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Abstract

A color-bounded hypergraph is a hypergraph (set system) with ver-
tex set X and edge set E = {E1, . . . , Em}, together with integers si
and ti satisfying 1 ≤ si ≤ ti ≤ |Ei| for each i = 1, . . . ,m. A vertex
coloring ϕ is proper if for every i, the number of colors occurring in
edge Ei satisfies si ≤ |ϕ(Ei)| ≤ ti. The hypergraph H is colorable if it
admits at least one proper coloring.

We consider hypergraphs H over a “host graph”, that means a
graph G on the same vertex set X as H, such that each Ei induces
a connected subgraph in G. In the current setting we fix a graph or
multigraph G0, and assume that the host graph G is obtained by some
sequence of edge subdivisions, starting from G0.

The colorability problem is known to be NP-complete in general,
and also when restricted to 3-uniform “mixed hypergraphs”, i.e., color-
bounded hypergraphs in which |Ei| = 3 and 1 ≤ si ≤ 2 ≤ ti ≤ 3 holds
for all i ≤ m. We prove that for every fixed graph G0 and natural
number r, colorability is decidable in polynomial time over the class
of r-uniform hypergraphs (and more generally of hypergraphs with
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|Ei| ≤ r for all 1 ≤ i ≤ m) having a host graph G obtained from G0

by edge subdivisions. Stronger bounds are derived for hypergraphs for
which G0 is a tree.

Keywords: mixed hypergraph, color-bounded hypergraph, vertex col-
oring, arboreal hypergraph, hypertree, feasible set, host graph, edge
subdivision.
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1. Introduction

In this paper we study a direction in hypergraph coloring theory that was
initiated recently in [3] and, with an equivalent but different terminology,
in [1]. Our main goal is to prove that two NP-hard problems — to decide
whether there exists a proper coloring, and to find a coloring with minimum
number of colors if there is at least one — become solvable in polynomial
(linear) time under a certain type of structural and quantitative conditions.
Moreover, we also obtain that the minimum number of colors in a proper
coloring has an absolute upper bound over a structure class defined via
topological condition.

Our note belongs to the systematic study carried out in a series of
papers [3]–[7] concerning “color-bounded hypergraphs” (formal definitions
will be given in the next subsection). This structure class was introduced to
give a common generalization of the important class of mixed hypergraphs

introduced in [14, 15], and a further interesting recent model introduced
in [8]. For a detailed discussion on problems and results concernig mixed
hypergraphs, we refer to the research monograph [16] and the recent survey
[13]. In the other direction, an extension of the model of color-bounded
hypergraphs can be found in [5, 6, 7]. All these models include the concept of
proper hypergraph coloring as a particular case, hence our results presented
here have direct consequences on this classical part of combinatorics, too.

1.1. Terminology

The following structure generalizes various earlier ones in the theory of graph
coloring. A color-bounded hypergraph is a four-tuple

H = {X, E , s, t}



Color-bounded Hypergraphs, V: Host Graphs and ... 225

where (X, E) is a hypergraph (set system) with vertex set X = {x1, . . . , xn}
and edge set E = {E1, . . . , Em}, and s : E → N and t : E → N are integer-
valued functions satisfying for all 1 ≤ i ≤ m the following chain of inequali-
ties:

1 ≤ s(Ei) ≤ t(Ei) ≤ |Ei|.

We shall assume throughout that X is finite and nonempty. The following
notation will be used:

si := s(Ei), ti := t(Ei), s = s(H) := max
1≤i≤m

si.

A proper vertex coloring of H is a mapping ϕ : X → N such that the number
|ϕ(Ei)| of colors occurring in Ei satisfies

si ≤ |ϕ(Ei)| ≤ ti for all 1 ≤ i ≤ m.

A mixed hypergraph is obtained if each edge is of the type

(si, ti) ∈ {(1, |Ei| − 1), (2, |Ei|), (2, |Ei| − 1)} .

Moreover, proper coloring of a hypergraph in the classical sense exactly
means the conditions si = 2 and ti = |Ei| for all i. The recent model of [8]
keeps the condition ti = |Ei| and allows si to be given arbitrarily.

Host graphs. Suppose that H = (X, E) is a hypergraph, and G = (X,F )
is a graph over the same vertex set X as H, and with edge set F . We say
that G is a host graph of H if each E ∈ E induces a connected subgraph
in G. In some cases, if G belongs to an important graph class, particular
terminology is applied for H as follows:

• G is a path → H is an interval hypergraph;

• G is a tree → H is a hypertree, also called arboreal hypergraph;

• G is a cycle → H is a circular hypergraph;

• G is a cactus → H is a hypercactus.

Those classes of hypergraphs have a different behavior with respect to col-
orability, despite that their host graphs may look not very much different.

It should be noted that the host graph of H is not unique, and we usually
prefer one with as simple structure as possible. For example, every interval
hypergraph also is a hypertree and a circular hypergraph at the same time.
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Feasible sets, chromatic numbers. We say that H is colorable if it
admits at least one proper coloring, and is uncolorable otherwise.

If we assume that H is colorable, several further interesting notions arise.
The feasible set Φ(H) of H is the set of integers k ∈ N such that H admits
at least one strict k-coloring, that is a coloring with precisely k colors. The
lower and upper chromatic number of H are defined as the smallest and
largest number of colors in Φ(H), respectively. In notation,

χ(H) = min Φ(H), χ̄(H) = max Φ(H).

A gap of the feasible set is a “missing” integer k /∈ Φ(H) such that χ(H) <
k < χ̄(H). If at least one gap occurs, the feasible set is said to be broken,
otherwise it is called gap-free or continuous. Some problems related to gaps
will be mentioned in the concluding section.

Subdivisions. Let G0 be a fixed graph, allowing loops and multiple edges,
i.e., not necessarily a simple graph. A subdivision of an edge e = uv ∈ E(G0)
is the replacing of e by a path whose endpoints are u and v; evidently,
internal vertices of such path are not in V (G0). A subdivision of G0 is
obtained by a sequence (possibly empty) of subdivisions of some edges of
G0. For short, G0-subdivision means any graph that is a subdivision of G0,
including G0.

1.2. Results of this paper

The main issue in our present work is to prove that G0-subdivisions as host
graphs yield a universal upper bound f(G0, r, s) on the lower chromatic
numbers of all color-bounded hypergraphs having rank (the size of a largest
hyperedge) at most r and satisfying max si ≤ s, for any fixed graph G0

and natural numbers r, s. This will be proved in Section 2. There we also
consider the algorithmic complexity of deciding whether a given hypergraph
is colorable; and if it is, then to determine its lower chromatic number.

In Section 3 we show that the bound f(G0, r, s) can be made indepen-
dent of rank r whenever G0 is a tree. Remarks on the estimates concerning
f are given in Section 4, and further problems are raised in Section 5.

Since the classical concept of proper hypergraph coloring exactly means
si = 2 for all 1 ≤ i ≤ m, our theorems immediately imply the analogous
results for the chromatic number of hypergraphs in the usual sense.
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2. Results for Unrestricted G0

Here we prove the following results.

Theorem 1. For every fixed graph G0 and natural numbers r and s, there
exists a constant f(G0, r, s) with the following property: If H = {X, E , s, t}
is a colorable color-bounded hypergraph with |Ei| ≤ r and si ≤ s for all

1 ≤ i ≤ m, and H admits a host graph G that is a G0-subdivision, then

χ(H) ≤ f(G0, r, s).

Theorem 2. For every fixed graph G0 and natural numbers r and s, there
exists a linear-time algorithm that solves the following decision and search

problems: Given an input hypergraph H = {X, E , s, t} with |Ei| ≤ r and

si ≤ s for all 1 ≤ i ≤ m, and its host graph G that is a G0-subdivision, decide

whether H is colorable, and if it is, then determine the lower chromatic

number.

Comments on these theorems and related problems will be discussed in
Sections 4 and 5. The rest of this section is devoted to the proof of Theorems
1 and 2.

Proof. Let G be any subdivision of G0, and H = {X, E , s, t} a colorable
color-bounded hypergraph over the host graph G. The graph G can be
represented with an edge-weight function over G0,

w : E(G0) → N

where the weight w(e) of an edge e in G0 is the length of the path in G into
which e has been subdivided. Moreover, we assume that

ϕ : X → N

is a proper coloring of H. Our goal is to modify ϕ to another proper coloring,
until the number of colors becomes so small that a constant upper bound
f(G0, r, s) can be guaranteed for it.

The main idea is that the colors of ϕ will be kept on the vertices origi-
nated from G0 and on vertices in their appropriately fixed surroundings; and
then, using a result from [4], we shall prove that all the remaining vertices
of H can be properly recolored using at most s further colors.
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(1) Reducing the number of colors

We will specify a subset Xr of X. First, let the set of vertices of G originated
from the vertices of G0 be denoted by X0, and for every x ∈ X0 let x∗

denote the corresponding vertex in G0. Moreover, we introduce the notation
d = ⌈r/2⌉ − 1 and define Xr to be the set of vertices in G that are at
distance at most d from some x ∈ X0. This means that if w(e) ≤ 2d + 1
for some e = x∗y∗ in G0, then the corresponding x–y path entirely belongs
to the subgraph induced by Xr in G; and each connected component of
G−Xr is some path P , resulting from an edge eP ∈ E(G0) whose weight is
w(eP ) = |V (P )| + 2d + 1. Note further that the distance in G between any
two components of G − Xr is at least 2d + 2 ≥ r (because all connections
between them pass through at least one vertex of X0), and consequently
every edge of H can meet at most one component of G−Xr.

Recall that ϕ : X → N is a proper vertex coloring of H. We call a
color rigid if it appears on some vertex of Xr, and call it flexible if it is in
ϕ(X) \ ϕ(Xr). The set of vertices x ∈ X having rigid color in ϕ will be
denoted by XR. Clearly, Xr ⊆ XR holds but XR may also contain some
vertices from X \ Xr. By a renumbering of colors we can ensure that all
rigid colors are larger than s.

By what has been said, if two vertices of flexible color(s) are contained
in a common edge of H, then they are in the same component of G − Xr.
For each component P of G−Xr we construct an interval hypergraph HP =
(XP , EP ) as follows:

XP = V (P ) \XR, EP = {Ei ∩XP : Ei ∈ E and |Ei ∩XP | ≥ 2}.

For an edge E = XP ∩Ei of HP we define

s(E) = max{s(Ei) − ρ(Ei), 1}, t(E) = t(Ei) − ρ(Ei)

where ρ(Ei) denotes the number of rigid colors in Ei. Since |E| > 1 holds
by definition, E contains at least one flexible color, and so Ei has strictly
fewer than t(Ei) rigid colors. By assumption, ϕ is a proper coloring of H,
therefore the inequalities

1 ≤ s(E) ≤ |ϕ(E)| ≤ t(E) ≤ |E|

are valid and each subhypergraph HP is colorable. Some edge E ∈ EP can
belong to more than one edge Ei of E and so, the values s(E) and t(E) can
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be multiply defined. In this case we keep the strongest constraints; i.e., the
largest value of s(E) and the smallest value of t(E).

By the result of [4], for every interval hypergraph HP the lower chro-
matic number equals the maximum value of its color-bound function s, that
is

χ(HP ) = max
E∈EP

s(E) ≤ s.

Thus, due to the large distance between the components of G − Xr, there
exists a coloring

ϕ+ : X \XR → {1, . . . , s}

that properly colors each component HP . Now we define

ϕ∗(x) =

{

ϕ(x) if x ∈ XR,

ϕ+(x) if x ∈ X \XR.

This ϕ∗ properly colors all edges of H, and so the number of colors in ϕ∗(X)
is an upper bound on the lower chromatic number:

χ(H) ≤ s + |ϕ(Xr)| ≤ s + |Xr| ≤ s + |V (G0)| + (r − 1) · |E(G0)|,

where the number of rigid colors is estimated from above by the largest
possible number of vertices in Xr.

(2) Algorithm for deciding colorability

Let us denote k∗ = s+ |V (G0)|+(r−1) · |E(G0)|, the universal upper bound
on the lower chromatic number. If H is colorable, then it admits at least
one proper coloring

ϕ : X → {1, 2, . . . , k∗}.

Having fixed G0, r and s, this means a bounded number of colors. Moreover,
|Xr| is bounded, therefore the number of proper colorings of the subhyper-
graph induced by Xr with colors taken from {s+1, . . . , k∗} is bounded, too.
Also, the number of components P in G−Xr is bounded above by |E(G0)|.
To complete the proof, it will suffice to show that it can be decided in linear
time for each component P whether an arbitrarily specified coloring of Xr

can be extended to a proper coloring of the subhypergraph H+

P induced by
Xr ∪ V (P ) in H.
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Assume a given coloring ϕr on Xr, and consider a component P in G−Xr.
Let V (P ) = {x1, . . . , xq}. If q ≤ r, we simply take all the possible q-tuples
(a1, . . . , aq) over the color set {1, 2, . . . , k∗} and for each case check whether
or not the extension of ϕr by the assignments ϕ(xj) = aj (1 ≤ j ≤ q)
properly colors every edge Ei ∈ E intersecting P .

If q > r, we construct an auxiliary digraph F that has a linearly ar-
ranged structure and whose vertices represent r-tuples over the color set
{1, 2, . . . , k∗}. The vertex set of F is V1 ∪ · · · ∪ Vq−r+1, where each Vi con-
sists of certain color sequences (a1, . . . , ar) ∈ {1, 2, . . . , k∗}r of length r. Any
two elements u ∈ Vi and v ∈ Vj (i 6= j) are considered to be different, even
if they correspond to the same color sequence. The condition for a sequence
(a1, . . . , ar) to be included in Vi is as follows.

• Assigning color aj to xi+j−1 for all j = 1, . . . , r, each Eℓ ∈ E contained
wholly in the interval {xi, xi+1, . . . , xi+r−1} is properly colored.

• If i = 1 or i = q − r + 1, a further constraint is that the corresponding
extension of ϕr properly colors all edges intersecting both Xr and P .

We put a directed edge from (a1, . . . , ar) ∈ Vi to (a′1, . . . , a
′
r) ∈ Vi+1 if and

only if omitting the first element of the former and the last element of the
latter, we get the same sequence; that is, a2 = a′1, a3 = a′2, . . . , ar = a′r−1.

By construction, every proper coloring of H with at most k∗ colors
defines a subset of V (F ), one vertex from each Vi, corresponding to the
color sequence of length r starting at xi (i = 1, . . . , q − r + 1). Moreover,
this subset is a directed path from V1 to Vq−r+1. Conversely, we see that
any directed path from V1 to Vq−r+1 in F defines a vertex coloring of P
that extends ϕr and properly colors all those edges of H which have at least
one vertex in {x1, . . . , xq}. Thus, there exists some coloring of V (P ) which
properly extends ϕr if and only if there is a V1 → Vq−r+1 directed path.
Moreover, H is colorable if and only if for at least one coloring of Xr such a
path exists for every component P of G−Xr.

One can construct F and test the existence of a V1 → Vq−r+1 path in
O(|V (P )|) time for every fixed 3-tuple (ϕr, r,G0). Indeed, for every 1 ≤ i ≤
q− r+ 1 the set Vi can be determined by checking each of the possible (k∗)r

color sequences for the bounded number of edges from H+

P . Moreover, edges
in F occur between consecutive sets Vi, Vi+1 only, and for each such pair of
sets we have to investigate adjacency for at most (k∗)2r vertex pairs.

Thus, the overall running time of the algorithm is linear in the sum of
the edge weights of G0 and hence, it is linear in |X|.
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(3) Algorithm for the lower chromatic number

Running the previous algorithm for k = s, s + 1, . . . , s + |V (G0)| + (r − 1) ·
|E(G0)| we can identify the smallest integer k admitting a proper k-coloring
of H. This gives the correct value of χ because the lower chromatic number
is in the given range whenever H is colorable.

3. Bounds for Hypertrees

If G0 is a tree, we can give a better upper bound on the lower chromatic
number, using only the terms s and |E(G0)|; that is, independently of the
sizes of the edges. A major tool is the following:

Recoloring Lemma ([4]). Let a color-bounded hypergraph H = (X, E , s, t)
and a proper coloring ϕ of H be given. Consider two colors α, β ∈ ϕ(X),
a partition of the vertex set X into three parts (A,B,C), and the following

set of conditions:

(1) α /∈ ϕ(B) and β /∈ ϕ(B).

(2) For every edge Ei ∈ E intersecting both A and C:

(a) α ∈ ϕ(Ei ∩ C);

(b) If α ∈ ϕ(Ei ∩A), then β ∈ ϕ(Ei); and

(c) |ϕ(Ei ∩B)| ≥ si − 1.

If the conditions (1) and (2) hold, then a coloring ϕ′ obtained from ϕ by

transposing colors α and β on the vertex set C is proper.

Here we prove:

Theorem 3. For every fixed tree G0 and natural number s, there exists a

constant f(G0, s) with the following property: If H = {X, E , s, t} is a col-

orable color-bounded hypertree with si ≤ s for all 1 ≤ i ≤ m, and H admits

a host tree G that is a G0-subdivision, then χ(H) ≤ f(G0, s). Moreover, a

coloring realizing this bound can be determined in polynomial time, provided

that a proper vertex coloring of H is given in the input.

Proof. We use the notation introduced in the proof of Theorem 1. More-
over an x−y path (together with its endpoints) in G obtained by the subdi-
vision of the edge x∗y∗ ∈ E(G0) will be called a subdivision-path. It can be
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supposed that the tree G0 is rooted at a vertex v∗ and, correspondingly, G is
rooted at a vertex v. Using the Recoloring Lemma as cited above from [4],
we shall prove that for every subdivision-path it is enough to use at most s
different colors.

Let ϕ be a proper coloring of H, and suppose that some subdivision-
path Q is colored with at least s + 1 colors. We choose such a Q which is
nearest to the root.

Introduce the notation Q = x0, x1, . . . , xk, where the endpoint x0 is
nearer to the root than xk. Then determine the smallest i for which the
interval [x0, xi] contains exactly s+1 colors. Moreover, consider the largest j
such that [xj , xi] contains all the s+1 colors. Hence, the interval [xj+1, xi−1]
has exactly s − 1 colors, but involves no vertices with color α := ϕ(xi) or
β := ϕ(xj). Moreover, if a hyperedge starts before xj+1 and ends after xi−1,
it necessarily contains both colors α and β. Thus, the conditions of the
Recoloring Lemma are satisfied for B = [xj+1, xi−1], for C which is chosen
as the vertex set of the subtree of G rooted in xi, and for A = X \ (B ∪C).
Consequently, switching the colors α and β on the vertices of C, a proper
coloring ϕ′ is obtained.

Indeed, if for an edge Ek ∈ E at least one of the relations Ek ⊆ A ∪ B
and Ek ⊆ B ∪ C holds, then |ϕ′(Ek)| = |ϕ(Ek)| ; i.e., Ek remains properly
colored, whilst on the edges intersecting both A and C, the number of colors
can be decreased by 1, but it still remains at least s.

The colorings ϕ and ϕ′ induce the same color partition on every division-
path except Q, where the maximal starting interval having exactly s colors
is longer by at least one in the new coloring. The recoloring procedure can
be repeated as long as Q has more than s colors (this means at most |Q|− s
phases) and, finally, we obtain a proper coloring of H using exactly s colors
on Q. Note that this coloring of Q will remain unchanged in the later phases.

For the next phase we choose again a subdivision-path colored with at
least s + 1 colors (if there exists such a path) nearest to the root, and the
above procedure is repeated.

Finally, we get a coloring ϕ∗ of H, which colors each subdivision-path
with at most s different colors. Since we considered the paths together with
their endpoints, any two consecutive ones have at least one common color.
Thus, we obtain

χ(H) ≤ (s− 1)|E(G0)| + 1

because the algorithm generates a coloring with at most that many colors,
independently of the sizes of edges.
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Each phase of the algorithm takes linear time in the number |X| of ver-
tices, and not more than |X| phases were needed. Therefore, the algorithm
terminates in at most quadratic time.

4. Improvements and Modified Bounds

In the proofs of the previous two sections it was not our aim to prove es-
timates in their strongest forms. In this section we describe some ways to
make bounds better.

4.1. General host graphs

Here we put some remarks concerning the results of Section 2. A general
idea will be that with a careful choice of G0 we may achieve better bounds
for the lower chromatic number of a given hypergraph H.

Assume first that the host graph G is disconnected, say with connected
components G1, . . . , Gk. Then H can be decomposed into subhypergraphs
H1, . . . ,Hk where an edge of H belongs to Hj (1 ≤ j ≤ k) if and only if it
is contained in V (Gj). Then χ(H) = max {χ(H1), . . . , χ(Hk)}.

From now on we assume that the host graph G is connected. If G
is a cycle, then H is a circular hypergraph, and the results of [4] yield
χ(H) ≤ 2s − 1. This means a universal upper bound independent of r, for
the case when G0 is the 1-vertex graph with just one loop. This also includes
the class of interval hypergraphs, corresponding to the case G0 = K2, for
which the stronger result χ(H) = max1≤i≤m si ≤ s was proved in [4].

As a principle for simplification, we may also assume without loss of
generality that G0 has no vertices of degree two. Indeed, if x is a vertex of
G0 adjacent to x′ and x′′, then we may remove x and insert a new edge x′x′′.
(This may create a multiple edge if x′ and x′′ are adjacent in G0.) Denoting
by G′

0 the graph obtained, it is clear that G is a subdivision of G′
0 as well,

and G′
0 has fewer vertices and edges than G0.

Having assumed that G0 is connected, we have |V (G0)| ≤ |E(G0)| + 1
and s ≤ r. Hence, the bound given in Theorem 1 can be modified to a
dependence only on r and |E(G0)|, namely

χ(H) ≤ s + |V (G0)| + (r − 1) · |E(G0)| ≤ r(|E(G0)| + 1) + 1.

Another way to improve the bound on f(G0, r, s) is to take into considera-
tion that every vertex x ∈ X of degree one in G can be omitted from X0.
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Therefore, if ℓ0 denotes the number of pendant vertices in G0, the improved
bound

χ(H) ≤ s + |V (G0)| + (r − 1) · |E(G0)| − ℓ0

⌈r

2

⌉

is valid.

4.2. Hypertrees

Here we put some remarks concerning Theorem 3.
For small values s = 1 and s = 2, the upper bound on χ(H) can be

given independently of the structure of tree G0. Indeed, if max si = 1
then χ(H) = 1, whilst in a colorable hypertree with max si = 2 we can
first contract each edge Ei with ti = 1 to a single vertex and then color
alternately the contracted host tree with two colors. In particular, if H is
a colorable mixed hypertree with a set of non-monochromatic edges D 6= ∅,
then χ(H) = 2, independently of the features of its host tree [12].

But if s ≥ 3 holds and the structure of the tree G0 is not prescribed,
then the lower chromatic number of H is not bounded. As a simple example,
let us consider the hypertree Hℓ = (Xℓ, Eℓ), where Xℓ = {v, x1, . . . , xℓ} and

Eℓ = {{v, xi, xj} : 1 ≤ i < j ≤ ℓ}

and every edge Ek ∈ Eℓ has color-bounds sk = tk = 3. It is easy to see that
χ(Hℓ) = ℓ+1 for every ℓ ≥ 2, whilst s = 3 remains valid. In this case χ(Hℓ)
depends on ∆(G0) because G0 is isomorphic to a star on l + 1 vertices.

Moreover, we note that the lower chromatic number cannot be bounded
above in terms of s and the maximum vertex degree ∆ of G0, either. (If
∆ = 2 then we get interval hypergraphs, and the lower chromatic number
equals max si). In the previous example Hℓ, one can replace v with a tree
T ′ of maximum degree 3 on a vertex set X ′, and extend it to a host tree
T by joining at most two of the xi to each leaf of T ′. (To do this, we need
|X ′| ≥ ℓ− 2.) The edges of Hℓ then become xi − xj paths in T , keeping the
condition s = t = 3. Taking X ′ as a further edge with s(X ′) = t(X ′) = 1,
the lower chromatic number gets arbitrarily large as ℓ grows.

5. Open Problems

Here we raise some related problems, and in the last subsection we propose
a case study which seems to be of interest on its own right, too.
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Problem 1. Find estimates on the coefficient of linearity for algorithms
guaranteed by Theorem 2.

Problem 2. Give necessary and/or sufficient conditions on G0 such that
f(G0, r, s) can be bounded above by a function f(G0, s) of s, independent
of r.

Motivated by the study of hypertrees, we raise the following variant of this
question.

Problem 3. For which classes of graph G0 does there exist a universal upper
bound f(∆(G0), r) in terms of the maximum degree of the host graph and
the rank of the hypergraph? Do all trees belong to this class?

It is known that the possible feasible sets over the class of mixed hypergraphs
are almost unrestricted [9], and nearly the same is true for r-uniform mixed
hypergraphs [2]. On the other hand, in mixed interval hypergraphs, hyper-
trees and more generally in mixed hypergraphs over host graphs in which all
cycles are mutually vertex-disjoint, the feasible sets are gap-free [9, 11]. The
situation is not so clear, however, for color-bounded hypergraphs, except
that the non-2-colorable ones have a rich family of feasible sets [4].

Problem 4. Characterize those graphs G0 for which the feasible set of
a color-bounded hypergraph is gap-free whenever its host graph is a G0-
subdivision.

A construction in [4] yields a hypertree of maximum degree 5 with gap in
its feasible set. Let us recall further the following problem from the same
paper.

Problem 5. What is the time complexity of deciding colorability and deter-
mining the upper chromatic number of color-bounded interval hypergraphs,
that is those with G0 = K2 ?

The decision problem of colorability is intractable already on 3-uniform
color-bounded hypertrees [4]. Although bounded rank makes a difference
concerning G0-subdivisions, for unrestricted edge sizes it still may be of
essence in the last part of Theorem 3 that a proper coloring be given in
the input. For mixed hypertrees the upper chromatic number is hard to
determine [10], whereas colorability can be decided efficiently and the lower
chromatic number can be computed in polynomial time [12]. The following
question is open:
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Problem 6. What is the time complexity of determining the lower chro-
matic number of colorable 3-uniform color-bounded hypertrees?

Remark 1. The analogous problem for 4-uniform hypertrees is already NP-
complete, as shown by the following simple reduction from the Hypergraph

2-Coloring problem. To any 3-uniform hypergraph H = (X, E) we adjoin
a new vertex w and modify H to the hypergraph H′ whose edges are the
quadruples E′ := E ∪ {w} for all E ∈ E . This H′ clearly is a hypertree
over the host star centered at w. Let all extended edges have s = 3 and
t = 4. Then, whatever color we assign to w, in any coloring of H′ the
triples of H should still get at least two further colors. Hence, if H′ has
lower chromatic number 3, then H is 2-colorable in the standard sense. Also
conversely, every proper 2-coloring of H can be extended to a 3-coloring of
H′ by assigning a third color to w. The reduction requires linear time, which
proves intractability.

Simplifying to the case s(E) ∈ {1, 2} and t(E) ∈ {|E|−1, |E|} for all E ∈ E ,
we ask:

Problem 7. Consider the class of r-uniform mixed hypergraphs whose host
graph is a graph derived from a graph G0. What are the inclusion-wise
minimal graphs G0 for which the maximum lower chromatic number of these
r-uniform mixed hypergraphs tends to infinity with r? In particular, what
is the smallest such G0 ?

5.1. Example: Petersoid hypergraphs

In graph theory, there is a huge literature already about the Petersen graph
alone. For this reason we propose here a related case study to be pursued
in later research.

Let G0 be the Petersen graph. We call a color-bounded hypergraph
Petersoid if it is derived from G0 ; that is, its host graph is a subdivision of
the Petersen graph. These structures may have many interesting properties,
which we propose to explore in detail. More formally, below we explicitly
formulate some questions about their lower chromatic numbers.

Problem 8. Describe the complete characterization of χ(H) for all Peter-
soid hypergraphs H. In particular, determine the exact value of f(G0, r, s)
for all pairs r, s of integers.
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Special attention is paid to mixed hypergraphs, what means si ∈ {1, 2} and
ti ∈ {|Ei| − 1, |Ei|} for all edges Ei. In this case s is omitted from the
universal upper bound, i.e., we have a function f(G0, r). (If s = 1, then
trivially the lower chromatic number is equal to 1.) This leads to the fol-
lowing subproblem.

Problem 9. Determine the exact value of f(G0, r) over the class of Peter-
soid mixed hypergraphs.

Currently we do not even known whether f(G0, r) can be arbitrarily large
or there exists an upper bound f(G0) independent of r.
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Mathematical Studies 17 (Springer-Verlag, 2008) 235–255.

[14] V. Voloshin, The mixed hypergraphs, Computer Science Journal of Moldova 1

(1993) 45–52.

[15] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J.
Combin. 11 (1995) 25–45.

[16] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Appli-
cations, Fields Institute Monographs 17 Amer. Math. Soc., 2002.

Received 23 November 2009
Revised 14 July 2010

Accepted 14 July 2010

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

