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Abstract

For a connected graph G = (V,E), a set W ⊆ V is called a Steiner
set of G if every vertex of G is contained in a Steiner W -tree of G. The
Steiner number s(G) of G is the minimum cardinality of its Steiner sets
and any Steiner set of cardinality s(G) is a minimum Steiner set of G.
For a minimum Steiner set W of G, a subset T ⊆ W is called a forcing
subset for W if W is the unique minimum Steiner set containing T .
A forcing subset for W of minimum cardinality is a minimum forcing
subset of W . The forcing Steiner number of W , denoted by fs(W ), is
the cardinality of a minimum forcing subset of W . The forcing Steiner
number of G, denoted by fs(G), is fs(G) = min{fs(W )}, where the
minimum is taken over all minimum Steiner sets W in G. Some general
properties satisfied by this concept are studied. The forcing Steiner
numbers of certain classes of graphs are determined. It is shown for
every pair a, b of integers with 0 ≤ a < b, b ≥ 2, there exists a connected
graph G such that fs(G) = a and s(G) = b.
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1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph with-
out loops or multiple edges. The order and size of G are denoted by p and
q respectively. The distance d(u, v) between two vertices u and v in a con-
nected graph G is the length of a shortest u− v path in G. An u− v path
of length d(u, v) is called an u − v geodesic. It is known that the distance
is a metric on the vertex set of G. For basic graph theoretic terminology,
we refer to [1]. A geodetic set of G is a set S of vertices such that every
vertex of G is contained in a geodesic joining some pair of vertices of S.
The geodetic number g(G) of G is the minimum cardinality of its geodetic
sets and any geodetic set of cardinality g(G) is a minimum geodetic set or
simply a g-set of G. A vertex v is said to be a geodetic vertex if v belongs to
every g-set of G. The geodetic number of a graph was introduced in [6] and
further studied in [4, 7]. It was shown in [7] that determining the geodetic
number of a graph is an NP-hard problem. A subset T ⊆ S is called a forc-
ing subset for S if S is the unique minimum geodetic set containing T . A
forcing subset for S of minimum cardinality is a minimum forcing subset of
S. The forcing geodetic number of S, denoted by f(S), is the cardinality of a
minimum forcing subset of S. The forcing geodetic number of G, denoted by
f(G), is f(G) = min{f(S)}, where the minimum is taken over all minimum
geodetic sets S in G. The forcing geodetic number of a graph was introduced
and studied in [2]. The forcing dimension of a graph was discussed in [3].
Santhakumaran et al. studied the connected geodetic number of a graph in
[9] and also the upper connected geodetic number and the forcing connected
geodetic number of a graph in [10].

For a nonempty set W of vertices in a connected graph G, the Steiner
distance d(W ) of W is the minimum size of a connected subgraph of G
containing W . Necessarily, each such subgraph is a tree and is called a
Steiner tree with respect to W or a Steiner W-tree. It is to be noted that
d(W ) = d(u, v), when W = {u, v}. The set of all vertices of G that lie on
some Steiner W -tree is denoted by S(W ). If S(W ) = V , then W is called
a Steiner set for G. A Steiner set of minimum cardinality is a minimum
Steiner set or simply a s-set of G and this cardinality is the Steiner number
s(G) of G. We observe that if W is a proper Steiner set of G, then 〈W 〉,
the subgraph induced by W is disconnected. The Steiner number of a graph
was introduced and studied in [5]. It was proved in [5] that every Steiner
set of G is a geodetic set of G. However, this was proved to be wrong in [7].
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For the graph G given in Figure 1.1(a), W = {v1, v5, v9} is the unique s-set
of G so that s(G) = 3. Also S1 = {v1, v5, v7, v9} and S2 = {v1, v5, v6, v9}
are the only two g-sets of G so that g(G) = 4 and f(G) = 1. For the graph
G given in Figure 1.1(b), W = {v1, v2, v5, v6} is the unique s-set of G so
that s(G) = 4. Also S1 = {v1, v5, v6} and S2 = {v2, v5, v6} are the only two
g-sets of G so that g(G) = 3 and f(G) = 1. For the graph G given in Figure
1.1(c), W = {v1, v5} is the unique g-set as well as the unique s-set of G so
that g(G) = s(G) = 2 and f(G) = 0.

Figure 1.1

A vertex v is an extreme vertex of a graph G if the subgraph induced by its
neighbors is complete. The following theorems are used in the sequel.

Theorem 1.1 [5]. Each extreme vertex of a connected graph G belongs to
every Steiner set of G.

Theorem 1.2 [5]. For a connected graph G, s(G) = p if and only if G =
Kp.

Throughout the following G denotes a connected graph with at least two
vertices.

2. The Forcing Steiner Number of a Graph

Even though every connected graph contains a minimum Steiner set, some
connected graphs may contain several minimum Steiner sets. For each min-
imum Steiner set W in a connected graph G, there is always some subset T
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of W that uniquely determines W as the minimum Steiner set containing
T . Such ”forcing subsets” will be considered in this section.

Definition 2.1. Let G be a connected graph and W a minimum Steiner set
of G. A subset T ⊆ W is called a forcing subset for W if W is the unique
minimum Steiner set containing T . A forcing subset for W of minimum
cardinality is aminimum forcing subset of W . The forcing Steiner number of
W , denoted by fs(W ), is the cardinality of a minimum forcing subset of W .
The forcing Steiner number of G, denoted by fs(G), is fs(G) = min{fs(W )},
where the minimum is taken over all minimum Steiner sets W in G.

Example 2.2. For the graph G given in Figure 1.1(a), W = {v1, v5, v9} is
the unique minimum Steiner set of G so that fs(G) = 0 and for the graph
G given in Figure 2.1, W1 = {v1, v5, v7} and W2 = {v1, v5, v6} are the only
two s-sets of G. It is clear that fs(W1) = fs(W2) = 1 so that fs(G) = 1.

Figure 2.1. A graph G with s(G) = 3 and fs(G) = 1.

The following theorem was proved in [2].

Theorem A. For a connected graph G, 0 ≤ f(G) ≤ g(G).

The next theorem is similar to this.

Theorem 2.3. For a connected graph G, 0 ≤ fs(G) ≤ s(G).

The following observation is an easy consequence of the definition of forcing
Steiner number of a graph.

Observation 2.4. Let G be a connected graph. Then

(a) fs(G) = 0 if and only if G has a unique minimum Steiner set.
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(b) fs(G) = 1 if and only if G has at least two minimum Steiner sets, one of
which is a unique minimum Steiner set containing one of its elements,
and

(c) fs(G) = s(G) if and only if no minimum Steiner set of G is the unique
minimum Steiner set containing any of its proper subsets.

Definition 2.5. A vertex v of a graph G is said to be a Steiner vertex if v
belongs to every minimum Steiner set of G.

Example 2.6. For the graph G given in Figure 2.2, S1 = {v1, v3, v4} and
S2 = {v1, v3, v5} are the only two s-sets of G so that v1 and v3 are Steiner
vertices of G.

Figure 2.2. A graph G with Steiner vertices v1 and v3.

Theorem 2.7. Let G be a connected graph and let ℑ be the set of relative
complements of the minimum forcing subsets in their respective minimum
Steiner sets in G. Then

⋂

F∈ℑ
F is the set of Steiner vertices of G.

Proof. Let W denote the set of Steiner vertices of G. We show that
W =

⋂

F∈ℑ
F . Let v ∈ W . Then v belongs to every minimum Steiner set of

G. Let T ⊆ S be any minimum forcing subset for any minimum Steiner set
S of G. We claim that v /∈ T . If v ∈ T , then T ′ = T −{v} is a proper subset
of T such that S is the unique minimum Steiner set containing T ′ so that
T ′ is a forcing subset for S with |T ′| < |T |, which is a contradiction to T a
minimum forcing subset for S. Thus v /∈ T and so v ∈ F , where F is the
relative complement of T in S. Hence v ∈

⋂

F∈ℑ
F so that W ⊆

⋂

F∈ℑ
F .

Conversely, let v ∈
⋂

F∈ℑ
F . Then v belongs to the relative complement

of T in S for every T and every S such that T ⊆ S, where T is a minimum
forcing subset for S. Since F is the relative complement of T in S, we have
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F ⊆ S and thus v ∈ S for every S, which implies that v is a Steiner vertex
of G. Thus v ∈ W and so

⋂

F∈ℑ
F ⊆ W . Hence W =

⋂

F∈ℑ
F .

Corollary 2.8. Let G be a connected graph and S a minimum Steiner set
of G. Then no Steiner vertex of G belongs to any minimum forcing set of S.

The following observation is clear from the definitions of forcing Steiner
number and the Steiner vertex of a graph.

Observation 2.9. Let G be a connected graph and W be the set of all
Steiner vertices of G. Then fs(G) ≤ s(G)− |W |.

It is clear from Theorem 1.1 and Observation 2.9 that for a connected graph
with k extreme vertices, fs(G) ≤ s(G) − k. The bound in Observation 2.9
is sharp. For the graph G given in Figure 2.2, S1 = {v1, v3, v4} and S2 =
{v1, v3, v5} are the only two s-sets so that s(G) = 3 and fs(G) = 1. Also,
W = {v1, v3} is the set of all Steiner vertices of G and so fs(G) = s(G)−|W |.
The inequality in Observation 2.9 can also be strict. For the graph G given
in Figure 2.3, S1 = {v1, v4, v5}, S2 = {v1, v4, v6} and S3 = {v1, v3, v5} are
the only three s-sets of G so that s(G) = 3 and fs(G) = 1. Since v1 is the
only Steiner vertex of G, we have fs(G) < s(G)− |W |.

Figure 2.3. G

In the following we determine the forcing Steiner numbers of certain stan-
dard graphs. It is proved in [2] that the forcing number of a cycle Cp is 1
if p is even; and 2 if p is odd. The proof for the forcing Steiner number of
a cycle Cp follows in line with the proof of the corresponding theorem in
[2]. However, we give an outline of the proof to highlight Steiner concepts.
We observe that for an even cycle Cp, an s-set is a g-set and consists of
precisely a pair of antipodal vertices of Cp and so it follows from Observa-
tion 2.4(b) that fs(Gp) = 1. If p is odd with p = 2n + 1, let the cycle be
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Cp : v1, v2, . . . , vn, vn+1, vn+2, . . . , v2n+1, v1. If S = {u, v} is any set of two
vertices of Cp, then no vertex of the u−v longest path lies on the Steiner S-
tree in Cp and so no two element subset of Cp is a Steiner set of Cp. Now, it is
clear that the sets S1 = {v1, vn+1, vn+2}, S2 = {v2, vn+2, vn+3}, . . . , Sn+2 =
{vn+2, v1, v2}, . . . and S2n+1 = {v2n+1, vn, vn+1} are s-sets of Cp. (Note that
there are more s-sets of Cp, for example, S = {v1, vn+1, vn+3} is a s-set dif-
ferent from these). It is clear from the s-sets Si (1 ≤ i ≤ 2n+ 1) that each
{vi}(1 ≤ i ≤ 2n+ 1) is a subset of more than one s-set Si. Hence it follows
from Observation 2.4 (a) and (b) that fs(Cp) ≥ 2. Now, since vn+1 and
vn+2 are antipodal to v1, it is clear that S1 is the unique s-set containing
{vn+1, vn+2} and so fs(Cp) = 2. Thus we have the following result.

Theorem 2.10. For a cycle Cp (p ≥ 4), fs(Cp) =

{

1 if p is even,
2 if p is odd.

Theorem 2.11. If G is a complete graph or a tree, then fs(G) = 0.

Proof. Since the set of all vertices of a complete graph is the unique min-
imum Steiner set; and the set of all end vertices of a tree is the unique
minimum Steiner set, the result follows from Theorem 1.1 and Observation
2.4(a).

Theorem 2.12. For the complete bipartite graph G = Km,n (m,n ≥ 2),

fs(G) =

{

0 if m 6= n,
1 if m = n.

Proof. First assume that m < n. Let U = {u1, u2, . . . , um} and W =
{w1, w2, . . . , wn} be a bipartition of G. Let S = U . We prove that S is a
s-set of G. Any Steiner S-tree T is a star centered at wj (1 ≤ j ≤ n) with ui
(1 ≤ i ≤ m) as end vertices of T . Hence every vertex of G lies on a Steiner
S-tree of G so that S is a Steiner set of G. Let X be any set of vertices such
that |X| < |S|. Then there exists a vertex ui ∈ U such that ui /∈ X. Since
any Steiner X-tree is a star centered at wj (1 ≤ j ≤ n), whose end-vertices
are elements of X, the vertex ui does not lie on any Steiner X-tree of G.
Thus X is not a Steiner set of G. Hence S is a s-set so that s(G) = |S| = m.
We show that S is the unique s-set of G. Now, let S1 be a set of vertices
such that |S1| = m. If S1 is a subset of W , then since m < n, there exists
a vertex wj ∈ W such that wj /∈ S1. Then the vertex wj does not lie on
any Steiner S1-tree of G, as earlier. If S1 ( U ∪W such that S1 contains
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at least one vertex from each of U and W , then since S1 6= U , there exist
vertices ui ∈ U and wj ∈ W such that ui /∈ S1 and wj /∈ S1. Then, as
earlier, the vertices ui, wj do not lie on any Steiner S1-tree of G so that S1

is not a Steiner set of G. Hence U is the unique s-set of G and it follows
from Observation 2.4(a) that fs(G) = 0. Now, let m = n. Then, as in the
proof of the first part of this theorem, both U and W are s-sets of G. Let
S′ be any set of vertices such that |S′| = m and S′ 6= U,W . Then there
exist vertices ui ∈ U and wj ∈ W such that ui /∈ S′ and wj /∈ S′. Since
any Steiner S′-tree is a spanning tree containing only the vertices of S′, it
follows that S′ is not a Steiner set of G and hence it follows that U and W
are the only two s-sets of G. Since U is the unique minimum Steiner set
containing {ui}, it follows from Observation 2.4(b) that fs(G) = 1.

Theorem 2.13. For the wheel Wp = K1 +Cp−1(p ≥ 5), s(Wp) = p− 3 and
fs(Wp) = p− 4.

Proof. Let v be the vertex of K1 and let v1, v2, . . . , vp−1, v1 be the cycle
Cp−1. First, we observe that v does not belong to any proper Steiner set of
Wp. For p = 5, W1 = {v1, v3} and W2 = {v2, v4} are the only two s-sets
of Wp so that s(Wp) = 2 = p − 3 and fs(Wp) = 1 = p − 4. Let p ≥ 6.
Let W be any subset of vertices of Cp−1 of cardinality p − 3 obtained by
deleting two non-adjacent vertices of Cp−1. We may assume without loss of
generality that W = {v1, v2, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vp−1}, where
1 ≤ i < j ≤ p − 1 and j ≥ i + 2. It is easily seen that W is a minimum
Steiner set of G so that s(Wp) = |W | = p − 3. Since the subgraph induced
by a proper Steiner set of G is disconnected, it follows that any s-set is of the
form W = {v1, v2, . . . , vi−1, vi+1, vi+2, . . . , vj−1, vj+1, vj+2, . . . , vp−1}, where
vi and vj are non-adjacent. Let T be a subset of W with |T | ≤ p− 5. Since
p ≥ 6, there exist distinct vertices x, y ∈ W such that x, y /∈ T . If x and
y are adjacent, then x is non-adjacent to at least one of vi and vj , say vj .
Then W1 = V (Cp−1)−{x, vj} is a s-set such that W1 6= W and W1 properly
contains T . If x and y are non-adjacent, then W2 = V (Cp−1) − {x, y} is
a s-set such that W2 6= W and W2 properly contains T . Thus T is not a
forcing subset for W . Now, we show that there exists a forcing subset of W
of cardinality p − 4. For convenience, let W = {v2, v4, v5, v6, . . . , vp−1}. We
show that T1 = {v4, v5, v6, . . . , vp−1} is a forcing subset for W . If T1 is not a
forcing subset for W , then there exists a s-set W ′ 6= W such that T1 ⊆ W ′.
Since W ′ 6= W , |W ′| = p− 3 and |T1| = p− 4, W ′ must contain exactly one
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of v1 or v3. In any case, 〈W ′〉 is connected and so W ′ is not a Steiner set of
G, which is a contradiction. Hence it follows that fs(Wp) = p− 4.

It is proved in [2] that if G is a connected graph with g(G) = 2, then
f(G) ≤ 1. It is not hard to prove that if a set S = {u, v} is a s-set of
G, then u and v are antipodal vertices of G. The next theorem follows
immediately from this result and is similar to the one in [2].

Theorem 2.14. If G is a connected graph with s(G) = 2, then fs(G) ≤ 1.

Corollary 2.15. Let G be a connected graph with s(G) = 2. If G contains
an extreme vertex, then fs(G) = 0.

Proof. Let v be an extreme vertex of G. If fs(G) = 1, then there exist
distinct vertices u,w such that {u, v} and {w, v} are s-sets. Then it fol-
lows that w is an internal vertex of a u − v geodesic and u is an internal
vertex of a w − v geodesic. Hence d(u, v) > d(v,w) and d(v,w) > d(u, v),
which is not possible. Since fs(G) ≥ 0, it follows from Theorem 2.14 that
fs(G) = 0.

In view of Theorem 2.3, the following theorem gives a realization of the
forcing Steiner number and the Steiner number of a graph.

Theorem 2.16. For every pair a, b of integers with 0 ≤ a < b, b ≥ 2, there
exists a connected graph G such that fs(G) = a and s(G) = b.

Proof. If a = 0, let G = Kb. Then by Theorems 2.11 and 1.2, fs(G) = 0
and s(G) = b. Now, assume that a ≥ 1. For b = a+ 1, let G = K1 + Ca+3

(a ≥ 1). By Theorem 2.13, s(G) = a+ 1 = b and fs(G) = a. For b 6= a+ 1,
let Fi : si, ti, ui, vi, ri, si (1 ≤ i ≤ a) be a copy of the cycle C5. Let G be the
graph obtained from Fi’s by first identifying the vertices ri−1 of Fi−1 and ti
of Fi (2 ≤ i ≤ a) and then adding b−a new vertices z1, z2, . . . , zb−a−1, u and
joining the b−a edges t1zi (1 ≤ i ≤ b−a−1) and rau. The graph G is given
in Figure 2.4. Let Z = {z1, z2, . . . , zb−a−1, u} be the set of end-vertices of G.
By Theorem 1.1, every s-set of G contains Z. Let Hi = {ui, vi} (1 ≤ i ≤ a).
First, we show that s(G) = b. Since the vertices ui, vi do not lie on the
unique Steiner Z- tree of G, it is clear that Z is not a Steiner set of G. We
observe that every s-set of G must contain exactly one vertex from each Hi

(1 ≤ i ≤ a) and so s(G) ≥ b− a+ a = b. On the other hand, since the set
W = Z∪{v1, v2, . . . , va} is a Steiner set of G, it follows that s(G) ≤ |W | = b.
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Thus, s(G) = b. Next, we show that fs(G) = a. By Theorem 1.1, every
Steiner set of G contains Z and so it follows from Observation 2.9 that
fs(G) ≤ s(G)− |Z| = a. Now, since s(G) = b and every s-set of G contains
Z, it is easily seen that every s-set S is of the form Z∪{c1, c2, . . . , ca}, where
ci ∈ Hi (1 ≤ i ≤ a). Let T be any proper subset of S with |T | < a. Then
there is a vertex cj (1 ≤ j ≤ a) such that cj /∈ T . Let dj be a vertex of Hj

distinct from cj . Then S2 = (S −{cj})∪ {dj} is a s-set properly containing
T . Thus S is not the unique s-set containing T and so T is not a forcing
subset of S. This is true for all s-sets of G and so fs(G) = a.

Figure 2.4. The graph G in Theorem 2.16 for 1 ≤ a < b.
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