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Abstract

A parity path in a vertex colouring of a graph is a path along
which each colour is used an even number of times. Let χp(G) be the
least number of colours in a proper vertex colouring of G having no
parity path. It is proved that for any graph G we have the following
tight bounds χ(G) ≤ χp(G) ≤ |V (G)| − α(G) + 1, where χ(G) and
α(G) are the chromatic number and the independence number of G,
respectively. The bounds are improved for trees. Namely, if T is a tree
with diameter diam(T ) and radius rad(T ), then

⌈
log2

(
2+diam(T )

)⌉
≤

χp(T ) ≤ 1+ rad(T ). Both bounds are tight. The second thread of this
paper is devoted to relationships between parity vertex colourings and
vertex rankings, i.e. a proper vertex colourings with the property that
each path between two vertices of the same colour q contains a vertex
of colour greater than q. New results on graphs critical for vertex
rankings are also presented.

Keywords: parity colouring, graph colouring, vertex ranking, ordered
colouring, tree, hypercube, Fibonacci number.
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1. Introduction

The graphs we consider are finite, simple and undirected. Let the usage
of a colour on a path be the number of times it appears along the path.
The parity path is a path for which every colour has even usage. We define
the parity vertex colouring to be a proper vertex colouring having no parity
path. The parity vertex chromatic number χp(G) is the minimum number
of colours in a parity vertex colouring of G. Observe that using distinct
colours on all vertices produces a parity vertex colouring while paths on two
vertices force χp(G) ≥ χ(G), where χ(G) is the chromatic number of G.
For any terminology and notations not defined here the readers are referred
to [4].

The work on parity colouring of graphs was initiated in [2] and it began
by studying which graphs embed in the hypercube. Both problems are
closely related and the question of embeddings is motivated by the fact
that hypercube is a common and one of the most efficient architectures for
parallel computation [8]. Inspired by the recent paper of Bunde, Milans,
West and Wu [2], who studied parity edge colourings, we begin the study of
parity vertex colourings. A significant part of this paper is also devoted to
the intriguing relationship between parity colouring and ranking of vertices,
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i.e. a colouring with the property that each path between two vertices of the
same colour q contains a vertex of colour greater than q. The study of vertex
rankings is motivated by parallel Cholesky factorization of matrices [9] and
applications in VLSI layout [10]. It is also worth pointing out that every
parity colouring is a conflict-free colouring, i.e. a colouring in which every
path uses some colour exactly once. Conflict-free colourings were recently
studied due to their theoretical and practical importance, e.g. for frequency
assignment in cellular networks [5].

2. Fundamental Bounds on the Parity Vertex Chromatic

Number

Theorem 1. Let G = (V,E) be an n-vertex graph with the chromatic num-
ber χ(G) and the independence number α(G). Then

χ(G) ≤ χp(G) ≤ n− α(G) + 1.

Proof. Two adjacent vertices form a path, therefore they must have differ-
ent colours, hence χp(G) ≥ χ(G). It is easy to see that χp(Kn) = n = χ(Kn).
Hence the lower bound is tight.

Let S be a maximum independent set of G, i.e. |S| = α(G). Let us
colour the vertices of G in the following manner. The vertices of S are
coloured with the same colour, say 1. The vertices of V − S are coloured
with different colours from the set {2, 3, . . . , n − α(G) + 1}. Because every
path on at least two vertices contains a vertex from the set V − S this
colouring is a parity vertex colouring.

The tightness of the upper bound follows from Theorem 2.

Lemma 1. For the union G ∪ H of any two vertex disjoint graphs G and
H we have

χp(G ∪H) = max{χp(G), χp(H)} .

Let G+H be a join of two graphs G and H defined as follows V (G+H) =
V (G) ∪ V (H) and E(G+H) = E(G) ∪E(H) ∪ {xy |x ∈ V (G), y ∈ V (H)}.

Theorem 2. For any graphs G and H we have

χp(G+H) = min{χp(G) + |V (H)|, χp(H) + |V (G)|} .



186 P. Borowiecki, K. Budajová, S. Jendrol’ and S. Krajči

Proof. (≤) Let χp(G) = r. Whenever G is coloured using colours 1, . . . , r,
it is possible to colour H with colours r + 1, . . . , r + |V (H)|. Consequently,
χp(G+H) ≤ χp(G)+|V (H)|. Similarly, we get χp(G+H) ≤ χp(H)+|V (G)|.
From the above it follows that χp(G+H) ≤ min{χp(G) + |V (H)|, χp(H) +
|V (G)|}.

(≥) If χp(G) = |V (G)| and χp(H) = |V (H)|, then χp(G+H) = |V (H)|+
|V (G)| ≥ min{χp(G)+|V (H)|, χp(H)+|V (G)|}. Now, suppose that χp(G) <
|V (G)|. Then there exist two vertices of G, say u and v, coloured with
the same colour. Therefore each vertex of H has to be coloured with a
different colour. Otherwise, for any x, y ∈ V (H) there would be a parity
path (u, x, v, y). Moreover, because of join, colours used for V (H) have to
be different from all colours used for V (G). Consequently, χp(G + H) =
χp(G) + |V (H)| ≥ min{χp(G) + |V (H)|, χp(H) + |V (G)|}.

From Theorem 2 we immediately have the following corollary for complete
bipartite graphs.

Corollary 1. Let Kr,s be a complete bipartite graph such that r ≤ s. Then

χp(Kr,s) = r + 1 .

Similar reasoning can be applied to find the parity vertex chromatic number
of complete k-partite graphs.

Corollary 2. Let Kr1,...,rk be a complete k-partite graph. Then

χp(Kr1,...,rk) =

k∑

i=1

ri − max
1≤i≤k

ri + 1 .

Proof. By induction on k.

Theorem 3. Let S be a cut-set of a graph G and let H1, . . . ,Hr be the
components of G[V − S]. Then

χp(G) ≤ max
1≤i≤r

{χp(Hi)}+ |S|.

Proof. Assuming that vertices of each Hi are coloured with consecutive
colours starting from 1, it is enough to colour each vertex of S with a different
colour, which has not been used in V (H1) ∪ · · · ∪ V (Hr).
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The bound is tight, i.e. there exist graphs for which the equality holds,
e.g. K1 + (Kp ∪ Kq), p, q ≥ 1. Notice that the cut-set S in Theorem 3
may be assumed to be minimal. A recursive application of theorem gives an
algorithm, which in general does not have to be efficient. However, for some
classes of graphs the desired upper bound can be computed in polynomial
time.

In [2] it was proved that for every path Pm on m vertices χ
′

p(Pm) = ⌈log2 m⌉.
Since Pn is the line graph of the path Pn+1 we obtain the following.

Theorem 4. Let Pn be an n-vertex path. Then

χp(Pn) =
⌈
log2(n+ 1)

⌉
.

To be able to formulate our next results, we recall some definitions. The
distance between two vertices u and v of a graph G, dist(u, v), is defined to
be the length of the shortest path between u and v. The eccentricity e(v) of a
vertex v in the graph G is the distance from v to a vertex furthest from v, i.e.
e(v) = max{dist(v, u)|u ∈ V (G)}. The radius rad(G) of a connected graph
G is defined as rad(G) = min

{
e(v)|v ∈ V (G)

}
, and the diameter diam(G)

of a connected graph G is defined by diam(G) = max
{
e(v)|v ∈ V (G)

}
. A

vertex c is called central if its eccentricity equals rad(G), i.e. e(c) = rad(G).
The following theorem strengthens Theorem 1 for trees.

Theorem 5. Let T be a tree. Then

⌈
log2(2 + diam(T ))

⌉
≤ χp(T ) ≤ 1 + rad(T ) .

Proof. The lower bound is a consequence of the above Theorem 4 when
considering the longest path in T . To show the upper bound it is sufficient
to find a colouring with 1 + rad(T ) colours having the required property
that every path in T uses some colour an odd number of times. It is well
known that every tree T has exactly one central vertex c if diam(T ) is even
and exactly two central vertices c and c∗ which are adjacent if diam(T ) is
odd. Define the following k-colouring ϕ : V (T ) → {1, . . . , k} of the vertices
of T , where k = 1 + rad(T ). In both cases we colour vertex c with the
colour ϕ(c) = k and every vertex v such that dist(c, v) = j with the colour
ϕ(v) = j. Clearly, j ≤ k − 1 = rad(T ). Next, we need to show that every
path Q in T uses some colour an odd number of times. In fact, we argue
that on every path Q there is a vertex which uses some colour exactly once.
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Namely, if Q is a path in T , then the colour of the vertex in Q that is closest
to c appears only once along Q.

The tightness of the lower bound follows from Theorem 4 while the upper
bound is tight by Theorem 6.

Theorem 6. For all r ∈ N there is a tree Tr with the radius r = rad(Tr)
such that χp(Tr) = r+1. Moreover, for r > 0 there are infinitely many such
trees.

Proof. Define (by induction) a sequence (Tr : r ∈ N) of trees in the follow-
ing way:

1. T0 consists of only one vertex (its root t0) and no edge,

2. By induction, there exists a rooted tree Tr−1 with radius r−1 and parity
vertex chromatic number at least r. Let Tr be the rooted tree obtained
from 2r−1 + 1 copies of Tr−1 by introducing a new vertex tr to serve as
the root of Tr and adding edges between tr and the roots of the copies
of Tr−1.

We show that the parity vertex chromatic number of Tr is at least r + 1.
Suppose for a contradiction that ϕ is a parity vertex colouring of Tr that
uses only r colours. Let a = ϕ(tr). We consider two cases.

First suppose that the colouring ϕ does not use a in any copy S of Tr−1.
In this case, the induction hypothesis implies that ϕ uses at least r colours
on vertices in S, none of which is a. It follows that ϕ uses at least r + 1
colours on Tr, a contradiction.

Otherwise, ϕ uses a in each copy of Tr−1. For each 1 ≤ j ≤ 2r−1 +1 let
vj be some vertex in the j-th copy of Tr−1 with ϕ(vj) = a and let Pj be the
shortest path from tr to vj . Because there are 2

r−1+1 paths of the form Pj ,
the pigeonhole principle implies that there exist two paths Pp and Pq which
agree in the parity of the usage of each colour, with the possible exception
of a. Let P be a path formed by a concatenation of Pp with (the reverse
of) Pq. A path P

′

obtained by the removal of one of the endvertices of P
is a parity path. But now P

′

contradicts that ϕ is a parity vertex colouring
of Tr.

It is easy to construct an infinite family of trees of radius r for every
r > 0. Take s copies of Tr−1 for arbitrary s > 2r−1 instead of 2r−1 + 1 and
proceed as above.
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3. d-dimensional Cubes

It would be interesting to determine the exact values of parity vertex chro-
matic number for some families of graphs. Very intriguing candidates are
d-dimensional cubes Qd, d ≥ 0. It is easy to see that χp(Q0) = 1, χp(Q1) = 2
and χp(Q2) = 3. For the next value of d we have

15

21

4

1

1

3

Figure 1. Parity vertex colouring of 3-dimensional cube Q3.

Lemma 2. χp(Q3) = 5.

Proof. From Figure 1 it follows that χp(Q3) ≤ 5. Because Q3 contains P8

as a subgraph, it follows from Theorem 4 that χp(Q3) ≥ 4. Without loss of
generality let us suppose that there is a parity vertex colouring using four
colours. Since the graph Q3 is hamiltonian and has exactly eight vertices
there are at least three vertices of Q3 coloured with the same colour, say
1. Let the colour 1 be used exactly three times. These vertices form an
independent set in Q3. Because any maximal independent set of Q3 has
four vertices, the fourth vertex of this set is coloured with different colour,
say 2. If any other vertex has colour 2 it is only a neighbour of all three
vertices coloured 1. The remaining three vertices of Q3 must have mutually
distinct colours. Otherwise, a parity cycle on four vertices appears. A
contradiction that four colours are enough.

Let colour 1 be used four times. Vertices which are coloured with this
colour form a maximal independent set of Q3. If there is another colour used
twice, then this colour cannot be used on the same cycle on four vertices.
However, for each two vertices from remaining four ones, coloured with the
same colour, there exists a common cycle of length 4 which contains a parity
path P4 as a subgraph. Hence the remaining vertices must be coloured with
different colours, a contradiction.
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Figure 2. Parity vertex colouring of 4-dimensional cube Q4.

Concerning graph Q4. From Figure 2 we have that χp(Q4) ≤ 8. Moreover,
we have checked by computer that χp(Q4) > 7, hence χp(Q4) = 8. We
strongly believe that the following question has an affirmative answer.

Problem 1. Is it true that χp(Qd) = Fd+2, where Fi is the i-th Fibonacci
number?

4. Parity and Ranking

A vertex ranking of a graph is a proper vertex colouring by a linearly ordered
set of colours such that for every path in the graph with end vertices of the
same colour there is a vertex on this path with a higher colour (see [3]
for a survey on rankings). The vertex ranking problem asks for a vertex
ranking of a given graph G which has the minimum number of colours. This
number denoted by χr(G) is the vertex ranking number of G. Notice that
in any connected graph G there exists exactly one vertex coloured with the
maximum colour χr(G).

Theorem 7. Every vertex ranking of graph G is a parity vertex colouring
of G and consequently we have χ(G) ≤ χp(G) ≤ χr(G).

Proof. Assume on the contrary that ϕ is a vertex ranking of G, which is
not a parity vertex colouring, i.e. G contains a parity path P . Let r be the
maximum colour used on P . Since P contains at least two vertices coloured
r, choose two of them, say u, v in such a way that no other vertex of colour
r lies on P between u and v. Following the definition of ranking, a vertex of
colour greater than r exists for each path between u and v, which contradicts
the maximality of r.
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From Theorem 7 it also follows that whenever G is a graph for which χr(G) =
χ(G), then χp(G) = χ(G). Moreover, in [1] it was proved that any graph
G for which χr(G) = χ(G) satisfies χ(G) = ω(G), where ω(G) denotes the
clique number of G. Hence whenever χr(G) = χ(G), then χp(G) = ω(G).
There exist graphs for which χp(G) = ω(G) and χr(G) > ω(G). Namely,
the graph K+

n is obtained from Kn, having vertex set {v1, v2, . . . , vn}, by
addition of n new vertices ui and n new edges viui, i ∈ {1, 2, . . . , n}. It is not
hard to see that for n ≥ 3 we have χp(K

+
n ) = n = ω(K+

n ) < χr(K
+
n ) = n+1.

Trivially perfect graphs can be characterized by forbidding C4 and P4 as
the induced subgraphs [6]. If we require the equality of χp and χ to hold
for every subgraph, then we can prove the following theorem which is also
known to hold for vertex rankings [1].

Theorem 8. For a graph G = (V,E) the following conditions are equivalent:

(i) G is trivially perfect,

(ii) χr(G[A]) = χ(G[A]) for every A ⊆ V (G),

(iii) χp(G[A]) = χ(G[A]) for every A ⊆ V (G).

Proof. The equivalence of (i) and (ii) is proved in [1]. The implication
(iii)⇒(i) is obvious since χp(C4) = χp(P4) = 3 while χ(C4) = χ(P4) = 2. It
remains to prove the implication (i)⇒(iii). Let G be trivially perfect and
assume that there exists a subset A such that χp(G[A]) > χ(G[A]). By the
equivalence of (i) and (ii) we have χp(G[A]) > χr(G[A]), a contradiction by
Theorem 7.

Note that arguments used within the proof hold also for conflict-free colour-
ing.

The class of cographs, known also as the class of P4-free graphs, is the
smallest class of graphs fulfilling the following conditions:

1. The graph K1 is a cograph.

2. If G1, G2 are vertex disjoint cographs, then

(a) their union G1 ∪G2 is a cograph,

(b) their join G1 +G2 is a cograph.

To see that the analogue of Theorem 2 holds for rankings, observe that
whenever two vertices of G1 have the same colour q in some ranking of G1,
then all vertices in V (G2) have to be coloured differently with colours larger
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than q. Now, since analogues of Lemma 1 and Theorem 2 hold as well for
parity vertex colourings as for vertex rankings, we immediately have the
following theorem.

Theorem 9. If G is a cograph, then χp(G) = χr(G).

With the formulas given in Lemma 1 and Theorem 2 we can compute the
parity vertex chromatic number of any cograph in polynomial time.

Further analysis of the relationships between ranking and parity chromatic
number leads to the following intriguing problem which turned out to be
challenging even for basic classes of graphs like trees.

Problem 2. For what classes of graphs there exists c ∈ N such that

χr(G) − χp(G) ≤ c?

It seems that critical and minimal graphs could be used to solve this problem.
Graphs critical for vertex ranking are analyzed in the next section and we
use them to state the lower bound for trees.

5. Ranking Critical Graphs

A graph G is said to be ranking k-critical if χr(G) = k but χr(G − v) < k

for every vertex v ∈ V (G). Ranking k-minimal graphs are those graphs G

for which χr(G) = k but χr(G− e) < k for any edge e ∈ E(G). The parity
k-critical and parity k-minimal graphs are defined analogously. Ranking
minimal graphs were analyzed by Katchalski et al. in [7] (the authors called
them k-critical). The following theorem strengthens the result of Katchalski
et al. ([7] Proposition 2.1).

Theorem 10. Let G be any connected graph such that χr(G) = k and let
Hi, i ∈ {1, . . . , p} be all ranking k-critical subgraphs of G. Then X =⋂p

i=1
V (Hi) 6= ∅. Moreover, if ϕ̃(v) = k for some ranking ϕ̃ then v ∈ X and

for any vertex w ∈ X there exists a ranking ϕ such that ϕ(w) = k.

Proof. If there existed ranking k-critical subgraphs Hi and Hj such that
V (Hi)∩V (Hj) = ∅, then for any ranking ϕ of G we would have two vertices
vi ∈ V (Hi) and vj ∈ V (Hj) coloured with the maximum colour k, a con-
tradiction. For the same reason any vertex coloured k must belong to X.
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Now, observe that whenever v ∈ X, χr(Hi − v) = k − 1 for all 1 ≤ i ≤ p

and consequently χr(G − v) = k − 1. Any (k − 1)-ranking ϕ of G − v can
be easily extended to a k-ranking of G using colour k for the vertex v.

The operation of adding the edge between vertices of two disjoint ranking
(k−1)-minimal graphs G1, G2 results in the ranking k-minimal graph G ([7]
Lemma 2.1). In what follows we prove even a stronger statement concerning
critical graphs.

Theorem 11. Let G1, G2 be vertex disjoint connected graphs such that
χr(Gi) = k − 1, i ∈ {1, 2} and let G be a graph obtained from G1 ∪ G2 by
addition of an edge v1v2 between some vertices v1 ∈ V (G1), v2 ∈ V (G2).
Then

(a) χr(G) = k,

(b) G is ranking k-critical if and only if G1, G2 are ranking (k−1)-critical.

Proof. (a) Since χr(Gi) = k−1, i ∈ {1, 2} there exist vertices x1 ∈ V (G1)
and x2 ∈ V (G2) coloured k−1, which following the last part of Theorem 10
may be any vertices of the appropriate (k − 1)-critical subgraphs Hi ≤ Gi

and hence are assumed to be different from v1 and v2. Therefore there exists
a path (x1, . . . , v1, v2, . . . , x2), which spoils ranking as long as some vertex
coloured k appears between x1 and x2. Hence χr(G) ≥ k. On the other
hand to see that χr(G) ≤ k, let ϕi be a k-ranking of Gi, i ∈ {1, 2} and
let the ranking ϕ of G be defined as follows: ϕ(v) = ϕ1(v) for v ∈ V (G1),
ϕ(v) = ϕ2(v) for v ∈ V (G2)− {v2} and ϕ(v2) = k.

(b) (⇐) From (a) it follows that χr(G) = k. Let v ∈ V (G); without loss
of generality assume v to be from V (G1). We argue that χr(G− v) = k− 1.
Since G1 is (k − 1)-critical, G1 − v has a (k − 2)-ranking ϕ

′

1. By Theorem
10 graph G2 has such a (k− 1)-ranking ϕ2 that ϕ2(v2) = k− 1. Notice that
colouring ϕ defined as ϕ(v) = ϕ

′

1(v) for v ∈ V (G1 − v) and ϕ(v) = ϕ2(v) for
v ∈ V (G2) is a (k − 1)-ranking of G− v. Hence G is ranking k-critical.

(⇒) Let us assume that G1 is not (k − 1)-critical and let v ∈ V (G1).
Since G is k-critical, χr(G − v) ≤ k − 1 and since χr(G2) = k − 1, the
only vertex coloured k − 1 must belong to V (G2). Accordingly, G1 − v

has a (k − 2)-ranking, i.e. χr(G1 − v) ≤ k − 2 and it follows that G1 is
(k − 1)-critical. By symmetry the same reasoning applies to G2.
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6. Parity and Ranking on Trees

In what follows we use the canonical trees which can be defined recursively.
A graph K1 is the first canonical tree T1 with the only vertex as its root.
The canonical tree Tk is obtained by taking two disjoint copies of trees Tk−1

and joining their roots by an edge, then taking the root of the second copy
to be the root of Tk.

Lemma 3. The canonical tree Tk is ranking k-critical.

Proof. By Theorem 11 for any two disjoint ranking (k− 1)-critical graphs
G1 and G2, the graph G = (G1 ∪ G2) + v1v2 is ranking k-critical for any
v1 ∈ V (G1) and v2 ∈ V (G2). Obviously, K2 ≃ T2 is ranking 2-critical.
Hence following the above mentioned result T3 ≃ P4 = (K2 ∪K2) + v1v2 is
ranking 3-critical. Assume Tk−1 to be ranking (k − 1)-critical. It follows by
induction that Tk is ranking k-critical.

2 1

3 2

1 3

2 1

1 2

2 3

4

1

1 2

2 1

3 2

1 3

2 1

1 2

2 3

5

1

1 2

x5 x6T1

T3

T4

T2

T5

Figure 3. Parity vertex colouring of the cannonical tree T6.

In order to obtain a k-ranking of Tk, observe that removing all vertices
of degree 1 results in Tk−1. Now, colour greedily the subsequent vertices
ordered non-decreasingly with respect to their degrees, which produces a
vertex k-ranking of Tk.

Theorem 12. For any canonical tree Tk, k ≥ 4, we have

χr(Tk)− χp(Tk) ≥ 1.
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Proof. It is not hard to see that for k ∈ {1, 2, 3} we have χp(Tk) = k

while χp(T4) = 3 (see Figure 3). The crucial property of canonical trees is
that removing the root-vertex xk from Tk gives a forest consisting of the
k − 1 components Hi isomorphic to the appropriate Ti, i ∈ {1, . . . , k − 1}
respectively. Assume that χp(Ti) ≤ i− 1 holds for all Ti, 4 ≤ i ≤ k− 1. It is
enough to colour the root xk of Tk using colour k−1 to obtain a (k−1)-parity
vertex colouring of Tk. Hence by induction on k, we have χp(Tk) ≤ k−1 for
k ≥ 4 and since by Lemma 3, χr(Tk) = k for k ≥ 1, the theorem follows.

We strongly believe that it is possible to prove the following

Conjecture 1. For any tree T we have χr(T )− χp(T ) ≤ 1.
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