THE FORCING STEINER NUMBER OF A GRAPH

A.P. Santhakumaran
Research Department of Mathematics
St. Xavier's College (Autonomous)
Palayamkottai - 627 002, India
e-mail: apskumar1953@yahoo.co.in

AND
J. John
Department of Mathematics
Alagappa Chettiar Govt. College of Engineering \& Technology
Karaikudi - 630 004, India
e-mail: johnramesh1971@yahoo.co.in

Abstract

For a connected graph $G=(V, E)$, a set $W \subseteq V$ is called a Steiner set of G if every vertex of G is contained in a Steiner W-tree of G. The Steiner number $s(G)$ of G is the minimum cardinality of its Steiner sets and any Steiner set of cardinality $s(G)$ is a minimum Steiner set of G. For a minimum Steiner set W of G, a subset $T \subseteq W$ is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by $f_{s}(W)$, is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by $f_{s}(G)$, is $f_{s}(G)=\min \left\{f_{s}(W)\right\}$, where the minimum is taken over all minimum Steiner sets W in G. Some general properties satisfied by this concept are studied. The forcing Steiner numbers of certain classes of graphs are determined. It is shown for every pair a, b of integers with $0 \leq a<b, b \geq 2$, there exists a connected graph G such that $f_{s}(G)=a$ and $s(G)=b$.

Keywords: geodetic number, Steiner number, forcing geodetic number, forcing Steiner number.
2010 Mathematics Subject Classification: 05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. It is known that the distance is a metric on the vertex set of G. For basic graph theoretic terminology, we refer to [1]. A geodetic set of G is a set S of vertices such that every vertex of G is contained in a geodesic joining some pair of vertices of S. The geodetic number $g(G)$ of G is the minimum cardinality of its geodetic sets and any geodetic set of cardinality $g(G)$ is a minimum geodetic set or simply a g-set of G. A vertex v is said to be a geodetic vertex if v belongs to every g-set of G. The geodetic number of a graph was introduced in [6] and further studied in $[4,7]$. It was shown in $[7]$ that determining the geodetic number of a graph is an NP-hard problem. A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum geodetic set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing geodetic number of S, denoted by $f(S)$, is the cardinality of a minimum forcing subset of S. The forcing geodetic number of G, denoted by $f(G)$, is $f(G)=\min \{f(S)\}$, where the minimum is taken over all minimum geodetic sets S in G. The forcing geodetic number of a graph was introduced and studied in [2]. The forcing dimension of a graph was discussed in [3]. Santhakumaran et al. studied the connected geodetic number of a graph in [9] and also the upper connected geodetic number and the forcing connected geodetic number of a graph in [10].

For a nonempty set W of vertices in a connected graph G, the Steiner distance $d(W)$ of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W-tree. It is to be noted that $d(W)=d(u, v)$, when $W=\{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by $S(W)$. If $S(W)=V$, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number $s(G)$ of G. We observe that if W is a proper Steiner set of G, then $\langle W\rangle$, the subgraph induced by W is disconnected. The Steiner number of a graph was introduced and studied in [5]. It was proved in [5] that every Steiner set of G is a geodetic set of G. However, this was proved to be wrong in [7].

For the graph G given in Figure 1.1(a), $W=\left\{v_{1}, v_{5}, v_{9}\right\}$ is the unique s-set of G so that $s(G)=3$. Also $S_{1}=\left\{v_{1}, v_{5}, v_{7}, v_{9}\right\}$ and $S_{2}=\left\{v_{1}, v_{5}, v_{6}, v_{9}\right\}$ are the only two g-sets of G so that $g(G)=4$ and $f(G)=1$. For the graph G given in Figure 1.1(b), $W=\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$ is the unique s-set of G so that $s(G)=4$. Also $S_{1}=\left\{v_{1}, v_{5}, v_{6}\right\}$ and $S_{2}=\left\{v_{2}, v_{5}, v_{6}\right\}$ are the only two g-sets of G so that $g(G)=3$ and $f(G)=1$. For the graph G given in Figure 1.1(c), $W=\left\{v_{1}, v_{5}\right\}$ is the unique g-set as well as the unique s-set of G so that $g(G)=s(G)=2$ and $f(G)=0$.

Figure 1.1
A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. The following theorems are used in the sequel.

Theorem 1.1 [5]. Each extreme vertex of a connected graph G belongs to every Steiner set of G.

Theorem 1.2 [5]. For a connected graph $G, s(G)=p$ if and only if $G=$ K_{p}.

Throughout the following G denotes a connected graph with at least two vertices.

2. The Forcing Steiner Number of a Graph

Even though every connected graph contains a minimum Steiner set, some connected graphs may contain several minimum Steiner sets. For each minimum Steiner set W in a connected graph G, there is always some subset T
of W that uniquely determines W as the minimum Steiner set containing T. Such "forcing subsets" will be considered in this section.

Definition 2.1. Let G be a connected graph and W a minimum Steiner set of G. A subset $T \subseteq W$ is called a forcing subset for W if W is the unique minimum Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing Steiner number of W, denoted by $f_{s}(W)$, is the cardinality of a minimum forcing subset of W. The forcing Steiner number of G, denoted by $f_{s}(G)$, is $f_{s}(G)=\min \left\{f_{s}(W)\right\}$, where the minimum is taken over all minimum Steiner sets W in G.

Example 2.2. For the graph G given in Figure 1.1(a), $W=\left\{v_{1}, v_{5}, v_{9}\right\}$ is the unique minimum Steiner set of G so that $f_{s}(G)=0$ and for the graph G given in Figure 2.1, $W_{1}=\left\{v_{1}, v_{5}, v_{7}\right\}$ and $W_{2}=\left\{v_{1}, v_{5}, v_{6}\right\}$ are the only two s-sets of G. It is clear that $f_{s}\left(W_{1}\right)=f_{s}\left(W_{2}\right)=1$ so that $f_{s}(G)=1$.

Figure 2.1. A graph G with $s(G)=3$ and $f_{s}(G)=1$.
The following theorem was proved in [2].
Theorem A. For a connected graph $G, 0 \leq f(G) \leq g(G)$.
The next theorem is similar to this.
Theorem 2.3. For a connected graph $G, 0 \leq f_{s}(G) \leq s(G)$.
The following observation is an easy consequence of the definition of forcing Steiner number of a graph.

Observation 2.4. Let G be a connected graph. Then
(a) $f_{s}(G)=0$ if and only if G has a unique minimum Steiner set.
(b) $f_{s}(G)=1$ if and only if G has at least two minimum Steiner sets, one of which is a unique minimum Steiner set containing one of its elements, and
(c) $f_{s}(G)=s(G)$ if and only if no minimum Steiner set of G is the unique minimum Steiner set containing any of its proper subsets.

Definition 2.5. A vertex v of a graph G is said to be a Steiner vertex if v belongs to every minimum Steiner set of G.

Example 2.6. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1}, v_{3}, v_{4}\right\}$ and $S_{2}=\left\{v_{1}, v_{3}, v_{5}\right\}$ are the only two s-sets of G so that v_{1} and v_{3} are Steiner vertices of G.

Figure 2.2. A graph G with Steiner vertices v_{1} and v_{3}.
Theorem 2.7. Let G be a connected graph and let \Im be the set of relative complements of the minimum forcing subsets in their respective minimum Steiner sets in G. Then $\bigcap_{F \in \Im} F$ is the set of Steiner vertices of G.

Proof. Let W denote the set of Steiner vertices of G. We show that $W=\bigcap_{F \in \Im} F$. Let $v \in W$. Then v belongs to every minimum Steiner set of G. Let $T \subseteq S$ be any minimum forcing subset for any minimum Steiner set S of G. We claim that $v \notin T$. If $v \in T$, then $T^{\prime}=T-\{v\}$ is a proper subset of T such that S is the unique minimum Steiner set containing T^{\prime} so that T^{\prime} is a forcing subset for S with $\left|T^{\prime}\right|<|T|$, which is a contradiction to T a minimum forcing subset for S. Thus $v \notin T$ and so $v \in F$, where F is the relative complement of T in S. Hence $v \in \bigcap_{F \in \Im} F$ so that $W \subseteq \bigcap_{F \in \Im} F$.

Conversely, let $v \in \bigcap_{F \in \Im} F$. Then v belongs to the relative complement of T in S for every T and every S such that $T \subseteq S$, where T is a minimum forcing subset for S. Since F is the relative complement of T in S, we have
$F \subseteq S$ and thus $v \in S$ for every S, which implies that v is a Steiner vertex of G. Thus $v \in W$ and so $\bigcap_{F \in \Im} F \subseteq W$. Hence $W=\bigcap_{F \in \Im} F$.

Corollary 2.8. Let G be a connected graph and S a minimum Steiner set of G. Then no Steiner vertex of G belongs to any minimum forcing set of S.

The following observation is clear from the definitions of forcing Steiner number and the Steiner vertex of a graph.

Observation 2.9. Let G be a connected graph and W be the set of all Steiner vertices of G. Then $f_{s}(G) \leq s(G)-|W|$.

It is clear from Theorem 1.1 and Observation 2.9 that for a connected graph with k extreme vertices, $f_{s}(G) \leq s(G)-k$. The bound in Observation 2.9 is sharp. For the graph G given in Figure 2.2, $S_{1}=\left\{v_{1}, v_{3}, v_{4}\right\}$ and $S_{2}=$ $\left\{v_{1}, v_{3}, v_{5}\right\}$ are the only two s-sets so that $s(G)=3$ and $f_{s}(G)=1$. Also, $W=\left\{v_{1}, v_{3}\right\}$ is the set of all Steiner vertices of G and so $f_{s}(G)=s(G)-|W|$. The inequality in Observation 2.9 can also be strict. For the graph G given in Figure 2.3, $S_{1}=\left\{v_{1}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{1}, v_{4}, v_{6}\right\}$ and $S_{3}=\left\{v_{1}, v_{3}, v_{5}\right\}$ are the only three s-sets of G so that $s(G)=3$ and $f_{s}(G)=1$. Since v_{1} is the only Steiner vertex of G, we have $f_{s}(G)<s(G)-|W|$.

Figure 2.3. G
In the following we determine the forcing Steiner numbers of certain standard graphs. It is proved in [2] that the forcing number of a cycle C_{p} is 1 if p is even; and 2 if p is odd. The proof for the forcing Steiner number of a cycle C_{p} follows in line with the proof of the corresponding theorem in [2]. However, we give an outline of the proof to highlight Steiner concepts. We observe that for an even cycle C_{p}, an s-set is a g-set and consists of precisely a pair of antipodal vertices of C_{p} and so it follows from Observation 2.4(b) that $f_{s}\left(G_{p}\right)=1$. If p is odd with $p=2 n+1$, let the cycle be
$C_{p}: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}, v_{n+2}, \ldots, v_{2 n+1}, v_{1}$. If $S=\{u, v\}$ is any set of two vertices of C_{p}, then no vertex of the $u-v$ longest path lies on the Steiner S tree in C_{p} and so no two element subset of C_{p} is a Steiner set of C_{p}. Now, it is clear that the sets $S_{1}=\left\{v_{1}, v_{n+1}, v_{n+2}\right\}, S_{2}=\left\{v_{2}, v_{n+2}, v_{n+3}\right\}, \ldots, S_{n+2}=$ $\left\{v_{n+2}, v_{1}, v_{2}\right\}, \ldots$ and $S_{2 n+1}=\left\{v_{2 n+1}, v_{n}, v_{n+1}\right\}$ are s-sets of C_{p}. (Note that there are more s-sets of C_{p}, for example, $S=\left\{v_{1}, v_{n+1}, v_{n+3}\right\}$ is a s-set different from these). It is clear from the s-sets $S_{i}(1 \leq i \leq 2 n+1)$ that each $\left\{v_{i}\right\}(1 \leq i \leq 2 n+1)$ is a subset of more than one s-set S_{i}. Hence it follows from Observation 2.4 (a) and (b) that $f_{s}\left(C_{p}\right) \geq 2$. Now, since v_{n+1} and v_{n+2} are antipodal to v_{1}, it is clear that S_{1} is the unique s-set containing $\left\{v_{n+1}, v_{n+2}\right\}$ and so $f_{s}\left(C_{p}\right)=2$. Thus we have the following result.

Theorem 2.10. For a cycle $C_{p}(p \geq 4), f_{s}\left(C_{p}\right)= \begin{cases}1 & \text { if } p \text { is even, } \\ 2 & \text { if } p \text { is odd. }\end{cases}$
Theorem 2.11. If G is a complete graph or a tree, then $f_{s}(G)=0$.
Proof. Since the set of all vertices of a complete graph is the unique minimum Steiner set; and the set of all end vertices of a tree is the unique minimum Steiner set, the result follows from Theorem 1.1 and Observation 2.4(a).

Theorem 2.12. For the complete bipartite graph $G=K_{m, n}(m, n \geq 2)$, $f_{s}(G)= \begin{cases}0 & \text { if } m \neq n, \\ 1 & \text { if } m=n .\end{cases}$

Proof. First assume that $m<n$. Let $U=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $W=$ $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a bipartition of G. Let $S=U$. We prove that S is a s-set of G. Any Steiner S-tree T is a star centered at $w_{j}(1 \leq j \leq n)$ with u_{i} $(1 \leq i \leq m)$ as end vertices of T. Hence every vertex of G lies on a Steiner S-tree of G so that S is a Steiner set of G. Let X be any set of vertices such that $|X|<|S|$. Then there exists a vertex $u_{i} \in U$ such that $u_{i} \notin X$. Since any Steiner X-tree is a star centered at $w_{j}(1 \leq j \leq n)$, whose end-vertices are elements of X, the vertex u_{i} does not lie on any Steiner X-tree of G. Thus X is not a Steiner set of G. Hence S is a s-set so that $s(G)=|S|=m$. We show that S is the unique s-set of G. Now, let S_{1} be a set of vertices such that $\left|S_{1}\right|=m$. If S_{1} is a subset of W, then since $m<n$, there exists a vertex $w_{j} \in W$ such that $w_{j} \notin S_{1}$. Then the vertex w_{j} does not lie on any Steiner S_{1}-tree of G, as earlier. If $S_{1} \subsetneq U \cup W$ such that S_{1} contains
at least one vertex from each of U and W, then since $S_{1} \neq U$, there exist vertices $u_{i} \in U$ and $w_{j} \in W$ such that $u_{i} \notin S_{1}$ and $w_{j} \notin S_{1}$. Then, as earlier, the vertices u_{i}, w_{j} do not lie on any Steiner S_{1}-tree of G so that S_{1} is not a Steiner set of G. Hence U is the unique s-set of G and it follows from Observation 2.4(a) that $f_{s}(G)=0$. Now, let $m=n$. Then, as in the proof of the first part of this theorem, both U and W are s-sets of G. Let S^{\prime} be any set of vertices such that $\left|S^{\prime}\right|=m$ and $S^{\prime} \neq U, W$. Then there exist vertices $u_{i} \in U$ and $w_{j} \in W$ such that $u_{i} \notin S^{\prime}$ and $w_{j} \notin S^{\prime}$. Since any Steiner S^{\prime}-tree is a spanning tree containing only the vertices of S^{\prime}, it follows that S^{\prime} is not a Steiner set of G and hence it follows that U and W are the only two s-sets of G. Since U is the unique minimum Steiner set containing $\left\{u_{i}\right\}$, it follows from Observation 2.4(b) that $f_{s}(G)=1$.

Theorem 2.13. For the wheel $W_{p}=K_{1}+C_{p-1}(p \geq 5), s\left(W_{p}\right)=p-3$ and $f_{s}\left(W_{p}\right)=p-4$.

Proof. Let v be the vertex of K_{1} and let $v_{1}, v_{2}, \ldots, v_{p-1}, v_{1}$ be the cycle C_{p-1}. First, we observe that v does not belong to any proper Steiner set of W_{p}. For $p=5, W_{1}=\left\{v_{1}, v_{3}\right\}$ and $W_{2}=\left\{v_{2}, v_{4}\right\}$ are the only two s-sets of W_{p} so that $s\left(W_{p}\right)=2=p-3$ and $f_{s}\left(W_{p}\right)=1=p-4$. Let $p \geq 6$. Let W be any subset of vertices of C_{p-1} of cardinality $p-3$ obtained by deleting two non-adjacent vertices of C_{p-1}. We may assume without loss of generality that $W=\left\{v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{p-1}\right\}$, where $1 \leq i<j \leq p-1$ and $j \geq i+2$. It is easily seen that W is a minimum Steiner set of G so that $s\left(W_{p}\right)=|W|=p-3$. Since the subgraph induced by a proper Steiner set of G is disconnected, it follows that any s-set is of the form $W=\left\{v_{1}, v_{2}, \ldots, v_{i-1}, v_{i+1}, v_{i+2}, \ldots, v_{j-1}, v_{j+1}, v_{j+2}, \ldots, v_{p-1}\right\}$, where v_{i} and v_{j} are non-adjacent. Let T be a subset of W with $|T| \leq p-5$. Since $p \geq 6$, there exist distinct vertices $x, y \in W$ such that $x, y \notin T$. If x and y are adjacent, then x is non-adjacent to at least one of v_{i} and v_{j}, say v_{j}. Then $W_{1}=V\left(C_{p-1}\right)-\left\{x, v_{j}\right\}$ is a s-set such that $W_{1} \neq W$ and W_{1} properly contains T. If x and y are non-adjacent, then $W_{2}=V\left(C_{p-1}\right)-\{x, y\}$ is a s-set such that $W_{2} \neq W$ and W_{2} properly contains T. Thus T is not a forcing subset for W. Now, we show that there exists a forcing subset of W of cardinality $p-4$. For convenience, let $W=\left\{v_{2}, v_{4}, v_{5}, v_{6}, \ldots, v_{p-1}\right\}$. We show that $T_{1}=\left\{v_{4}, v_{5}, v_{6}, \ldots, v_{p-1}\right\}$ is a forcing subset for W. If T_{1} is not a forcing subset for W, then there exists a s-set $W^{\prime} \neq W$ such that $T_{1} \subseteq W^{\prime}$. Since $W^{\prime} \neq W,\left|W^{\prime}\right|=p-3$ and $\left|T_{1}\right|=p-4, W^{\prime}$ must contain exactly one
of v_{1} or v_{3}. In any case, $\left\langle W^{\prime}\right\rangle$ is connected and so W^{\prime} is not a Steiner set of G, which is a contradiction. Hence it follows that $f_{s}\left(W_{p}\right)=p-4$.

It is proved in [2] that if G is a connected graph with $g(G)=2$, then $f(G) \leq 1$. It is not hard to prove that if a set $S=\{u, v\}$ is a s-set of G, then u and v are antipodal vertices of G. The next theorem follows immediately from this result and is similar to the one in [2].

Theorem 2.14. If G is a connected graph with $s(G)=2$, then $f_{s}(G) \leq 1$.
Corollary 2.15. Let G be a connected graph with $s(G)=2$. If G contains an extreme vertex, then $f_{s}(G)=0$.

Proof. Let v be an extreme vertex of G. If $f_{s}(G)=1$, then there exist distinct vertices u, w such that $\{u, v\}$ and $\{w, v\}$ are s-sets. Then it follows that w is an internal vertex of a $u-v$ geodesic and u is an internal vertex of a $w-v$ geodesic. Hence $d(u, v)>d(v, w)$ and $d(v, w)>d(u, v)$, which is not possible. Since $f_{s}(G) \geq 0$, it follows from Theorem 2.14 that $f_{s}(G)=0$.

In view of Theorem 2.3, the following theorem gives a realization of the forcing Steiner number and the Steiner number of a graph.

Theorem 2.16. For every pair a, b of integers with $0 \leq a<b, b \geq 2$, there exists a connected graph G such that $f_{s}(G)=a$ and $s(G)=b$.

Proof. If $a=0$, let $G=K_{b}$. Then by Theorems 2.11 and $1.2, f_{s}(G)=0$ and $s(G)=b$. Now, assume that $a \geq 1$. For $b=a+1$, let $G=K_{1}+C_{a+3}$ $(a \geq 1)$. By Theorem 2.13, $s(G)=a+1=b$ and $f_{s}(G)=a$. For $b \neq a+1$, let $F_{i}: s_{i}, t_{i}, u_{i}, v_{i}, r_{i}, s_{i}(1 \leq i \leq a)$ be a copy of the cycle C_{5}. Let G be the graph obtained from F_{i} 's by first identifying the vertices r_{i-1} of F_{i-1} and t_{i} of $F_{i}(2 \leq i \leq a)$ and then adding $b-a$ new vertices $z_{1}, z_{2}, \ldots, z_{b-a-1}, u$ and joining the $b-a$ edges $t_{1} z_{i}(1 \leq i \leq b-a-1)$ and $r_{a} u$. The graph G is given in Figure 2.4. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{b-a-1}, u\right\}$ be the set of end-vertices of G. By Theorem 1.1, every s-set of G contains Z. Let $H_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. First, we show that $s(G)=b$. Since the vertices u_{i}, v_{i} do not lie on the unique Steiner Z - tree of G, it is clear that Z is not a Steiner set of G. We observe that every s-set of G must contain exactly one vertex from each H_{i} $(1 \leq i \leq a)$ and so $s(G) \geq b-a+a=b$. On the other hand, since the set $W=Z \cup\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ is a Steiner set of G, it follows that $s(G) \leq|W|=b$.

Thus, $s(G)=b$. Next, we show that $f_{s}(G)=a$. By Theorem 1.1, every Steiner set of G contains Z and so it follows from Observation 2.9 that $f_{s}(G) \leq s(G)-|Z|=a$. Now, since $s(G)=b$ and every s-set of G contains Z, it is easily seen that every s-set S is of the form $Z \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then there is a vertex $c_{j}(1 \leq j \leq a)$ such that $c_{j} \notin T$. Let d_{j} be a vertex of H_{j} distinct from c_{j}. Then $S_{2}=\left(S-\left\{c_{j}\right\}\right) \cup\left\{d_{j}\right\}$ is a s-set properly containing T. Thus S is not the unique s-set containing T and so T is not a forcing subset of S. This is true for all s-sets of G and so $f_{s}(G)=a$.

Figure 2.4. The graph G in Theorem 2.16 for $1 \leq a<b$.

Acknowledgments

The authors are thankful to the referee whose valuable suggestions resulted in producing an improved paper.

References

[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58.
[3] G. Chartrand and P. Zhang, The forcing dimension of a graph, Mathematica Bohemica 126 (2001) 711-720.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks 39 (2002) 1-6.
[5] G. Chartrand, F. Harary and P. Zhang, The Steiner Number of a Graph, Discrete Math. 242 (2002) 41-54.
[6] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modelling 17 (1993) 89-95.
[7] C. Hernando, T. Jiang, M. Mora, I.M. Pelayo and C. Seara, On the Steiner, geodetic and hull numbers of graphs, Discrete Math. 293 (2005) 139-154.
[8] I.M. Pelayo, Comment on "The Steiner number of a graph" by G. Chartrand and P. Zhang, Discrete Math. 242 (2002) 41-54.
[9] A.P. Santhakumaran, P. Titus and J. John, On the Connected Geodetic Number of a Graph, J. Combin. Math. Combin. Comput. 69 (2009) 205-218.
[10] A.P. Santhakumaran, P. Titus and J. John, The Upper Connected Geodetic Number and Forcing Connected Geodetic Number of a Graph, Discrete Appl. Math. 157 (2009) 1571-1580.

Received 18 February 2009
Revised 24 April 2009
Accepted 27 April 2009

