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Abstract

The crossing numbers of Cartesian products of paths, cycles or
stars with all graphs of order at most four are known. The crossing
numbers of G2Cn for some graphs G on five and six vertices and the
cycle Cn are also given. In this paper, we extend these results by
determining crossing numbers of Cartesian products G2Cn for some
connected graphs G of order six with six and seven edges. In addition,
we collect known results concerning crossing numbers of G2Cn for
graphs G on six vertices.
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1. Introduction

Let G be a simple graph with vertex set V and edge set E. The crossing

number cr(G) of a graph G is the minimum number of crossings of edges
in a drawing of G in the plane such that no three edges cross in a point.
It is easy to verify that a drawing with minimum number of crossings (an
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optimal drawing) is always a good drawing, meaning that no edge crosses
itself, no two edges cross more than once, and no two edges incident with
the same vertex cross. Let D be a good drawing of the graph G. We denote
the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint
subgraphs of G. We denote by crD(Gi, Gj) the number of crossings between
edges of Gi and edges of Gj , and by crD(Gi) the number of crossings among
edges of Gi in D.

The investigation of crossing numbers of graphs is a classical and very
difficult problem. Because of their structure, Cartesian products of special
graphs are one of few graph classes for which the exact values of crossing
numbers were obtained. (For a definition of Cartesian product, see [2].) Let
Cn be the cycle of length n, Pn be the path of length n, and Sn be the
star isomorphic to K1,n. Harary et al. [7] conjectured that the crossing
number of Cm2Cn is (m− 2)n, for all m,n satisfying 3 ≤ m ≤ n. This has
been proved only for m,n satisfying n ≥ m, m ≤ 7. It was recently proved
by Glebsky and Salazar [6] that the crossing number of Cm2Cn equals its
long-conjectured value at least for n ≥ m(m+1). Beineke and Ringeisen in
[2] and Jendrol’ and Ščerbová in [8] determined the crossing numbers of the
Cartesian products of all graphs on four vertices with cycles. Klešč in [9],
[10, 11], Klešč, Richter and Stobert in [13], and Klešč and Kocúrová in [14]
gave the crossing numbers of G2Cn for several graphs of order five. Except
of the graph K52Cn, all known values of crossing numbers for the Cartesian
products of cycles and graphs of order five are presented in [12]. It was
proved in [18] that cr(K52Cn) = 9n. It seems natural to enquire about the
crossing numbers of Cartesian products of cycles with other graphs. Except
for the star S5, the crossing numbers of Cartesian products of all connected
graphs on six vertices and five edges with cycles were given in [4]. For the
star on six vertices an upper bound is presented. In [5], the crossing number
of the Cartesian productG2Cn for a specific 6-vertex graph containing seven
edges is established. We extend these results by giving the crossing numbers
of G2Cn for several graphs G of order six.

2. Graphs on Six Vertices and Six Edges

There are thirteen graphs Gj on six vertices and six edges (see Table 1
in this section). To establish crossing numbers of the graphs Gj2Cn for
j = 1, 2, . . . , 10, we will refer to the previous results. It was proved that
cr(C32Cn) = n for n ≥ 3 [2], cr(C42Cn) = 2n for n ≥ 4 [3, 17], cr(C52Cn) =
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3n for n ≥ 5 [13, 15], and cr(C62Cn) = 4n for n ≥ 6 [1, 16]. Jendrol’ and
Ščerbová in [8] proved that cr(S32C3) = 1, cr(S32C4) = 2, cr(S32C5) = 4,
and that cr(S32Cn) = n for n ≥ 6. So, the crossing number of the graph
G12Cn = C62Cn is known. In this section we establish the crossing number
for the Cartesian product G102Cn and then we collect the crossing numbers
of the graphs Gj2Cn for all j = 2, 3, . . . , 9. In the proofs of the paper,
we will often use the term “region” also in nonplanar drawings. In this
case, crossings are considered to be vertices of the “map”. We will use the
following fact several times.

Table 1. The known values of crossing numbers for the graphs Gj2Cn.
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Lemma 2.1. For n ≥ 4, there is no good drawing of the graph P12Cn with

one crossing.

Proof. Assume that there is a good drawing of P12Cn with exactly one
crossing. As no two edges incident with the same vertex cross in a good
drawing, for n ≥ 4 one can easily verify that in any good drawing of P12Cn
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the edges that cross each other must appear in two different edge-disjoint
cycles. Two edge-disjoint cycles cannot cross only once. This contradiction
completes the proof.

2.1. The graph G10

Assume n ≥ 3 and consider the graphG102Cn in the following way: it has 6n
vertices and edges that are the edges in the n copies Gi

10, i = 0, 1, . . . , n− 1,
and in the six cycles of length n. For i = 0, 1, . . . , n − 1, let ai and bi be
the vertices of Gi

10 of degree two, ci and di the vertices of degree three, and ei
and fi the vertices of degree one (see Figure 1). Thus, for x ∈ {a, b, c, d, e, f},
the n-cycle Cx

n is induced by the vertices x0, x1, . . . , xn−1. Let T
x, x = a, b

(x = e, f), be the subgraph of the graph G102Cn consisting of the cycle Cx
n

together with the vertices of Cc
n (Cd

n) and of the edges joining Cx
n with Cc

n

(Cd
n). Let Ixy be the subgraph of G102Cn containing the vertices of two

adjacent cycles Cx
n and C

y
n and the edges {xi, yi} for all i = 0, 1, . . . , n − 1.

It is not difficult to see that

G102Cn = T a ∪ T b ∪ Iab ∪ Cc
n ∪ Icd ∪ Cd

n ∪ T e ∪ T f .

a
0

ai

bi

di

ei

fi

ci

bi-1

ai-1

i-1c

i-1e

i-1f

i-1d

ci+1

bi+1

i+1f

an-1

n-1b

n-1c

n-1e

n-1f

n-1d

b0

c0

d
0

e
0

f
0

i+1d

ai+1

ei+1

Figure 1. The graph G102Cn.

Theorem 2.1. cr(G102C3) = 4, cr(G102C4) = 6, cr(G102C5) = 9, and

cr(G102Cn) = 2n for n ≥ 6.

Proof. It follows from Figure 2 that cr(G102C5) ≤ 9. In the drawing of
the graph G102C5 in Figure 2 there is one copy of G10 with three crossings
on its edges. The removing of all edges of this copy of G10 results in the
drawing of the graph homeomorphic to G102C4 with six crossings. Thus,
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cr(G102C4) ≤ 6. By deleting one copy of G10 with three crossings and one
copy of G10 with two crossings from the drawing in Figure 2, the drawing of
the graph homeomorphic to G102C3 with four crossings is obtained. Hence,
cr(G102C3) ≤ 4. To prove that cr(G102C3) = 4, cr(G102C4) = 6, and
cr(G102C5) = 9, we need to confirm the reverse inequalities. The graph
G102Cn consists of two subgraphs C32Cn and S32Cn, where C32Cn is
induced on the vertices ai, bi, and ci and S32Cn is induced on the vertices
ci, di, ei, and fi for i = 0, 1, . . . , n−1. The only edges of the cycle Cc

n belong
to both subgraphs.

Figure 2. The drawing of G102C5 with nine crossings.

Consider a good drawing of the graph G102C3. The edges of the common 3-
cycle Cc

3 do not cross each other. Thus, as cr(C32C3) = 3 and cr(S32C3) =
1, the number of crossings in the drawing is at least cr(C32C3)+cr(S32C3) =
3 + 1 = 4. This confirms that cr(G2C3) = 4.

Assume now that there is a good drawing of the graph G102C4 with
less than six crossings and let D be such a drawing. As cr(C32C4) = 4
and cr(S32C4) = 2, in D there is exactly one internal crossing on the edges
of Cc

4. (The edges of Cc
4 do not cross more than once in a good drawing.)

Lemma 2.1 implies that crD(C
c
4 ∪ Icd ∪ Cd

4 ) ≥ 2 and therefore, in D there
are at least five crossings on the edges of (C32C4) ∪ Icd ∪ Cd

4 . This implies
that no edge of the subgraph T e ∪ T f is crossed in D. In the subdrawing of
T e∪T f induced fromD there are at most two vertices of Cd

4 on the boundary
of a region, which enforces an additional crossing in D between the edges of
T e ∪ T f and the edges of Cc

4 ∪ Icd. This contradicts the assumption that D
has less than six crossings. Hence, cr(G102C4) = 6.

If there is a good drawing D of the graph G102C5 with less than nine
crossings, the facts cr(C32C5) = 5 and cr(S32C5) = 4 require that the
edges of Cc

5 cross each other at least once. (The edges of Cc
5 cannot cross

more than twice in a good drawing.) If crD(C
c
5) = 1, Lemma 2.1 implies
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that in the subdrawing of Cc
5 ∪ Icd ∪Cd

5 there is at least one crossing on the
edges of Icd ∪ Cd

5 which does not appear in C32C5. Hence, in D there are
at most two crossings on the edges of T e ∪ T f .

Assume first that crD(T
e ∪T f ) = 0. The planar subdrawing of T e ∪T f

induced from D divides the plane into two pentagonal and five hexagonal
regions in such a way that there are at most two of the vertices d0, d1, . . . , d4
on the boundary of a region, see Figure 3(a). So, if crD(T

e ∪ T f , Cc
5) 6= 0,

then crD(T
e∪T f , Cc

5) = 2 and Cc
5 is placed in D in two neighbouring regions

of the subdrawing induced by T e ∪T f . In this case, as on the boundaries of
two neighbouring regions there are at most three vertices of Cd

5 , the edges
of Icd joining Cd

5 with Cc
5 cross the edges of T e ∪ T f and in D there are

more than eight crossings, a contradiction. If crD(T
e ∪ T f , Cc

5) = 0, then
Cc
5 is placed in D in one region of the subdrawing induced by T e ∪ T f and

the edges joining Cc
5 with the vertices of Cd

5 cross the edges of T e ∪T f more
than two times. This contradicts our assumption that the drawing D has
less than nine crossings.

(a) (b)

ce
5ce

5 c f

5 cc
5

Figure 3. The subdrawings of T e ∪ T f and T e ∪ Icd ∪ Cc
5 .

So, crD(T
e ∪ T f ) 6= 0. In this case, crD(T

e ∪ T f , Cc
5 ∪ Icd ∪ Cd

5 ) ≤ 1 and
therefore, crD(T

e, Icd ∪ Cc
5) = 0 or crD(T

f , Icd ∪ Cc
5) = 0. Without loss of

generality, let crD(T
e, Icd∪Cc

5) = 0. Consider now the subdrawingD′ of the
subgraph T e ∪ Icd ∪Cc

5 induced by D. As crD(T
e, Icd ∪Cc

5) = 0, D′ divides
the plane in such a way that on the boundary of a region there are at most
two vertices of Cd

5 and no two regions with a common boundary contain
more than three vertices of Cd

5 on their boundaries. Figure 3(b) shows the
subdrawing D′ in which possible crossings among the edges of T e are inside
the left disc bounded by the dotted cycle and possible crossings among the
edges of Icd ∪Cc

5 are inside the right disc bounded by the dotted cycle. We
can suppose that if, in D, an edge of T f passes through one of these two
discs, then it crosses the edges of T e ∪ Icd ∪ Cc

5 at least twice. Then the
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same analysis as in the previous paragraph, for the case crD(T
e ∪ T f ) = 0,

confirms that crD(T
e ∪ Icd ∪ Cc

5, T
f ) ≥ 3. This contradicts the assumption

that D has less than nine crossings again.

The last possibility is that the edges of Cc
5 cross each other two times.

The subdrawing of such Cc
5 is unique with one region containing all five ver-

tices of Cc
5 on its boundary. The ordering of the vertices along the boundary

of this region is ci, ci+1, ci+4, ci+2, ci+3, where indices are taken modulo 5.
If the cycle Cd

5 does not have a crossing on its edges in the subdrawing of
Cc
5 ∪ Icd ∪Cd

5 , then the ordering of its vertices is d0, d1, d2, d3, d4 and in the
subdrawing of Cc

5 ∪ Icd ∪ Cd
5 there is a crossing on the edges of Icd. Thus,

in the subdrawing of Cc
5 ∪ Icd ∪ Cd

5 induces from D there is at least one
crossing on the edges of Icd ∪ Cd

5 . Now, the same analysis as for the case
crD(C

c
5) = 1 gives the contradiction with the assumption that D has less

than nine crossings. This confirms that cr(G102C5) = 9.

Let H1 be the graph obtained from the graph G10 by deleting the edge
{a, b}. It was proved in [4] that cr(H12Cn) = 2n for all n ≥ 6. The graph
G102Cn contains the graph H12Cn as a subgraph. So cr(G102Cn) ≥ 2n.
On the hand, the drawing in Figure 1 gives the upper bound 2n for the
crossing number of the graph G102Cn. This completes the proof.

2.2. The other graphs Gj

In Figure 4 there are segments of the graphs Gj2Cn for j = 2, 3, . . . , 9. It
is easy to see that cr(G22Cn) ≤ 3n, cr(G32Cn) ≤ 2n, cr(G42Cn) ≤ 2n,
cr(G52Cn) ≤ 2n, cr(G62Cn) ≤ n, cr(G72Cn) ≤ n, cr(G82Cn) ≤ 2n, and
cr(G92Cn) ≤ 2n. To establish the exact values of crossing numbers for all
these graphs Gj2Cn, we only need to find lower bounds for their crossing
numbers. This we will do by finding the suitable subgraphs with known
crossing numbers. For some of these graphs we also use special drawings for
small values of n.

In Figure 5(a) there is the drawing of the graph G22C4 with ten cross-
ings. The deleting the edges of one copy of the graph G2 with five crossings
from this drawing results in the drawing of the subdivision of G22C3 with
five crossings. Hence, cr(G22C3) ≤ 5 and cr(G22C4) ≤ 10. On the other
hand, cr(G22C3) ≥ 5, because the graph G22C3 contains the graph C52C3

as a subgraph. Similarly, cr(G22C4) ≥ 10, because the graph G22C4 con-
tains the subgraph C52C4. As the graph G22Cn contains the graph C52Cn

as a subgraph and cr(C52Cn) = 3n for all n ≥ 5, the crossing number of the
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graph G22Cn is at least 3n. This, together with cr(G22Cn) ≤ 3n, confirms
that cr(G22Cn) = 3n for all n ≥ 5.

G2 G3 G4 G
5

G
6

G
7

G8 G
9

Figure 4. The segments of one copy of Gj for all graphs Gj2Cn, j = 2, 3, . . . , 9.

The drawings of the graphsG32C3, G42C3, and G52C3 in Figure 5(b), 5(c),
and 5(d) show that cr(G32C3) ≤ 4, cr(G42C3) ≤ 4, and cr(G52C3) ≤ 4.
Every of the graphs Gj2Cn, j = 3, 4, 5, contains the graph C42Cn as a
subgraph. As cr(C42C3) = 4, cr(Gj2C3) ≥ 4 for all j = 3, 4, 5. Thus,
cr(G32C3) = cr(G42C3) = cr(G52C3) = 4. We can generalize this idea
and to state that cr(G32Cn) = cr(G42Cn) = cr(G52Cn) = 2n for n ≥ 4.

Both graphs G62Cn and G72Cn contain the graph C32Cn as a sub-
graph. The fact cr(C32Cn) = n and the drawings in Figure 4 for the graphs
G6 and G7 confirm that cr(G62Cn) = cr(G72Cn) = n for n ≥ 3.

(b)(a) (c) (d)

Figure 5. The graphs G22C4, G32C3, G42C3, and G52C3.
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Let H2 be the graph obtained from the complete bipartite graph K1,4 by
adding one new edge. It was shown in [12] that cr(H22Cn) = 2n for n ≥ 6,
and that cr(H22C3) = 4, cr(H22C4) = 6, and cr(H22C5) = 9. As both
graphs G82Cn and G92Cn contain the graph H22Cn as a subgraph, we
have the lower bounds for crossing numbers of the graphs Gj2Cn, j = 8, 9.
In Figure 6(a) there is the drawing of the graph G82C5 with nine crossings.
Hence, cr(G82C5) ≤ 9. Deleting the edges of one copy of the graph G8 with
three crossings from this drawing results in the subdivision of the graph
G82C4 with six crossings. By deleting the edges of one copy of G8 with
three crossings and of one copy of G8 with two crossings, the subdivision of
the graph G82C3 with four crossings is obtained. So, cr(G82C4) ≤ 6 and
cr(G82C3) ≤ 4. The same we can do in the drawing of the graph G92C5

with nine crossings in Figure 6(b). Hence, cr(G92C5) ≤ 9, cr(G92C4) ≤ 6,
and cr(G92C3) ≤ 4. Figure 4 shows that the crossing number of both graphs
G82Cn and G92Cn is at most 2n for n ≥ 6. These lower and upper bounds
confirm that cr(G82C3) = cr(G92C3) = 4, cr(G82C4) = cr(G92C4) = 6,
cr(G82C5) = cr(G92C5) = 9, and that cr(G82Cn) = cr(G92Cn) = 2n for
n ≥ 6.

(a) (b)

Figure 6. The graphs G82C5 and G92C5.

3. Graphs on Six Vertices and Seven Edges

For one specific graph G of order six with seven edges, the crossing number
of the Cartesian product G2Cn is given in [5]. In this section, we find
the crossing number of the Cartesian product of one other graph of the
same size with the cycle Cn. Let F be the graph on six vertices consisting
of edge disjoint cycles C4 and C3 with one common vertex. Denote the
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common vertex of both cycles by d. Let a and c be the vertices of C4

adjacent with the vertex d, and let b be the vertex of C4 adjacent to a and
c. Let us denote by e and f the vertices of degree two in the cycle C3.
Assume n ≥ 3 and consider the graph F2Cn in the following way: it has 6n
vertices and edges that are the edges in the n copies F i, i = 0, 1, . . . , n− 1,
and in the six cycles of length n (see segment in Figure 7(b)). Thus, for
x ∈ {a, b, c, d, e, f}, the n-cycle Cx

n is induced by the vertices x0, x1, . . . ,
xn−1. For i = 0, 1, . . . , n−1, let P i denote the subgraph of F2Cn containing
the vertices of F i and F i+1 and six edges joining F i to F i+1, i taken modulo
n. Let T x, x = a, c, e, f , be the subgraph of the graph F2Cn consisting of
the cycle Cx

n together with the vertices of Cd
n and of the edges joining Cx

n

with Cd
n. For x, y ∈ {a, b, c, d, e, f}, x 6= y, let Ixy be the subgraph of F2Cn

consisting of the vertices in the adjacent cycles Cx
n and C

y
n and of the edges

{xi, yi} for all i = 0, 1, . . . , n− 1.

It is easy to see that

F2Cn = T a ∪ T c ∪ Iab ∪ Cb
n ∪ Ibc ∪ Cd

n ∪ T e ∪ T f ∪ Ief ,

and also

F2Cn = (C42Cn) ∪ (C32Cn), where (C42Cn) ∩ (C32Cn) = Cd
n.

ai-1

bi-1

i-1c

i-1d

i-1e

ai

bi

ci

di

ei

i-1f fi

ai+1

bi+1

ci+1

i+1d

ei+1

i+1f

(a) (b)

Figure 7. The graph F2C4 and the segment Qi of the graph F2Cn.

We say that a good drawing of the graph F2Cn is coherent if for each F i

holds that all vertices of the subgraph (F2Cn)\V (F i) lie in the same region
in the view of the subdrawing of F i.

Lemma 3.1. cr(F2C3) = 7 and cr(F2C4) = 12.
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Proof. The drawing in Figure 7(a) shows that cr(F2C4) ≤ 12. The delet-
ing all edges of one copy of the subgraph F with five crossings results in
the subdrawing of the graph homeomorphic to F2C3 with seven crossings.
So, cr(F2C3) ≤ 7 and cr(F2C4) ≤ 12. As F2C3 = (C42C3) ∪ (C32C3)
and in a good drawing the 3-cycle Cd

3 does not have an internal crossing,
cr(F2C3) ≥ cr(C42C3)+ cr(C32C3) = 4+3 = 7, and the proof is done for
n = 3. It remains to prove the reverse inequality for the case n = 4.

Assume that there is a good drawing of the graph F2C4 with less
than 12 crossings and let D be such a drawing. As cr(C42C4) = 8 and
cr(C32C4) = 4, in D there is at least one crossing among the edges of the
cycle Cd

4 . The edges of a 4-cycle can not cross each other more than once in a
good drawing, and therefore crD(C

d
4 ) = 1. As in D there are at most eleven

crossings, the edges of C42C4 = T c∪Icb∪Cb
4∪I

ba∪T a do not cross the edges
of C32C4 = T e∪Ief∪T f . This implies that crD(T

a, T e) = crD(T
a, T f ) = 0.

As the edges of the cycle Cd
4 cross once, using Lemma 2.1, crD(C

d
4 ∪T e) ≥ 2

and crD(C
d
4 ∪ T f ) ≥ 2. Hence, in the subdrawing of Cd

4 ∪ T e there is a
crossing on the edges of T e and also in the subdrawing of Cd

4 ∪ T f there is
a crossing on the edges of T f . This implies that in D there is at most one
crossing between the edges of T e and T f . Consider now the subdrawing D′

of the subgraph T a ∪ T e induced by D. As crD(T
a, T e) = 0, D′ divides the

plane in such a way that on the boundary of a region there are at most two
vertices of Cd

4 . As crD(T
a, T f ) = 0 and crD(T

e, T f ) ≤ 1, the cycle C
f
4
is

placed in D in one region of D′ and the edges of Idf cross in D the edges of
T a ∪T e at least two times. This enforces at least twelve crossings in D, and
therefore cr(F2C4) = 12.

Lemma 3.2. If D is a good drawing of F2Cn, n ≥ 4, in which every F i

has at most two crossings on its edges, then D has at least 3n crossings.

Proof. First we show that the drawing D is coherent. The indices are
considered modulo n in the proof. If some F i, i ∈ {0, 1, . . . , n−1}, separates
vertices of the 3-connected subgraph induced by the vertices V (F i+1)∪· · ·∪
V (F i−1), then its edges are crossed at least three times. So, all subgraphs
F j , j 6= i, lie in D in the same region in the view of the subdrawing of F i.
Moreover, two different F i and F j do not cross each other, otherwise one of
them separates the vertices of the other.

For i = 0, 1, . . . , n − 1, let Qi denote the subgraph of F2Cn induced
by V (F i−1) ∪ V (F i) ∪ V (F i+1) (see Figure 7(b)), where i is taken modulo
n. Thus, Qi = F i−1 ∪ P i−1 ∪ F i ∪ P i ∪ F i+1. Let us denote by Qi

4 the
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subgraph of Qi obtained from Qi by removing six vertices ej and fj for
j = i − 1, i, i + 1 and let Qi

3 be the subgraph of Qi obtained by removing
nine vertices aj , bj , cj for j = i− 1, i, i + 1.

Let us consider the following types of crossings on the edges of Qi in a
drawing of the graph F2Cn:

(1) a crossing of an edge in P i−1 ∪ P i with an edge in F i,

(2) a self-intersection in F i,

(3) a crossing of an edge in F i−1 ∪ P i−1 with an edge in F i+1 ∪ P i.

It is readily seen that every crossing of types (1), (2), and (3) appears in
a drawing of the graph F2Cn only on the edges of the subgraph Qi. In a
good drawing of F2Cn, we define the force f(Qi) of Qi in the following
way: every crossing of type (1), (2) or (3) contributes the value 1 to f(Qi).
The total force of the drawing is the sum of f(Qi). It is easy to see that
the number of crossings in the drawing is not less than the total force of the
drawing. The aim of our proof is to show that if every F i has at most two
crossings on its edges, then f(Qi) ≥ 3 for all i = 0, 1, . . . , n− 1.

Consider the subdrawing Di
3 of Qi

3 induced from D. As the drawing
D is coherent, the cycles Ci−1

3
and Ci+1

3
lie in Di

3 in the same region in
the view of the subdrawing induced by Ci

3. If crDi

3

(P i−1, Ci
3) 6= 0, then

f(Qi
3) ≥ 1. Otherwise the subdrawing of Ci−1

3
∪P i−1 ∪Ci

3 induced from Di
3

divides the plane in such a way that there are at most two vertices of Ci
3 on

the boundary of a region and crDi

3

(Ci−1
3

∪P i−1∪Ci
3, P

i∪Ci+1
3

) ≥ 1. Hence,

f(Qi
3) ≥ 1 again.

Consider now the subdrawing Di
4 of Qi

4 induced by D. If, in Di
4,

both P i−1 and P i cross the edges of Ci
4, then f(Qi

4) ≥ 2. Assume, that
crDi

4

(P i−1, Ci
4) = 0. Regardless of whether or not the edges of the cycle

Ci
4 cross each other, the subdrawing of Ci−1

4
∪ P i−1 ∪ Ci

4 induced from Di
4

divides the plane in such a way that on the boundary of a region there are
at most two vertices of Ci

4. This requires that, in Di
4, the edges of C

i+1
4

∪P i

cross the edges of Ci−1
4

∪ P i−1 ∪ P i at least twice. Hence f(Qi
4) ≥ 2.

As the only edges which belong to both subgraphs Qi
3 and Qi

4 are two
edges {di−1, di} and {di, di+1}, the only crossing which contributes to both
f(Qi

3) and f(Qi
4) is the crossing between these two edges. But the edges

incident with the vertex di do not cross in the good drawing D. This implies
that f(Qi) ≥ f(Qi

3) + f(Qi
4) ≥ 3 for every i. Since i runs through 0, 1, . . . ,

n− 1, the drawing D has at least 3n crossings.
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Theorem 3.1. cr(F2Cn) = 3n for n ≥ 4.

Proof. The drawing in Figure 7(b) shows that cr(F2Cn) ≤ 3n for n ≥ 4.
We prove the reverse inequality by the induction on n. By Lemma 3.1,
cr(F2C4) = 12, so the result is true for n = 4. Assume it is true for n = k,
k ≥ 4, and suppose that there is a good drawing of F2Ck+1 with fewer
than 3(k + 1) crossings. By Lemma 3.2, some F i must be crossed at least
three times. By the removal of all edges of this F i, we obtain a subdivi-
sion of F2Ck with fewer than 3k crossings. This contradiction completes
the proof.
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