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Abstract

If G is a bridgeless cubic graph, Fulkerson conjectured that we can
find 6 perfect matchings (a Fulkerson covering) with the property that
every edge of G is contained in exactly two of them. A consequence
of the Fulkerson conjecture would be that every bridgeless cubic graph
has 3 perfect matchings with empty intersection (this problem is known
as the Fan Raspaud Conjecture). A FR-triple is a set of 3 such perfect
matchings. We show here how to derive a Fulkerson covering from two
FR-triples.

Moreover, we give a simple proof that the Fulkerson conjecture
holds true for some classes of well known snarks.
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1. Introduction

The following conjecture is due to Fulkerson, and appears first in [4].

Conjecture 1.1. If G is a bridgeless cubic graph, then there exist 6 per-
fect matchings M1, . . . ,M6 of G with the property that every edge of G is
contained in exactly two of M1, . . . ,M6.

We shall say that F = {M1, . . . ,M6}, in the above conjecture, is a Fulkerson
covering. A consequence of the Fulkerson conjecture would be that every
bridgeless cubic graph has 3 perfect matchings with empty intersection (take
any 3 of the 6 perfect matchings given by the conjecture). The following
weakening of this (also suggested by Berge) is still open.
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Conjecture 1.2. There exists a fixed integer k such that every bridgeless
cubic graph has a list of k perfect matchings with empty intersection.

For k = 3 this conjecture is known as the Fan Raspaud Conjecture.

Conjecture 1.3 [2]. Every bridgeless cubic graph contains perfect match-
ing M1, M2, M3 such that

M1 ∩M2 ∩M3 = ∅

Let G be a cubic graph with 3 perfect matchings M1,M2 and M3 having
an empty intersection. Since G satisfies the Fan Raspaud conjecture, when
considering these perfect matchings, we shall say that T = (M1,M2,M3) is
a FR-triple. We define Ti ⊂ E(G) (i = 0..2) as the set of edges of G which
are covered i times by T . It will be convenient to use T ′

i (i = 0, . . . , 2) for
the FR-triple T ′.

2. FR-triples and Fulkerson Covering

In this section, we are concerned with the relationship between FR-triples
and Fulkerson coverings.

2.1. On FR-triples

Proposition 2.1. Let G be a bridgeless cubic graph with T a FR-triple.
Then T0 and T2 are disjoint matchings.

Proof. Let v be a vertex incident to an edge of T0. Since v must be incident
to each perfect matching of T and since the three perfect matchings have
an empty intersection, one of the remaining edges incident to v must be
contained in 2 perfect matchings while the other is contained in exactly one
perfect matching. The result follows.

We introduce now concepts and definitions coming from [10]. Let ab be an
edge of bridgeless cubic graph G. We shall say that we have splitted the edge
ab when we have applied the operation depicted in Figure 1. The resulting
graph is no longer cubic since we get 4 vertices with degree 2 instead of two
vertices of degree 3. Let A1 and A2 be two disjoint matchings of G (we
insist to say that these matchings are not, necessarily, perfect matchings).
For i = 1, 2, let GAi be the graph obtained by splitting the edges of Ai and
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let GAi be the graph homeomorphic to GAi when the degree 2 vertices are
deleted. The connected component of GAi are cubic graphs and vertexless
loop graphs (graph with one edge and no vertex). We shall say that GAi

is 3-edge colourable whenever the cubic components are 3-edge colourable
(any colour can be given to the vertexless loops).

The following Lemma can be obtained from the work of Hao and al.
[10] when considering FR-triples.
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Figure 1. Splitting an edge.

Lemma 2.2. Let G be a bridgeless cubic graph and let T be a FR-triple.
Then GT2 is 3-edge colourable.

Proof. Assume that T = (M1,M2,M3) is a FR-triple. Let ab be an edge
of T2 then the two edges of T1 incident with ab must be in the same perfect
matching of T . Hence, these two edges are identified in some sens. If we
colour the edges of T1 with 1, 2 or 3 when they are in M1, M2 or M3

respectively, we get a natural 3-edge colouring of GT2 .

Lemma 2.3. Let G be a bridgeless cubic graph containing two disjoint
matchings A1 and A2 such that GA1 is 3-edge colourable and A1 ∪A2 forms
an union of disjoint cycles. Then G has a FR-triple T where T2 = A1 and
T0 = A2.

Proof. Obviously, A1∪A2 forms an union of disjoint even cycles in G. Let
C = a0a1 . . . a2p−1 be an even cycle of A1 ∪A2 and assume that aiai+1 ∈ A1

when i ≡ 0(2).

Let M1, M2 and M3 be the three matchings associated to a 3 edge-
colouring of GA1 . Thanks to the construction of GA1 for some i ≡ 0[2],
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the third edge incident to ai, say e, and the third one incident to ai+1, say
e′ lead to a unique edge of GA1 . Assume that this edge of GA1 is in M1,
then M1 can be extended naturally to a matching of G containing {e, e′}.
Moreover we add aiai+1 to M2 and aiai+1 to M3. When applying this
process to all edges of A1 on all cycles of A1 ∪ A2 we extend the colours of
GA1 into perfect matchings of G. Since every edge of G belongs to at most
2 matchings in {M1,M2,M3} we have a FR-triple with T = {M1,M2,M3}.
By construction, we have T2 = A1 and T0 = A2, as claimed.

Proposition 2.4. Let G be a bridgeless cubic graph then G has a FR-triple
if and only if G has two disjoint matchings A1 and A2 such that A1 ∪ A2

forms an union of disjoint cycles, moreover GA1 or GA2 is 3-edge colourable.

Proof. Assume that G has two disjoint matchings A1 and A2 such that,
without loss of generality, GA1 is 3-edge colourable. From Lemma 2.3, G
has a FR-triple T where T2 = A1 and T0 = A2.

Conversely, assume that T is a FR-triple. From Lemma 2.2 GT2 is 3-
edge colourable. Let A1 = T0 and A2 = T2. Then A1 and A2 are two disjoint
matchings and GA2 is 3-edge colourable.

2.2. On compatible FR-triples

As pointed out in the introduction, any three perfect matchings in a Fulk-
erson covering lead to a FR-triple. Is it possible to get a Fulkerson covering
when we know one or more FR-triples? In fact, we can characterize a Fulk-
erson covering in terms of FR-triples in the following way.

Let G be a bridgeless cubic graph with T = (M1,M2,M3) and T ′ =
(M ′

1,M
′
2,M

′
3) two FR-triples. We shall say that T and T ′ are compatible

whenever T0 = T ′
2 and T2 = T ′

0 (and hence T1 = T ′
1).

Theorem 2.5. Let G be a bridgeless cubic graph then G can be provided
with a Fulkerson covering if and only if G has two compatible FR-triples.

Proof. Let F = {M1, . . . ,M6} be a Fulkerson covering of G and let T =
(M1,M2,M3) and T ′ = (M4,M5,M6). T and T ′ are two FR-triples and
we claim that they are compatible. Since each edge of G is covered exactly
twice by F , T1 the set of edges covered only once by T must be covered
also only once by T ′, T0 the set of edges not covered by T must be covered
exactly twice by T ′ and T2 the set of edges covered exactly twice by T is
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not covered by T ′. Which means that T1 = T ′
1, T0 = T ′

2 and T2 = T ′
0, that

is T and T ′ are compatible.
Conversely, assume that T and T ′ are two FR-triples compatible. Then

it is an easy task to check that each edge of G is contained in exactly 2
perfect matchings of the 6 perfect matchings involved in T or T ′.

Proposition 2.6. Let G be a bridgeless cubic graph then G has two compat-
ible FR-triples if and only if G has two disjoint matchings A1 and A2 such
that A1 ∪A2 forms an union of disjoint cycles and GA1 and GA2 are 3-edge
colourable.

Proof. Let T and T ′ be 2 compatible FR-triples. From Lemma 2.2 we
know that GT2 and G

T
′
2
are 3-edge colourable. Since T0 = T

′
2 and T

′
0 = T2

by the compatibility of T and T ′
, the result holds when we set A1 = T0 and

A2 = T2.
Conversely, assume that G has two disjoint matchings A1 and A2 such

that GA1 and GA2 are 3-edge colourable. From Lemma 2.3, G has a FR-
triple T where T2 = A1 and T0 = A2 as well as a FR-triple T ′

where T
′
2 = A2

and T
′
0 = A1. These two FR-triples are obviously compatible.

Proposition 2.7 [10]. Let G be a bridgeless cubic graph then G can be pro-
vided with a Fulkerson covering if and only if G has two disjoint matchings
A1 and A2 such that A1∪A2 forms an union of disjoint cycles and GA1 and
GA2 are 3-edge colourable.

Proof. Obvious in view of Theorem 2.5 and Proposition 2.6.

3. Fulkerson Covering for Some Classical Snarks

A non 3-edge colourable, bridgeless, cyclically 4-edge-connected cubic graph
is called a snark.

For an odd k ≥ 3, let Jk be the cubic graph on 4k vertices x0, x1, . . . , xk−1,
y0, y1, . . . , yk−1, z0, z1, . . . , zk−1, t0, t1, . . . , tk−1 such that x0x1, . . . , xk−1 is an
induced cycle of length k, y0y1, . . . , yk−1 z0z1, . . . , zk−1 is an induced cycle
of length 2k and for i = 0, . . . , k − 1 the vertex ti is adjacent to xi, yi and
zi. The set {ti, xi, yi, zi} induces the claw Ci. In Figure 2 we have a rep-
resentation of J3, the half edges (to the left and to the right in the figure)
with same labels are identified. For k ≥ 5 those graphs were introduced by
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Isaacs in [6] under the name of flower snarks in order to provide an infinite
family of snarks.

Proposition 2.7 is essentially used in [10] in order to show that the so
called flower snarks and Goldberg snarks can be provided with a Fulker-
son covering. We shall see, in this section, that this result can be directly
obtained.
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Figure 2. J3

Theorem 3.1. For any odd k ≥ 3, Jk can be provided with a Fulkerson
covering.

Proof. For k = 3 the Fulkerson covering is given in Figure 2. We obtain
a Fulkerson covering of Jk by inserting a suitable number of subgraphs iso-
morphic to the subgraph depicted in Figure 3 when we cut J3 along the
dashed line of Figure 2. The labels of the edges of the two sets of three
semi-edges (left and right) are identical which insures that the process can
be repeated as long as necessary. These labels lead to the perfect matchings
of the Fulkerson covering.
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Figure 3. A block for the flower snark.

Let H be the graph depicted in Figure 4.
Let Gk (k odd) be a cubic graph obtained from k copies of H (H0, . . . ,

Hk−1 where the name of vertices are indexed by i) by adding edges aiai+1,
cici+1, eiei+1, fifi+1 and hihi+1 (subscripts are taken modulo k).
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If k = 5, then Gk is known as the Goldberg snark (see [5]). Accordingly, we
refer to all graphs Gk as Goldberg graphs. The graph G5 is shown in Figure
5. The half edges (to the left and to the right in the figure) with same labels
are identified.
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Figure 5. Goldberg snark G5.

Theorem 3.2. For any odd k ≥ 5, Gk can be provided with a Fulkerson
covering.

Proof. We give first a Fulkerson covering of G3 in Figure 6(a). The reader
will complete easily the matchings along the 5-cycles by remarking that
these cycles are incident to 5 edges with a common label from 1 to 6 and to
exactly one edge of each remaining label. We obtain a Fulkerson covering of
Gk with odd k ≥ 5 by inserting a suitable number of subgraphs isomorphic
to the subgraph depicted in Figure 6(b) when we cut G3 along the dashed
line. The labels of the edges of the two sets of three semi-edges (left and
right) are identical which insures that the process can be repeated as long
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as necessary. These labels lead to the perfect matchings of the Fulkerson
covering.
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Figure (a). A Fulkerson covering for G3.
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Figure (b). A block for the Goldberg snark.

Figure 6. Fulkerson covering for the Golberg Snarks.

4. A Technical Tool

Let M be a perfect matching, a set A ⊆ E(G) is an M -balanced matching
when we can find a perfect matchingM ′ such that A = M∩M ′. Assume that
M = {A,B,C,D} are 4 pairwise disjoint M -balanced matchings, we shall
say that M is an F-family for M whenever the three following conditions
are fulfilled:

(i) Every odd cycle of G\M has exactly one vertex incident with one edge
of each matching in M.

(ii) Every even cycle of G\M incident with some matching in M contains
4 vertices such that two of them are incident to one matching in M
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while the other are incident to another matching in M or the 4 vertices
are incident to the same matching in M.

(iii) The subgraph induced by 4 vertices so determined in the previous items
has a matching.

It will be convenient to denote the set of edges described in the third item
by N .

Theorem 4.1. Let G be a bridgeless cubic graph together with a perfect
matching M and an F -family M for M . Then G can be provided with a
Fulkerson covering.

Proof. Since A,B,C and D are M -balanced matchings, we can find 4
perfect matchings MA, MB, MC and MD such that

M ∩MA = A M ∩MB = B M ∩MC = C M ∩MD = D.

Let M ′ = M \ {A,B,C,D} ∪N , we will prove that F = {M,MA,MB,MC ,
MD,M

′} is a Fulkerson covering of G.

Claim 4.1.1. M ′ is a perfect matching.

Proof. The vertices of G which are not incident with some edge in M \
{A,B,C,D} are precisely those which are end vertices of edges in MA ∪
MB ∪MC ∪MD. From the definition of an F -family, the 4 vertices defined
on each cycle of {Ci|i = 1 . . . k} incident to edges of M form a matching
with two edges, which insures that M ′ is a perfect matching. �

Let C = {Γi|i = 1 . . . k} be the set of cycles of G\M and let X and Y be
two distinct members of M.

Claim 4.1.2. Let Γ ∈ C be an odd cycle. Assume that X and Y have ends
x and y on Γ. Then xy is the only edge of C not covered by MX ∪MY .

Proof. Since MX (MY respectively) is a perfect matching, the edges of
MX (MY respectively) contained in Γ saturate every vertex of Γ with the
exception of x (y respectively). The result follows. �

Claim 4.1.3. Let Γ ∈ C be an even cycle. Assume that X and Y have ends
x1, x2 and y1, y2 on C with x1y1 ∈ N and x2y2 ∈ N . Then x1y1 and x2y2
are the only edges of Γ not covered by MX ∪MY .
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Proof. The perfect matching MX must saturate every vertex of Γ with the
exception of x1 and x2. The same holds with MY and y1 and y2. Since x1y1
and x2y2 are edges of Γ, these two edges are not covered by MX ∪MY and
we can easily check that the other edges are covered. �

Claim 4.1.4. Let Γ ∈ C be an even cycle. Assume that X and Y have ends
x1, x2 and y1, y2 on C with x1x2 ∈ N and y1y2 ∈ N . Then either x1x2 and
y1y2 are the only edges of Γ not covered by MX ∪MY or MX ∪MY induces
a perfect matching on Γ such that every edge in that perfect matching is
covered by MX and MY with the exception of x1x2 which belongs to MY and
y1y2 which belongs to MX .

Proof. The perfect matching MX must saturate every vertex of Γ with the
exception of the two consecutive vertices x1 and x2. The same holds with
MY and y1 and y2.

Let us recall here that, since X (Y respectively) is a balanced match-
ing, the paths determined by x1 and x2 on Γ have odd lengths (the paths
determined by y1 and y2 respectively). Two cases may occur.

Case 1. The two paths obtained on Γ by deleting the edges x1x2 and
y1y2 have odd lengths.

We can check that MX ∪MY determines a perfect matching on Γ such
that every edge in that perfect matching is covered by MX and MY with
the exception of x1x2 which belongs to MY and y1y2 which belongs to MX .

Case 2. The two paths obtained on Γ by deleting x1x2 and y1y2 have
even lengths.

We can check that MX ∪MY covers every edge of Γ with the exception
of x1x2 and y1y2. �

Claim 4.1.5. Let Γ ∈ C be an even cycle. Assume that X have ends
x1, x2, x3 and x4 on Γ with x1x2 ∈ N and x3x4 ∈ N . Then we can choose a
perfect matching MY in such a way that x1x2 and x3x4 are the only edges
of Γ not covered by MX ∪MY .

Proof. Since MX is a perfect matching, the edges of MX contained in Γ
saturate every vertex of Γ with the exception of x1, x2, x3 and x4. Since Y
is not incident to Γ the perfect matching MY can be chosen in two ways
(taking one of the two perfect matchings contained in this cycle). We can
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see easily that we can choose MY in such a way that every edge distinct
from x1x2 and x3x4 is covered by MX or MY . �

Since {A,B,C,D,M ′ ∩M} is a partition of M , each edge of M is covered
twice by some perfect matchings of F .

Let Γ ∈ C be an odd cycle, each edge of Γ distinct from the two edges
of N (Claim 4.1.2) is covered twice by some perfect matchings of F . The
two edges of N are covered by exactly one perfect matching belonging to
{MA,MB,MC ,MD} and by the perfect matching M ′. Hence every edge of
Γ is covered twice by F .

Let Γ ∈ C be an even cycle. Assume first that 4 vertices of Γ are ends
of some edges in A while no other set of M is incident with Γ. From Claim
4.1.5 we can choose MB in such a way that every edge distinct from the two
edges of N is covered by MA or MB. We can then choose MC in such a way
that one of the two edges of N belongs to MC . Finally, we can choose MD

in order to cover the other edge of N . Each edge of Γ distinct from the two
edges of N (Claim 4.1.5) is covered twice by some perfect matchings of F .
The two edges of N are covered by exactly one perfect matching belonging
to {MA,MB,MC ,MD} and by the perfect matching M ′. Hence every edge
of Γ is covered twice by F .

Assume now that 2 vertices of Γ are ends of some edges in A (say a1
and a2) and 2 other vertices are ends of some edges in B (say b1 and b2).

Case 1. a1b1 ∈ N and a2b2 ∈ N . We can choose MC and MD in order
to cover every edge of Γ. From Claim 4.1.3 every edge of Γ is covered by
MA ∪ MB with the exception of a1b1 and a2b2. Hence every edge of Γ is
covered twice by MA∪MB∪MC ∪MD while a1b1 and a2b2 are covered twice
by MC ∪MD ∪M

′
Hence every edge of Γ is covered twice by F .

Case 2. a1a2 ∈ N and b1b2 ∈ N . Assume that a1a2 and b1b2 are the
only edges of Γ not covered by MA∪MB (Claim 4.1.4). Then we can choose
MC and MD in such a way that every edge of Γ is covered by MC ∪ MD.
In that case every edge of Γ is covered twice by MA ∪MB ∪MC ∪MD with
the exception of a1a2 and b1b2 which are covered twice by MC ∪MD ∪M

′
.

Assume now that MA ∪ MB induces a perfect matching on Γ where
a1a2 ∈ MB and b1b2 ∈ MA while the other edges of this perfect matchings
are in MA ∩MB (Claim 4.1.4). Then we can choose MC and MD such that
every edge of Γ not contained in MA ∪ MB is covered twice by MC ∪ MD

(MC ∪ MD induces a perfect matching on Γ). Hence every edge of Γ is
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covered twice by MC ∪MD or by MA∪MB with the exception of a1a2 which
is covered twice by MB ∪M

′
and b1b2 which is covered twice by MA ∪M

′
.

Finally, assume that Γ has no vertex as end of some edge in M. Then
we can choose easily MA,MB,MC and MD such that every edge of Γ is
covered twice by MA ∪MB ∪MC ∪MD

Hence F is a Fulkerson covering of G.

Remark 4.2. Observe that the matchings of the Fulkerson covering de-
scribed in the above proof are all distinct.

4.1. Dot products which preserve an F -family

In [6] Isaacs defined the dot product operation in order to describe infinites
families of non trivial snarks.

Let G1, G2 be two bridgeless cubic graphs and e1 = u1v1, e2 = u2v2 ∈
E(G1) and e3 = x1x2 ∈ E(G2) with NG2(x1) = {y1, y2, x2} and NG2(x2) =
{z1, z2, x1}.

The dot product of G1 and G2, denoted by G1 ·G2 is the bridgless cubic
graph G defined as (see Figure 7):

G = [G1\{e1, e2}] ∪ [G2\{x1, x2}] ∪ {u1y1, v1y2, u2z1, v2z2}.

It is well known that the dot product of two snarks remains to be a snark.
It must be pointed out that in general the dot product operation does not
permit to extend a Fulkerson covering, in other words, whenever G1 and G2

are snarks together with a Fulkerson covering, we do not know how to get
a Fulkerson covering for G1 ·G2.

However, in some cases, the dot product operation can preserve, in some
sense, an F -family, leading thus to a Fulkerson covering of the resulting
graph.

Proposition 4.3. Let M1 be a perfect matching of a snark G1 such that
G1\M1 contains only two (odd) cycles, namely C and C ′. Let ab be an edge
of C and a′b′ be an edge of C ′.

Let M2 be a perfect matching of a snark G2 where {A,B,C,D} is an
F -family for M2. Let xy be an edge of M2\{A ∪B ∪ C ∪D}, with x and y
vertices of two distinct odd cycles of G2\M2.

Then {A,B,C,D} is an F -family for the perfect matching M of G =
G1 ·G2 with M = M1 ∪M2\{xy}.
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Proof. Obvious by the definition of the F -family and the construction of
the graph resulting of the dot product.

b

b

b

b

b

b

b

b

e1

e2
u2

v2

v1

u1

b

b

y1

y2

z1

z2

x1

x2

G1
G2

b

b
b

b

b

b

b

u2

v2

v1

u1 y1

y2

z1

z2

G1.G2

e3

b

Figure 7. The dot product operation.

Proposition 4.4. Let M1 be a perfect matching of a snark G1 where {A,B,
C,D} is an F -family for M1. Let xy and zt be two edges of E(G1)\M1 not
contained in N .

Let M2 be a perfect matching of a snark G2 such that G2\M2 contains
only two (odd) cycles, namely C and C ′. Let xy ∈ M2, with x ∈ V (C) and
y ∈ V (C ′).

Then {A,B,C,D} is an F -family for the perfect matching M of G =
G1 ·G2 with M = M1 ∪M2\{xy}.

Proof. Obvious by the definition of the F -family and the construction of
the graph resulting of the dot product.

We remark that the graphs obtained via Propositions 4.3 and 4.4 can be
provided with a Fulkerson covering by Theorem 4.1.

The dot product operations described in Propositions 4.3 and 4.4 will
be said to preserve the F -family.
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5. Applications

5.1. Fulkerson coverings, more examples

Figures 8 and 9(a) show that the Petersen Graph as well as the flower snark
J5 have oddness 2 and have an F -family (the dashed edges denote the related
perfect matching).
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Figure 8. An F -family {A,B,C,D} for the Petersen graph.
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Figure (a). An F -family {A,B,C,D} for the flower snark J5.
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Figure 9. An F -family {A,B,C,D} for the flower snark Jk.
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Moreover, as shown in Figure 9(b) the F -family of J5 can be extended by
induction to all the Jk’s (k odd).

Thus, following the above Propositions we can define a sequence (Gn)n∈N
of cubic graphs as follows:

• Let G0 be the Petersen graph or the flower snark Jk (k > 3, k odd).

• For n ∈ N∗, Gn = Gn−1.G where G is either the Petersen graph or the
flower snark Jk (k > 3, k odd) and the dot product operation preserves
the F -family.
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Figure 10. An F -family {A,B,C,D} for the Szekeres Snark.

As a matter of fact this sequence of iterated dot products of the Petersen
graph and/or the flower snark Jk forms a family of exponentially many
snarks including the Szekeres Snark (see Figure 10) as well as the two types
of generalized Blanuša snarks proposed by Watkins in [9] (see Figure 11).

The family obtained when reducing the possible values of k to k = 5 has
already been defined by Skupień in [8], in order to provide a family of hypo-
hamiltonian snarks in using the so-called Flip-flop construction introduced
by Chvátal in [1].

As far as we know there is no Fulkerson family for the Golberg snark.
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Figure (a). Blanuša snark of type 1.
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Figure (b). Blanuša snark of type 2.

Figure 11. An F -family {A,B,C,D} for the Generalized Blanuša snarks.

5.2. Graphs with a 2-factor of C5’s.

Let G be a bridgeless cubic graph having a 2-factor where each cycle is
isomorphic to a chordless C5. We denote by G∗ the multigraph obtained
from G by shrinking each C5 of this 2-factor in a single vertex. The graph
G∗ is 5-regular and we can easily check that it is bridgeless.

Theorem 5.1. Let G be a bridgeless cubic graph having a 2-factor of chord-
less C5. Assume that G∗ has chromatic index 5. Then G can be provided
with a Fulkerson covering.

Proof. LetM be the perfect matching complementary of the 2-factor of C5.
Let {A,B,C,D,E} be a 5-edge colouring of G∗. Each colour corresponds
to a matching of G (let us denote these matchings by A,B,C,D and E).
Then it is an easy task to see that M = {A,B,C,D} is an F -family for M
and the result follows from Theorem 4.1.

Theorem 5.2. Let G be a bridgeless cubic graph having a 2-factor of chord-
less C5. Assume that G∗ is bipartite. Then G can be provided with a Fulk-
erson covering.

Proof. It is well known, in that case, the chromatic index of G∗ is 5. The
result follows from Theorem 5.1.
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Remark that, when considering the Petersen graph P , the graph associated
P ∗ is reduced to two vertices and is thus bipartite.

We can construct cubic graphs with chromatic index 4 which are cycli-
cally 4-edge connected (snarks in the literature) and having a 2-factor of
C5’s. Indeed, let G be cyclically 4-edge connected snark of size n and M
be a perfect matching of G, M = {xiyi|i = 1, . . . , n2 }. Let G1, . . . , Gn

2
be n

2
cyclically 4-edge connected snarks (each of them having a 2-factor of C5).
For each Gi (i = 1, . . . , n2 ) we consider two edges e1i and e2i of the perfect
matching which is the complement of the 2-factor.

We construct then a new cyclically 4-edge connected snark H by apply-
ing the dot-product operation on {e1i , e2i } and the edge xiyi (i = 1, . . . , n2 ).
We remark that the vertices of G vanish in the operation and the resulting
graph H has a 2 factor of C5, which is the union of the 2-factors of C5 of
the Gi. Unfortunately, when considering the graph H∗, derived from H,
we cannot insure, in general, that H∗ is 5-edge colourable in order to apply
Theorem 5.1 and obtain hence a Fulkerson covering of H.

An interesting case is obtained when, in the above construction of H,
each graph Gi is isomorphic to the Petersen graph. Indeed, the 2-factor of
C5’s obtained then is such that we can find a partition of the vertex set of
H in sets of 2 C5 joined by 3 edges. These sets lead to pairs of vertices of
H∗ joined by three parallel edges. We can thus see H∗ as a cubic graph
where a perfect matching is taken 3 times. Let us denote by H̃ this cubic
graph (by the way H̃ is 3-connected). It is an easy task to see that, when
H̃ is 3-edge colourable, H∗ is 5-edge colourable and hence, Theorem 5.1 can
be applied.
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Figure 12. H∗ isomorphic to P(3).
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Let us consider by example the graph H obtained with 5 copies of the
Petersen graph following the above construction (let us remark that the
graphG involved in our construction must be isomorphic also to the Petersen
graph). This graph is a snark on 50 vertices. Since H̃ is a bridgeless cubic
graph, the only case for which we cannot say whether H has a Fulkerson
covering occurs when H̃ is isomorphic to the Petersen graph and, hence H∗

is isomorphic to the unslicable graph P(3) described by Rizzi [7] (see Figure
12). As a matter of fact we do not know if it is possible to construct a graph
H as described above such that H∗ is isomorphic to the graph P(3).

By the way, we do not know example of cyclically 5-edge connected
snarks (excepted the Petersen graph) with a 2-factor of induced cycles of
length 5. We have proposed in [3] the following problem.

Problem 5.3. Is there any 5-edge connected snark distinct from the Pe-
tersen graph with a 2-factor of C5’s ?

6. On Proper Fulkerson Covering

As noticed in the introduction, when a cubic graph is 3-edge colourable, we
can find a Fulkerson covering by using a 3-edge colouring and considering
each colour twice.

Proposition 6.1. Let G be a bridgeless cubic graph with chromatic index 4.
Assume that G has a Fulkerson covering F = {M1,M2,M3,M4,M5,M6} of
its edge set. Then the 6 perfect matchings are distinct.

Proof. Assume, without loss of generality that M1 = M2. Since each edge
is contained in exactly 2 perfect matchings of F , we must have M3∩M1 = ∅.
Hence G is 3-edge colourable, a contradiction.

Let us say that a Fulkerson covering is proper whenever the 6 perfect match-
ings involved in this covering are distinct. An interesting question is thus to
determine which cubic bridgeless graph have a proper Fulkerson covering.

A 3-edge colourable graph is said to be bi-hamiltonian whenever in any
3-edge colouring, there are at least two colours whose removing leads to an
hamiltonian 2-factor.

Proposition 6.2. Let G be a bridgeless 3-edge colourable cubic graph which
is not bi-hamiltonian. Then G has a proper Fulkerson covering.
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Proof. Let Φ E(G) → {α, β, γ} be a 3-edge colouring of G. When x
and y are colours in {α, β, γ}, Φ(x, y) denotes the set of disjoint even cycles
induced by the two colours x and y.

Since the graph G is not bi-hamiltonian we may assume that the 2-
factors Φ(α, β) and Φ(β, γ) are not hamiltonian cycles. Let C be a cycle in
Φ(α, β), we get a new 3-edge colouring Φ

′
by exchanging the two colours α

and β along C. We get hence a partition of E(G) into 3 perfect matching
α

′
, β

′
and γ. In the same way, when considering a cycle D in Φ(β, γ), we

get a new 3-edge colouring Φ
′′
of G by exchanging β and γ along D. Let

α,β
′′
and γ

′′
be the 3 perfect matchings so obtained.

Since we have two distinct 3-edge colourings of G, Φ
′
and Φ

′′
, the set of

6 perfect matchings so involved {α, α′
, β

′
, β

′′
, γ, γ

′′} is a Fulkerson covering.
It remains to show that this set is actually a proper Fulkerson covering.

The exchange operated in order to get Φ
′
involve some edges in α and

some edges in β (those which are on C1) while the other edges keep their
colour. In the same way, the exchange operated in order to get Φ

′′
involve

some edges in β and some edges in γ (those which are on D1) while the
other edges keep their colour.

The 3 perfect matchings of Φ
′
(α

′
, β

′
and γ) are pairwise disjoint as well

as those of Φ
′′
(α, β

′′
and γ

′′
). We have α ̸= α

′
since α

′
contains some edges

of β. We have α ∩ β
′′
= ∅ and α ∩ γ

′′
= ∅ since we have exchanged β and γ

in order to obtain β
′′
and γ

′′
. We have β

′ ̸= β
′′
since β

′
contains some edges

of α while β
′′
contains some edges of γ. We have β

′ ̸= γ
′′
since β

′
contains

some edges of α and γ
′′
contains only edges in β or in γ. We have γ ̸= γ

′′

since γ
′′
contains some edges of β.

Hence {α, α′
, β

′
, β

′′
, γ, γ

′′} is a proper Fulkerson covering.

The theta graph (2 vertices joined by 3 edges), K4, K3,3 are examples of
small bridgeless cubic graph without proper Fulkerson covering. The infi-
nite family of bridgeless cubic bi-hamiltonian graphs obtained by doubling
the edges of a perfect matching of an even cycle has no proper Fulkerson
covering. On the other hand, we can provide a bi-hamiltonian graph to-
gether with a proper Fulkerson covering. Consider for example the graph
G on 10 vertices which have a 2 factor of C5’s, namely abcde and 12345
with the additional edges edges a2, b4, c3, d5 and e1, it is not difficult to
check that this graph is bi-hamiltonian. Moreover since the following four
balanced matchings {a2}, {b4}, {c3} and {d5} form an F -family for the
perfect matching {a2, b4, c3, d5, e1}, due to Theorem 4.1 and Remark 4.2,
the graph G has a proper Fulkerson covering.
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A challenging problem is thus to characterize those bridgeless cubic graphs
having a proper Fulkerson covering.
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Higher College of Enginering, Zielona Góra, 1989, pp. 123–132.
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