ON THE CROSSING NUMBERS OF $G \square C_{n}$ FOR GRAPHS G ON SIX VERTICES

Emília Draženská ${ }^{1}$ and Marián Klešč ${ }^{1,2}$
Department of Mathematics
Faculty of Electrical Engineering and Informatics
Technical University, 04200 Košice, Slovak Republic
e-mail: Emilia.Drazenska@tuke.sk
Marian.Klesc@tuke.sk

Abstract

The crossing numbers of Cartesian products of paths, cycles or stars with all graphs of order at most four are known. The crossing numbers of $G \square C_{n}$ for some graphs G on five and six vertices and the cycle C_{n} are also given. In this paper, we extend these results by determining crossing numbers of Cartesian products $G \square C_{n}$ for some connected graphs G of order six with six and seven edges. In addition, we collect known results concerning crossing numbers of $G \square C_{n}$ for graphs G on six vertices.

Keywords: graph, cycle, drawing, crossing number, Cartesian product.

2010 Mathematics Subject Classification: 05C10.

1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of crossings of edges in a drawing of G in the plane such that no three edges cross in a point. It is easy to verify that a drawing with minimum number of crossings (an

[^0]optimal drawing) is always a good drawing, meaning that no edge crosses itself, no two edges cross more than once, and no two edges incident with the same vertex cross. Let D be a good drawing of the graph G. We denote the number of crossings in D by $\operatorname{cr}_{D}(G)$. Let G_{i} and G_{j} be edge-disjoint subgraphs of G. We denote by $c r_{D}\left(G_{i}, G_{j}\right)$ the number of crossings between edges of G_{i} and edges of G_{j}, and by $\operatorname{cr}_{D}\left(G_{i}\right)$ the number of crossings among edges of G_{i} in D.

The investigation of crossing numbers of graphs is a classical and very difficult problem. Because of their structure, Cartesian products of special graphs are one of few graph classes for which the exact values of crossing numbers were obtained. (For a definition of Cartesian product, see [2].) Let C_{n} be the cycle of length n, P_{n} be the path of length n, and S_{n} be the star isomorphic to $K_{1, n}$. Harary et al. [7] conjectured that the crossing number of $C_{m} \square C_{n}$ is $(m-2) n$, for all m, n satisfying $3 \leq m \leq n$. This has been proved only for m, n satisfying $n \geq m, m \leq 7$. It was recently proved by Glebsky and Salazar [6] that the crossing number of $C_{m} \square C_{n}$ equals its long-conjectured value at least for $n \geq m(m+1)$. Beineke and Ringeisen in [2] and Jendrol' and Ščerbová in [8] determined the crossing numbers of the Cartesian products of all graphs on four vertices with cycles. Klešč in [9], [10, 11], Klešč, Richter and Stobert in [13], and Klešč and Kocúrová in [14] gave the crossing numbers of $G \square C_{n}$ for several graphs of order five. Except of the graph $K_{5} \square C_{n}$, all known values of crossing numbers for the Cartesian products of cycles and graphs of order five are presented in [12]. It was proved in [18] that $\operatorname{cr}\left(K_{5} \square C_{n}\right)=9 n$. It seems natural to enquire about the crossing numbers of Cartesian products of cycles with other graphs. Except for the star S_{5}, the crossing numbers of Cartesian products of all connected graphs on six vertices and five edges with cycles were given in [4]. For the star on six vertices an upper bound is presented. In [5], the crossing number of the Cartesian product $G \square C_{n}$ for a specific 6 -vertex graph containing seven edges is established. We extend these results by giving the crossing numbers of $G \square C_{n}$ for several graphs G of order six.

2. Graphs on Six Vertices and Six Edges

There are thirteen graphs G_{j} on six vertices and six edges (see Table 1 in this section). To establish crossing numbers of the graphs $G_{j} \square C_{n}$ for $j=1,2, \ldots, 10$, we will refer to the previous results. It was proved that $\operatorname{cr}\left(C_{3} \square C_{n}\right)=n$ for $n \geq 3[2], \operatorname{cr}\left(C_{4} \square C_{n}\right)=2 n$ for $n \geq 4[3,17], \operatorname{cr}\left(C_{5} \square C_{n}\right)=$
$3 n$ for $n \geq 5[13,15]$, and $\operatorname{cr}\left(C_{6} \square C_{n}\right)=4 n$ for $n \geq 6[1,16]$. Jendrol' and Ščerbová in [8] proved that $\operatorname{cr}\left(S_{3} \square C_{3}\right)=1, \operatorname{cr}\left(S_{3} \square C_{4}\right)=2, \operatorname{cr}\left(S_{3} \square C_{5}\right)=4$, and that $\operatorname{cr}\left(S_{3} \square C_{n}\right)=n$ for $n \geq 6$. So, the crossing number of the graph $G_{1} \square C_{n}=C_{6} \square C_{n}$ is known. In this section we establish the crossing number for the Cartesian product $G_{10} \square C_{n}$ and then we collect the crossing numbers of the graphs $G_{j} \square C_{n}$ for all $j=2,3, \ldots, 9$. In the proofs of the paper, we will often use the term "region" also in nonplanar drawings. In this case, crossings are considered to be vertices of the "map". We will use the following fact several times.

Table 1. The known values of crossing numbers for the graphs $G_{j} \square C_{n}$.

G_{i}	$c r\left(G_{i} \square C_{n}\right)$			G_{i}	$\operatorname{cr}\left(G_{i} \square C_{n}\right)$			
G_{1}	$4 n \quad(n>5)$	$\begin{array}{r} 6 \\ 12 \\ 18 \end{array}$	$\begin{aligned} & (n=3) \\ & (n=4) \\ & (n=5) \end{aligned}$	G_{8}	$2 n$	$(n>5)$	4 6 9	$\begin{aligned} & (n=3) \\ & (n=4) \\ & (n=5) \end{aligned}$
G_{2}	$3 n \quad(n>4)$	5 10	$\begin{aligned} & (n=3) \\ & (n=4) \end{aligned}$	G_{9}	$2 n$	$(n>5)$	4 6 9	$\begin{aligned} & (n=3) \\ & (n=4) \\ & (n=5) \end{aligned}$
	$2 n \quad(n>3)$	4	($n=3$)		$2 n$	$(n>5)$	4 6 9	$\begin{gathered} (n=3) \\ (n=4) \\ (n=5) \end{gathered}$
	$2 n \quad(n>3)$	4	($n=3$)	G_{11}				
G_{5}	$2 n \quad(n>3)$	4	($n=3$)					
	n							
G_{7}	n							

Lemma 2.1. For $n \geq 4$, there is no good drawing of the graph $P_{1} \square C_{n}$ with one crossing.

Proof. Assume that there is a good drawing of $P_{1} \square C_{n}$ with exactly one crossing. As no two edges incident with the same vertex cross in a good drawing, for $n \geq 4$ one can easily verify that in any good drawing of $P_{1} \square C_{n}$
the edges that cross each other must appear in two different edge-disjoint cycles. Two edge-disjoint cycles cannot cross only once. This contradiction completes the proof.

2.1. The graph G_{10}

Assume $n \geq 3$ and consider the graph $G_{10} \square C_{n}$ in the following way: it has $6 n$ vertices and edges that are the edges in the n copies $G_{10}^{i}, i=0,1, \ldots, n-1$, and in the six cycles of length n. For $i=0,1, \ldots, n-1$, let a_{i} and b_{i} be the vertices of G_{10}^{i} of degree two, c_{i} and d_{i} the vertices of degree three, and e_{i} and f_{i} the vertices of degree one (see Figure 1). Thus, for $x \in\{a, b, c, d, e, f\}$, the n-cycle C_{n}^{x} is induced by the vertices $x_{0}, x_{1}, \ldots, x_{n-1}$. Let $T^{x}, x=a, b$ ($x=e, f$), be the subgraph of the graph $G_{10} \square C_{n}$ consisting of the cycle C_{n}^{x} together with the vertices of $C_{n}^{c}\left(C_{n}^{d}\right)$ and of the edges joining C_{n}^{x} with C_{n}^{c} $\left(C_{n}^{d}\right)$. Let $I^{x y}$ be the subgraph of $G_{10} \square C_{n}$ containing the vertices of two adjacent cycles C_{n}^{x} and C_{n}^{y} and the edges $\left\{x_{i}, y_{i}\right\}$ for all $i=0,1, \ldots, n-1$. It is not difficult to see that

$$
G_{10} \square C_{n}=T^{a} \cup T^{b} \cup I^{a b} \cup C_{n}^{c} \cup I^{c d} \cup C_{n}^{d} \cup T^{e} \cup T^{f} .
$$

Figure 1. The graph $G_{10} \square C_{n}$.
Theorem 2.1. $\operatorname{cr}\left(G_{10} \square C_{3}\right)=4, \operatorname{cr}\left(G_{10} \square C_{4}\right)=6, \operatorname{cr}\left(G_{10} \square C_{5}\right)=9$, and $\operatorname{cr}\left(G_{10} \square C_{n}\right)=2 n$ for $n \geq 6$.

Proof. It follows from Figure 2 that $\operatorname{cr}\left(G_{10} \square C_{5}\right) \leq 9$. In the drawing of the graph $G_{10} \square C_{5}$ in Figure 2 there is one copy of G_{10} with three crossings on its edges. The removing of all edges of this copy of G_{10} results in the drawing of the graph homeomorphic to $G_{10} \square C_{4}$ with six crossings. Thus,
$\operatorname{cr}\left(G_{10} \square C_{4}\right) \leq 6$. By deleting one copy of G_{10} with three crossings and one copy of G_{10} with two crossings from the drawing in Figure 2, the drawing of the graph homeomorphic to $G_{10} \square C_{3}$ with four crossings is obtained. Hence, $\operatorname{cr}\left(G_{10} \square C_{3}\right) \leq 4$. To prove that $\operatorname{cr}\left(G_{10} \square C_{3}\right)=4, \operatorname{cr}\left(G_{10} \square C_{4}\right)=6$, and $\operatorname{cr}\left(G_{10} \square C_{5}\right)=9$, we need to confirm the reverse inequalities. The graph $G_{10} \square C_{n}$ consists of two subgraphs $C_{3} \square C_{n}$ and $S_{3} \square C_{n}$, where $C_{3} \square C_{n}$ is induced on the vertices a_{i}, b_{i}, and c_{i} and $S_{3} \square C_{n}$ is induced on the vertices c_{i}, d_{i}, e_{i}, and f_{i} for $i=0,1, \ldots, n-1$. The only edges of the cycle C_{n}^{c} belong to both subgraphs.

Figure 2. The drawing of $G_{10} \square C_{5}$ with nine crossings.
Consider a good drawing of the graph $G_{10} \square C_{3}$. The edges of the common 3cycle C_{3}^{c} do not cross each other. Thus, as $\operatorname{cr}\left(C_{3} \square C_{3}\right)=3$ and $\operatorname{cr}\left(S_{3} \square C_{3}\right)=$ 1 , the number of crossings in the drawing is at least $\operatorname{cr}\left(C_{3} \square C_{3}\right)+\operatorname{cr}\left(S_{3} \square C_{3}\right)=$ $3+1=4$. This confirms that $\operatorname{cr}\left(G \square C_{3}\right)=4$.

Assume now that there is a good drawing of the graph $G_{10} \square C_{4}$ with less than six crossings and let D be such a drawing. As $\operatorname{cr}\left(C_{3} \square C_{4}\right)=4$ and $\operatorname{cr}\left(S_{3} \square C_{4}\right)=2$, in D there is exactly one internal crossing on the edges of C_{4}^{c}. (The edges of C_{4}^{c} do not cross more than once in a good drawing.) Lemma 2.1 implies that $c r_{D}\left(C_{4}^{c} \cup I^{c d} \cup C_{4}^{d}\right) \geq 2$ and therefore, in D there are at least five crossings on the edges of $\left(C_{3} \square C_{4}\right) \cup I^{c d} \cup C_{4}^{d}$. This implies that no edge of the subgraph $T^{e} \cup T^{f}$ is crossed in D. In the subdrawing of $T^{e} \cup T^{f}$ induced from D there are at most two vertices of C_{4}^{d} on the boundary of a region, which enforces an additional crossing in D between the edges of $T^{e} \cup T^{f}$ and the edges of $C_{4}^{c} \cup I^{c d}$. This contradicts the assumption that D has less than six crossings. Hence, $\operatorname{cr}\left(G_{10} \square C_{4}\right)=6$.

If there is a good drawing D of the graph $G_{10} \square C_{5}$ with less than nine crossings, the facts $\operatorname{cr}\left(C_{3} \square C_{5}\right)=5$ and $\operatorname{cr}\left(S_{3} \square C_{5}\right)=4$ require that the edges of C_{5}^{c} cross each other at least once. (The edges of C_{5}^{c} cannot cross more than twice in a good drawing.) If $c r_{D}\left(C_{5}^{c}\right)=1$, Lemma 2.1 implies
that in the subdrawing of $C_{5}^{c} \cup I^{c d} \cup C_{5}^{d}$ there is at least one crossing on the edges of $I^{c d} \cup C_{5}^{d}$ which does not appear in $C_{3} \square C_{5}$. Hence, in D there are at most two crossings on the edges of $T^{e} \cup T^{f}$.

Assume first that $c r_{D}\left(T^{e} \cup T^{f}\right)=0$. The planar subdrawing of $T^{e} \cup T^{f}$ induced from D divides the plane into two pentagonal and five hexagonal regions in such a way that there are at most two of the vertices $d_{0}, d_{1}, \ldots, d_{4}$ on the boundary of a region, see Figure 3(a). So, if $c r_{D}\left(T^{e} \cup T^{f}, C_{5}^{c}\right) \neq 0$, then $c r_{D}\left(T^{e} \cup T^{f}, C_{5}^{c}\right)=2$ and C_{5}^{c} is placed in D in two neighbouring regions of the subdrawing induced by $T^{e} \cup T^{f}$. In this case, as on the boundaries of two neighbouring regions there are at most three vertices of C_{5}^{d}, the edges of $I^{c d}$ joining C_{5}^{d} with C_{5}^{c} cross the edges of $T^{e} \cup T^{f}$ and in D there are more than eight crossings, a contradiction. If $c r_{D}\left(T^{e} \cup T^{f}, C_{5}^{c}\right)=0$, then C_{5}^{c} is placed in D in one region of the subdrawing induced by $T^{e} \cup T^{f}$ and the edges joining C_{5}^{c} with the vertices of C_{5}^{d} cross the edges of $T^{e} \cup T^{f}$ more than two times. This contradicts our assumption that the drawing D has less than nine crossings.

Figure 3. The subdrawings of $T^{e} \cup T^{f}$ and $T^{e} \cup I^{c d} \cup C_{5}^{c}$.
So, $c r_{D}\left(T^{e} \cup T^{f}\right) \neq 0$. In this case, $c r_{D}\left(T^{e} \cup T^{f}, C_{5}^{c} \cup I^{c d} \cup C_{5}^{d}\right) \leq 1$ and therefore, $c r_{D}\left(T^{e}, I^{c d} \cup C_{5}^{c}\right)=0$ or $c r_{D}\left(T^{f}, I^{c d} \cup C_{5}^{c}\right)=0$. Without loss of generality, let $c r_{D}\left(T^{e}, I^{c d} \cup C_{5}^{c}\right)=0$. Consider now the subdrawing D^{\prime} of the subgraph $T^{e} \cup I^{c d} \cup C_{5}^{c}$ induced by D. As $c r_{D}\left(T^{e}, I^{c d} \cup C_{5}^{c}\right)=0, D^{\prime}$ divides the plane in such a way that on the boundary of a region there are at most two vertices of C_{5}^{d} and no two regions with a common boundary contain more than three vertices of C_{5}^{d} on their boundaries. Figure 3(b) shows the subdrawing D^{\prime} in which possible crossings among the edges of T^{e} are inside the left disc bounded by the dotted cycle and possible crossings among the edges of $I^{c d} \cup C_{5}^{c}$ are inside the right disc bounded by the dotted cycle. We can suppose that if, in D, an edge of T^{f} passes through one of these two discs, then it crosses the edges of $T^{e} \cup I^{c d} \cup C_{5}^{c}$ at least twice. Then the
same analysis as in the previous paragraph, for the case $\operatorname{cr}_{D}\left(T^{e} \cup T^{f}\right)=0$, confirms that $c r_{D}\left(T^{e} \cup I^{c d} \cup C_{5}^{c}, T^{f}\right) \geq 3$. This contradicts the assumption that D has less than nine crossings again.

The last possibility is that the edges of C_{5}^{c} cross each other two times. The subdrawing of such C_{5}^{c} is unique with one region containing all five vertices of C_{5}^{c} on its boundary. The ordering of the vertices along the boundary of this region is $c_{i}, c_{i+1}, c_{i+4}, c_{i+2}, c_{i+3}$, where indices are taken modulo 5 . If the cycle C_{5}^{d} does not have a crossing on its edges in the subdrawing of $C_{5}^{c} \cup I^{c d} \cup C_{5}^{d}$, then the ordering of its vertices is $d_{0}, d_{1}, d_{2}, d_{3}, d_{4}$ and in the subdrawing of $C_{5}^{c} \cup I^{c d} \cup C_{5}^{d}$ there is a crossing on the edges of $I^{c d}$. Thus, in the subdrawing of $C_{5}^{c} \cup I^{c d} \cup C_{5}^{d}$ induces from D there is at least one crossing on the edges of $I^{c d} \cup C_{5}^{d}$. Now, the same analysis as for the case $\operatorname{cr}_{D}\left(C_{5}^{c}\right)=1$ gives the contradiction with the assumption that D has less than nine crossings. This confirms that $\operatorname{cr}\left(G_{10} \square C_{5}\right)=9$.

Let H_{1} be the graph obtained from the graph G_{10} by deleting the edge $\{a, b\}$. It was proved in [4] that $\operatorname{cr}\left(H_{1} \square C_{n}\right)=2 n$ for all $n \geq 6$. The graph $G_{10} \square C_{n}$ contains the graph $H_{1} \square C_{n}$ as a subgraph. So $\operatorname{cr}\left(G_{10} \square C_{n}\right) \geq 2 n$. On the hand, the drawing in Figure 1 gives the upper bound $2 n$ for the crossing number of the graph $G_{10} \square C_{n}$. This completes the proof.

2.2. The other graphs \boldsymbol{G}_{j}

In Figure 4 there are segments of the graphs $G_{j} \square C_{n}$ for $j=2,3, \ldots, 9$. It is easy to see that $\operatorname{cr}\left(G_{2} \square C_{n}\right) \leq 3 n, \operatorname{cr}\left(G_{3} \square C_{n}\right) \leq 2 n, \operatorname{cr}\left(G_{4} \square C_{n}\right) \leq 2 n$, $\operatorname{cr}\left(G_{5} \square C_{n}\right) \leq 2 n, \operatorname{cr}\left(G_{6} \square C_{n}\right) \leq n, \operatorname{cr}\left(G_{7} \square C_{n}\right) \leq n, c r\left(G_{8} \square C_{n}\right) \leq 2 n$, and $\operatorname{cr}\left(G_{9} \square C_{n}\right) \leq 2 n$. To establish the exact values of crossing numbers for all these graphs $G_{j} \square C_{n}$, we only need to find lower bounds for their crossing numbers. This we will do by finding the suitable subgraphs with known crossing numbers. For some of these graphs we also use special drawings for small values of n.

In Figure 5(a) there is the drawing of the graph $G_{2} \square C_{4}$ with ten crossings. The deleting the edges of one copy of the graph G_{2} with five crossings from this drawing results in the drawing of the subdivision of $G_{2} \square C_{3}$ with five crossings. Hence, $\operatorname{cr}\left(G_{2} \square C_{3}\right) \leq 5$ and $\operatorname{cr}\left(G_{2} \square C_{4}\right) \leq 10$. On the other hand, $\operatorname{cr}\left(G_{2} \square C_{3}\right) \geq 5$, because the graph $G_{2} \square C_{3}$ contains the graph $C_{5} \square C_{3}$ as a subgraph. Similarly, $\operatorname{cr}\left(G_{2} \square C_{4}\right) \geq 10$, because the graph $G_{2} \square C_{4}$ contains the subgraph $C_{5} \square C_{4}$. As the graph $G_{2} \square C_{n}$ contains the graph $C_{5} \square C_{n}$ as a subgraph and $\operatorname{cr}\left(C_{5} \square C_{n}\right)=3 n$ for all $n \geq 5$, the crossing number of the
graph $G_{2} \square C_{n}$ is at least $3 n$. This, together with $\operatorname{cr}\left(G_{2} \square C_{n}\right) \leq 3 n$, confirms that $\operatorname{cr}\left(G_{2} \square C_{n}\right)=3 n$ for all $n \geq 5$.

Figure 4. The segments of one copy of G_{j} for all graphs $G_{j} \square C_{n}, j=2,3, \ldots, 9$.

The drawings of the graphs $G_{3} \square C_{3}, G_{4} \square C_{3}$, and $G_{5} \square C_{3}$ in Figure $5(\mathrm{~b}), 5(\mathrm{c})$, and $5(\mathrm{~d})$ show that $\operatorname{cr}\left(G_{3} \square C_{3}\right) \leq 4, \operatorname{cr}\left(G_{4} \square C_{3}\right) \leq 4$, and $\operatorname{cr}\left(G_{5} \square C_{3}\right) \leq 4$. Every of the graphs $G_{j} \square C_{n}, j=3,4,5$, contains the graph $C_{4} \square C_{n}$ as a subgraph. As $\operatorname{cr}\left(C_{4} \square C_{3}\right)=4, \operatorname{cr}\left(G_{j} \square C_{3}\right) \geq 4$ for all $j=3,4,5$. Thus, $\operatorname{cr}\left(G_{3} \square C_{3}\right)=\operatorname{cr}\left(G_{4} \square C_{3}\right)=\operatorname{cr}\left(G_{5} \square C_{3}\right)=4$. We can generalize this idea and to state that $\operatorname{cr}\left(G_{3} \square C_{n}\right)=\operatorname{cr}\left(G_{4} \square C_{n}\right)=\operatorname{cr}\left(G_{5} \square C_{n}\right)=2 n$ for $n \geq 4$.

Both graphs $G_{6} \square C_{n}$ and $G_{7} \square C_{n}$ contain the graph $C_{3} \square C_{n}$ as a subgraph. The fact $\operatorname{cr}\left(C_{3} \square C_{n}\right)=n$ and the drawings in Figure 4 for the graphs G_{6} and G_{7} confirm that $\operatorname{cr}\left(G_{6} \square C_{n}\right)=\operatorname{cr}\left(G_{7} \square C_{n}\right)=n$ for $n \geq 3$.

Figure 5. The graphs $G_{2} \square C_{4}, G_{3} \square C_{3}, G_{4} \square C_{3}$, and $G_{5} \square C_{3}$.

Let H_{2} be the graph obtained from the complete bipartite graph $K_{1,4}$ by adding one new edge. It was shown in [12] that $\operatorname{cr}\left(H_{2} \square C_{n}\right)=2 n$ for $n \geq 6$, and that $\operatorname{cr}\left(H_{2} \square C_{3}\right)=4, \operatorname{cr}\left(H_{2} \square C_{4}\right)=6$, and $\operatorname{cr}\left(H_{2} \square C_{5}\right)=9$. As both graphs $G_{8} \square C_{n}$ and $G_{9} \square C_{n}$ contain the graph $H_{2} \square C_{n}$ as a subgraph, we have the lower bounds for crossing numbers of the graphs $G_{j} \square C_{n}, j=8,9$. In Figure $6(\mathrm{a})$ there is the drawing of the graph $G_{8} \square C_{5}$ with nine crossings. Hence, $\operatorname{cr}\left(G_{8} \square C_{5}\right) \leq 9$. Deleting the edges of one copy of the graph G_{8} with three crossings from this drawing results in the subdivision of the graph $G_{8} \square C_{4}$ with six crossings. By deleting the edges of one copy of G_{8} with three crossings and of one copy of G_{8} with two crossings, the subdivision of the graph $G_{8} \square C_{3}$ with four crossings is obtained. So, $\operatorname{cr}\left(G_{8} \square C_{4}\right) \leq 6$ and $\operatorname{cr}\left(G_{8} \square C_{3}\right) \leq 4$. The same we can do in the drawing of the graph $G_{9} \square C_{5}$ with nine crossings in Figure 6(b). Hence, $\operatorname{cr}\left(G_{9} \square C_{5}\right) \leq 9, \operatorname{cr}\left(G_{9} \square C_{4}\right) \leq 6$, and $\operatorname{cr}\left(G_{9} \square C_{3}\right) \leq 4$. Figure 4 shows that the crossing number of both graphs $G_{8} \square C_{n}$ and $G_{9} \square C_{n}$ is at most $2 n$ for $n \geq 6$. These lower and upper bounds confirm that $\operatorname{cr}\left(G_{8} \square C_{3}\right)=\operatorname{cr}\left(G_{9} \square C_{3}\right)=4, \operatorname{cr}\left(G_{8} \square C_{4}\right)=\operatorname{cr}\left(G_{9} \square C_{4}\right)=6$, $\operatorname{cr}\left(G_{8} \square C_{5}\right)=\operatorname{cr}\left(G_{9} \square C_{5}\right)=9$, and that $\operatorname{cr}\left(G_{8} \square C_{n}\right)=\operatorname{cr}\left(G_{9} \square C_{n}\right)=2 n$ for $n \geq 6$.

Figure 6. The graphs $G_{8} \square C_{5}$ and $G_{9} \square C_{5}$.

3. Graphs on Six Vertices and Seven Edges

For one specific graph G of order six with seven edges, the crossing number of the Cartesian product $G \square C_{n}$ is given in [5]. In this section, we find the crossing number of the Cartesian product of one other graph of the same size with the cycle C_{n}. Let F be the graph on six vertices consisting of edge disjoint cycles C_{4} and C_{3} with one common vertex. Denote the
common vertex of both cycles by d. Let a and c be the vertices of C_{4} adjacent with the vertex d, and let b be the vertex of C_{4} adjacent to a and c. Let us denote by e and f the vertices of degree two in the cycle C_{3}. Assume $n \geq 3$ and consider the graph $F \square C_{n}$ in the following way: it has $6 n$ vertices and edges that are the edges in the n copies $F^{i}, i=0,1, \ldots, n-1$, and in the six cycles of length n (see segment in Figure 7(b)). Thus, for $x \in\{a, b, c, d, e, f\}$, the n-cycle C_{n}^{x} is induced by the vertices x_{0}, x_{1}, \ldots, x_{n-1}. For $i=0,1, \ldots, n-1$, let P^{i} denote the subgraph of $F \square C_{n}$ containing the vertices of F^{i} and F^{i+1} and six edges joining F^{i} to F^{i+1}, i taken modulo n. Let $T^{x}, x=a, c, e, f$, be the subgraph of the graph $F \square C_{n}$ consisting of the cycle C_{n}^{x} together with the vertices of C_{n}^{d} and of the edges joining C_{n}^{x} with C_{n}^{d}. For $x, y \in\{a, b, c, d, e, f\}, x \neq y$, let $I^{x y}$ be the subgraph of $F \square C_{n}$ consisting of the vertices in the adjacent cycles C_{n}^{x} and C_{n}^{y} and of the edges $\left\{x_{i}, y_{i}\right\}$ for all $i=0,1, \ldots, n-1$.

It is easy to see that

$$
F \square C_{n}=T^{a} \cup T^{c} \cup I^{a b} \cup C_{n}^{b} \cup I^{b c} \cup C_{n}^{d} \cup T^{e} \cup T^{f} \cup I^{e f},
$$

and also

$$
F \square C_{n}=\left(C_{4} \square C_{n}\right) \cup\left(C_{3} \square C_{n}\right), \quad \text { where } \quad\left(C_{4} \square C_{n}\right) \cap\left(C_{3} \square C_{n}\right)=C_{n}^{d} \text {. }
$$

Figure 7. The graph $F \square C_{4}$ and the segment Q^{i} of the graph $F \square C_{n}$.
We say that a good drawing of the graph $F \square C_{n}$ is coherent if for each F^{i} holds that all vertices of the subgraph $\left(F \square C_{n}\right) \backslash V\left(F^{i}\right)$ lie in the same region in the view of the subdrawing of F^{i}.

Lemma 3.1. $\operatorname{cr}\left(F \square C_{3}\right)=7$ and $\operatorname{cr}\left(F \square C_{4}\right)=12$.

Proof. The drawing in Figure $7(\mathrm{a})$ shows that $\operatorname{cr}\left(F \square C_{4}\right) \leq 12$. The deleting all edges of one copy of the subgraph F with five crossings results in the subdrawing of the graph homeomorphic to $F \square C_{3}$ with seven crossings. So, $\operatorname{cr}\left(F \square C_{3}\right) \leq 7$ and $\operatorname{cr}\left(F \square C_{4}\right) \leq 12$. As $F \square C_{3}=\left(C_{4} \square C_{3}\right) \cup\left(C_{3} \square C_{3}\right)$ and in a good drawing the 3 -cycle C_{3}^{d} does not have an internal crossing, $\operatorname{cr}\left(F \square C_{3}\right) \geq \operatorname{cr}\left(C_{4} \square C_{3}\right)+\operatorname{cr}\left(C_{3} \square C_{3}\right)=4+3=7$, and the proof is done for $n=3$. It remains to prove the reverse inequality for the case $n=4$.

Assume that there is a good drawing of the graph $F \square C_{4}$ with less than 12 crossings and let D be such a drawing. As $\operatorname{cr}\left(C_{4} \square C_{4}\right)=8$ and $\operatorname{cr}\left(C_{3} \square C_{4}\right)=4$, in D there is at least one crossing among the edges of the cycle C_{4}^{d}. The edges of a 4 -cycle can not cross each other more than once in a good drawing, and therefore $c r_{D}\left(C_{4}^{d}\right)=1$. As in D there are at most eleven crossings, the edges of $C_{4} \square C_{4}=T^{c} \cup I^{c b} \cup C_{4}^{b} \cup I^{b a} \cup T^{a}$ do not cross the edges of $C_{3} \square C_{4}=T^{e} \cup I^{e f} \cup T^{f}$. This implies that $c r_{D}\left(T^{a}, T^{e}\right)=c r_{D}\left(T^{a}, T^{f}\right)=0$. As the edges of the cycle C_{4}^{d} cross once, using Lemma 2.1, $\operatorname{cr}_{D}\left(C_{4}^{d} \cup T^{e}\right) \geq 2$ and $c r_{D}\left(C_{4}^{d} \cup T^{f}\right) \geq 2$. Hence, in the subdrawing of $C_{4}^{d} \cup T^{e}$ there is a crossing on the edges of T^{e} and also in the subdrawing of $C_{4}^{d} \cup T^{f}$ there is a crossing on the edges of T^{f}. This implies that in D there is at most one crossing between the edges of T^{e} and T^{f}. Consider now the subdrawing D^{\prime} of the subgraph $T^{a} \cup T^{e}$ induced by D. As $c r_{D}\left(T^{a}, T^{e}\right)=0, D^{\prime}$ divides the plane in such a way that on the boundary of a region there are at most two vertices of C_{4}^{d}. As $c r_{D}\left(T^{a}, T^{f}\right)=0$ and $c r_{D}\left(T^{e}, T^{f}\right) \leq 1$, the cycle C_{4}^{f} is placed in D in one region of D^{\prime} and the edges of $I^{d f}$ cross in D the edges of $T^{a} \cup T^{e}$ at least two times. This enforces at least twelve crossings in D, and therefore $\operatorname{cr}\left(F \square C_{4}\right)=12$.

Lemma 3.2. If D is a good drawing of $F \square C_{n}, n \geq 4$, in which every F^{i} has at most two crossings on its edges, then D has at least $3 n$ crossings.

Proof. First we show that the drawing D is coherent. The indices are considered modulo n in the proof. If some $F^{i}, i \in\{0,1, \ldots, n-1\}$, separates vertices of the 3 -connected subgraph induced by the vertices $V\left(F^{i+1}\right) \cup \cdots \cup$ $V\left(F^{i-1}\right)$, then its edges are crossed at least three times. So, all subgraphs $F^{j}, j \neq i$, lie in D in the same region in the view of the subdrawing of F^{i}. Moreover, two different F^{i} and F^{j} do not cross each other, otherwise one of them separates the vertices of the other.

For $i=0,1, \ldots, n-1$, let Q^{i} denote the subgraph of $F \square C_{n}$ induced by $V\left(F^{i-1}\right) \cup V\left(F^{i}\right) \cup V\left(F^{i+1}\right)$ (see Figure 7(b)), where i is taken modulo n. Thus, $Q^{i}=F^{i-1} \cup P^{i-1} \cup F^{i} \cup P^{i} \cup F^{i+1}$. Let us denote by Q_{4}^{i} the
subgraph of Q^{i} obtained from Q^{i} by removing six vertices e_{j} and f_{j} for $j=i-1, i, i+1$ and let Q_{3}^{i} be the subgraph of Q^{i} obtained by removing nine vertices a_{j}, b_{j}, c_{j} for $j=i-1, i, i+1$.

Let us consider the following types of crossings on the edges of Q^{i} in a drawing of the graph $F \square C_{n}$:
(1) a crossing of an edge in $P^{i-1} \cup P^{i}$ with an edge in F^{i},
(2) a self-intersection in F^{i},
(3) a crossing of an edge in $F^{i-1} \cup P^{i-1}$ with an edge in $F^{i+1} \cup P^{i}$.

It is readily seen that every crossing of types (1), (2), and (3) appears in a drawing of the graph $F \square C_{n}$ only on the edges of the subgraph Q^{i}. In a good drawing of $F \square C_{n}$, we define the force $f\left(Q^{i}\right)$ of Q^{i} in the following way: every crossing of type (1), (2) or (3) contributes the value 1 to $f\left(Q^{i}\right)$. The total force of the drawing is the sum of $f\left(Q^{i}\right)$. It is easy to see that the number of crossings in the drawing is not less than the total force of the drawing. The aim of our proof is to show that if every F^{i} has at most two crossings on its edges, then $f\left(Q^{i}\right) \geq 3$ for all $i=0,1, \ldots, n-1$.

Consider the subdrawing D_{3}^{i} of Q_{3}^{i} induced from D. As the drawing D is coherent, the cycles C_{3}^{i-1} and C_{3}^{i+1} lie in D_{3}^{i} in the same region in the view of the subdrawing induced by C_{3}^{i}. If $c r_{D_{3}^{i}}\left(P^{i-1}, C_{3}^{i}\right) \neq 0$, then $f\left(Q_{3}^{i}\right) \geq 1$. Otherwise the subdrawing of $C_{3}^{i-1} \cup P^{i-1} \cup C_{3}^{i}$ induced from D_{3}^{i} divides the plane in such a way that there are at most two vertices of C_{3}^{i} on the boundary of a region and $c r_{D_{3}^{i}}\left(C_{3}^{i-1} \cup P^{i-1} \cup C_{3}^{i}, P^{i} \cup C_{3}^{i+1}\right) \geq 1$. Hence, $f\left(Q_{3}^{i}\right) \geq 1$ again.

Consider now the subdrawing D_{4}^{i} of Q_{4}^{i} induced by D. If, in D_{4}^{i}, both P^{i-1} and P^{i} cross the edges of C_{4}^{i}, then $f\left(Q_{4}^{i}\right) \geq 2$. Assume, that $\operatorname{cr}_{D_{4}^{i}}\left(P^{i-1}, C_{4}^{i}\right)=0$. Regardless of whether or not the edges of the cycle C_{4}^{i} cross each other, the subdrawing of $C_{4}^{i-1} \cup P^{i-1} \cup C_{4}^{i}$ induced from D_{4}^{i} divides the plane in such a way that on the boundary of a region there are at most two vertices of C_{4}^{i}. This requires that, in D_{4}^{i}, the edges of $C_{4}^{i+1} \cup P^{i}$ cross the edges of $C_{4}^{i-1} \cup P^{i-1} \cup P^{i}$ at least twice. Hence $f\left(Q_{4}^{i}\right) \geq 2$.

As the only edges which belong to both subgraphs Q_{3}^{i} and Q_{4}^{i} are two edges $\left\{d_{i-1}, d_{i}\right\}$ and $\left\{d_{i}, d_{i+1}\right\}$, the only crossing which contributes to both $f\left(Q_{3}^{i}\right)$ and $f\left(Q_{4}^{i}\right)$ is the crossing between these two edges. But the edges incident with the vertex d_{i} do not cross in the good drawing D. This implies that $f\left(Q^{i}\right) \geq f\left(Q_{3}^{i}\right)+f\left(Q_{4}^{i}\right) \geq 3$ for every i. Since i runs through $0,1, \ldots$, $n-1$, the drawing D has at least $3 n$ crossings.

Theorem 3.1. $\operatorname{cr}\left(F \square C_{n}\right)=3 n$ for $n \geq 4$.
Proof. The drawing in Figure $7(\mathrm{~b})$ shows that $\operatorname{cr}\left(F \square C_{n}\right) \leq 3 n$ for $n \geq 4$. We prove the reverse inequality by the induction on n. By Lemma 3.1, $\operatorname{cr}\left(F \square C_{4}\right)=12$, so the result is true for $n=4$. Assume it is true for $n=k$, $k \geq 4$, and suppose that there is a good drawing of $F \square C_{k+1}$ with fewer than $3(k+1)$ crossings. By Lemma 3.2 , some F^{i} must be crossed at least three times. By the removal of all edges of this F^{i}, we obtain a subdivision of $F \square C_{k}$ with fewer than $3 k$ crossings. This contradiction completes the proof.

Acknowledgement

The authors thank the referees for several helpful comments and suggestions.

References

[1] M. Anderson, R.B. Richter and P. Rodney, The crossing number of $C_{6} \times C_{6}$, Congr. Numer. 118 (1996) 97-107.
[2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155.
[3] A.M. Dean and R.B. Richter, The crossing number of $C_{4} \times C_{4}$, J. Graph Theory 19 (1995) 125-129.
[4] E. Draženská and M. Klešč, The crossing numbers of products of cycles with 6-vertex trees, Tatra Mt. Math. Publ. 36 (2007) 109-119.
[5] E. Draženská, The crossing numbers of $G \square C_{n}$ for the graph G on six vertices, Mathematica Slovaca (to appear).
[6] L.Y. Glebsky and G. Salazar, The crossing number of $C_{m} \times C_{n}$ is as conjectured for $n \geq m(m+1)$, J. Graph Theory 47 (2004) 53-72.
[7] F. Harary, P.C. Kainen and A.J. Schwenk, Toroidal graphs with arbitrarily high crossing numbers, Nanta Math. 6 (1973) 58-67.
[8] S. Jendrol' and M. Ščerbová, On the crossing numbers of $S_{m} \times P_{n}$ and $S_{m} \times C_{n}$, Časopis pro pěstování matematiky 107 (1982) 225-230.
[9] M. Klešč, On the crossing numbers of Cartesian products of stars and paths or cycles, Mathematica Slovaca 41 (1991) 113-120.
[10] M. Klešč, The crossing numbers of Cartesian products of paths with 5-vertex graphs, Discrete Math. 233 (2001) 353-359.
[11] M. Klešč, The crossing number of $K_{2,3} \times C_{3}$, Discrete Math. 251 (2002) 109117.
[12] M. Klešč, Some crossing numbers of products of cycles, Discuss. Math. Graph Theory 25 (2005) 197-210.
[13] M. Klešč, R.B. Richter and I. Stobert, The crossing number of $C_{5} \times C_{n}$, J. Graph Theory 22 (1996) 239-243.
[14] M. Klešč and A. Kocúrová, The crossing numbers of products of 5-vertex graphs with cycles, Discrete Math. 307 (2007) 1395-1403.
[15] R.B. Richter and C. Thomassen, Intersection of curve systems and the crossing number of $C_{5} \times C_{5}$, Discrete Comp. Geom. 13 (1995) 149-159.
[16] R.B. Richter and G. Salazar, The crossing number of $C_{6} \times C_{n}$, Australasian J. Combin. 23 (2001) 135-144.
[17] R D. Ringeisen and L.W. Beineke, The crossing number of $C_{3} \times C_{n}$, J. Combin. Theory (B) 24 (1978) 134-136.
[18] W. Zheng, X. Lin, Y. Yang and C. Deng, On the crossing number of $K_{m} \square C_{n}$ and $K_{m, l} \square P_{n}$, Discrete Appl. Math. 156 (2008) 1892-1907.

Received 30 November 2009
Revised 29 April 2010
Accepted 30 April 2010

[^0]: ${ }^{1}$ The research was supported by the Slovak VEGA grant No. 1/0636/08.
 ${ }^{2}$ This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0073-07.

