are colored with the vertices of H. A directed walk (path), W in D

is an H-walk (H-path) if the consecutive color encountered on W form a
directed walk in H. A set N ⊆ V (D) is an H-kernel if no two vertices of N
have an H-path between them and any u ∈ V (D) \N reaches some v ∈ N

on an H-path. The concept of H-walk was first introduced by Linek and
Sands (1996). This concept was studied later by several authors.
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Since V (CC(D)) ⊆ V (H), the question that we can do us is the the next:
What structure or substructures must CC(D) have respect to the digraph
H in order to ensure the existence of H-kernels in D?

This questions will be studied in a forthcoming paper (H-kernels, Hor-
tensia Galeana-Sánchez and Roćıo Sánchez López).
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