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Abstract

A k-ended tree is a tree with at most k endvertices. Broersma and
Tuinstra [3] have proved that for k ≥ 2 and for a pair of nonadjacent
vertices u, v in a graph G of order n with degG u + degG v ≥ n − 1,
G has a spanning k-ended tree if and only if G + uv has a spanning
k-ended tree. The distant area for u and v is the subgraph induced by
the set of vertices that are not adjacent with u or v. We investigate
the relationship between the condition on degG u + degG v and the
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structure of the distant area for u and v. We prove that if the distant
area containsKr, we can relax the lower bound of degG u+degG v from
n− 1 to n− r. And if the distant area itself is a complete graph and
G is 2-connected, we can entirely remove the degree sum condition.
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1. Introduction

A closure operation is a useful operation in the study of a hamiltonian cycle
and related topics. It was first introduced by Bondy and Chvátal [1]

Theorem A ([1]). Let G be a graph of order n and let u and v be a pair of

nonadjacent vertices in G.

(1) Suppose degG u + degG v ≥ n. Then G has a hamiltonian cycle if and

only if G+ u has a hamiltonian cycle.

(2) Suppose degG u + degG v ≥ n − 1. Then G has a hamiltonian path if

and only if G+ uv has a hamiltonian path.

An endvertex is a vertex of degree one. For a positive integer k, a tree of
order at least two is said to be a k-ended tree if it has at most k endvertices.
A hamiltonian path is a spanning 2-ended tree. Thus, we can interpret the
second statement of Theorem A as a closure theorem for a spanning 2-ended
tree. Broersma and Tuinstra [3] extended this line of research, and proved
the following theorem.

Theorem B ([3]). Let k be an integer with k ≥ 2. Let G be a graph

of order n and let u and v be a pair of nonadjacent vertices in G with

degG u+degG v ≥ n− 1. Then G has a spanning k-ended tree if and only if

G+ uv has a spanning k-ended tree.

One peculiar point of Theorem B is that the requirement for degG u+degG v
does not depend on k. Though the existence of a spanning k-ended tree
becomes stronger as k grows, Theorem B always requires n−1 for the lower
bound of degG u+degG v. Though it looks strange, Broersma and Tuinstra
proved that this requirement is sharp. In other words, they constructed a
graph G with a pair of nonadjacent vertices u and v satisfying degG u +
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degG v = |V (G)| − 2 such that G + uv has a spanning k-ended tree, but G
has no spanning k-ended tree.

For a pair of nonadjacent vertices u and v in G, we call the set of vertices
that are not adjacent with u or v the distant set for u and v, and denote it
by Wuv:

Wuv = V (G)−
(

{u, v} ∪NG(u) ∪NG(v)
)

,

where NG(x) denotes the neighborhood of a vertex x in G. Also we call the
graph induced by Wuv the distant area for u and v. The sharpness example
given by Broersma and Tuinstra [3] has only one vertex in the distant area.
This motivates us to study the relationship between the structure of the
distant area and the degree sum condition. In particular, we focus on a
clique in the distant area. Our results claim that if the distant area contains
a clique, we can relax the degree sum condition by the proportion of its
order.

For graph-theoretic terminology not explained in this paper, we refer the
reader to [4]. For a set of vertices S in G, we denote by G[S] the subgraph
of G induced by S. An endvertex is a vertex of degree one. We denote by
End(G) the set of endvertices of G. For A, B ⊂ V (G) with A ∩ B = ∅, we
denote by EG(A,B) the set of edges which have one endvertex in A and the
other in B. Given a tree T of order at least two, we often orient the edges
of T so that T becomes a rooted tree. For v ∈ V (T ), we denote by N+

T (v)
the out-neighborhood of v, i.e., the set of children of v. If v is not the root
of T , let v− denote the parent of v. Moreover, if X is a set of vertices of T
and X does not contain the root, we let X− = {x− : x ∈ X}. A vertex with
no child is called a leaf of T , and we denote by L(T ) the set of leaves of T .
Note that for a tree T of order at least two and an orientation of E(T ) which
makes T a rooted tree, End(T ) and L(T ) can be different: If the root r of
T has degree one, r ∈ End(T ) − L(T ). But L(T ) ⊂ End(T ) ⊂ L(T ) ∪ {r}
always holds.

In the next section, we prove that if G[Wuv ] contains a complete graph,
we can relax the degree sum condition for the Broersma-Tuinstra closure. In
Section 3, we consider the case in which G[Wuv] itself is a complete graph,
and prove that in this case we no longer need the degree sum condition, if G
is 2-connected. In Section 4, we consider a closure for a hamiltonian cycle
and study its relationship with the structure of the distant area. And in
Section 5, we give a conclusion and some remarks.
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2. Clique in the Distant Area

As we have noted in the introduction, the degree condition for the Broersma-
Tuinstra closure depends on the order of a clique in the distant area.

Theorem 1. Let n, k and r be integers with n > k ≥ 2 and r ≥ 1. Let G be

a graph of order n and let u and v be a pair of nonadjacent vertices in G.

Suppose G[Wuv] contains a complete graph of order r and degG u+degG v ≥
n − r. Then G has a spanning k-ended tree if and only if G + uv has a

spanning k-ended tree.

Proof. Since the necessity of the theorem is trivial, we only prove the
sufficiency. Assume, to the contrary, that G + uv has a spanning k-ended
tree but G does not have a spanning k-ended tree. Let W be a subset of
Wuv with G[W ] = Kr. We prove a series of claims to obtain a contradiction.

Claim 1. There exist a pair of trees T1 and T2 such that

(1) V (T1) ∪ V (T2) = V (G), V (T1) ∩ V (T2) = ∅,

(2) u ∈ V (T1) and v ∈ V (T2),

(3) |V (T1)| ≥ 2, |V (T2)| ≥ 2, and

(4) if we orient the edges of T1 and T2 so that T1 and T2 are rooted trees
with roots u and v, respectively, then |L(T1)|+ |L(T2)| ≤ k.

Proof. Let T be a spanning k-ended tree of G + uv. Since G does not
have a spanning k-ended tree, uv ∈ E(T ). Let T1 and T2 be the components
of T − uv with u ∈ V (T1) and v ∈ V (T2), and orient the edges of T1 and T2

so that they become rooted trees with roots u and v, respectively.
If neither u nor v is an endvertex of T , then T1 and T2 satisfy the

conditions (1), (2) and (3). Moreover, since End(T ) = L(T1) ∪ L(T2), we
have |L(T1)|+ |L(T2)| = |End(T )| ≤ k.

Suppose u or v is an endvertex of T . By symmetry, we may assume
u ∈ End(T ). Since n ≥ 3, |V (T1)| = 1 and |V (T2)| ≥ 2. Since |Wuv| ≥
|W | = r and NG(v)∩

(

Wuv ∪ {u, v}
)

= ∅, degG v ≤ n − r − 2. Then since
degG u + degG v ≥ n − r, we have degG u ≥ 2. Let y ∈ N+

T2
(v) and let

x ∈ NG(u) − {y}. Let T ′ = T − {uv, xx−} + ux and let T ′

1 and T ′

2 be the
components of T ′. Orient the edges of T ′

1 and T ′

2 so that T ′

1 and T ′

2 become
rooted trees with roots u and v, respectively. Then T ′

1 and T ′

2 satisfy the
conditions (1) and (2). Furthermore, since x ∈ V (T ′

1) and y ∈ V (T ′

2), they
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satisfy the condition (3). By the construction and the orientation of T ,
L(T ′

1) ∪ L(T ′

2) ⊂
(

End(T )− {u}
)

∪ {x−}, and hence |L(T ′

1)|+ |L(T ′

2)| ≤ k.
�

In the subsequent arguments, when we have two trees satisfying the con-
ditions of Claim 1, we always assume that their edges are oriented so that
they become rooted trees with roots u and v.

Now choose two trees T1 and T2 satisfying the conditions of Claim 1 so
that

(C1)
∑

w∈W∩V (T1)
dT1

(u,w)+
∑

w∈W∩V (T2)
dT2

(v,w) is as large as possible,

and

(C2)
∑

z∈V (T1)−W dT1
(u, z) +

∑

z∈V (T2)−W dT2
(v, z) is as small as possible,

subject to the condition (C1).

Let T = (T1 ∪ T2) + uv. Note that T is a spanning k-ended tree of G+ uv.
Let

X1,1 =
(

NG(u) ∩ V (T1)
)

−
, X1,2 = NG(v) ∩ V (T1),

X2,1 = NG(u) ∩ V (T2), X2,2 =
(

NG(v) ∩ V (T2)
)

−
,

X1 = X1,1 ∪X1,2 ∪ L(T1), X2 = X2,1 ∪X2,2 ∪ L(T2)

and X = X1 ∪X2.

Claim 2.

(1) X1,1, X1,2 and L(T1) are mutually disjoint, and

(2) X2,1, X2,2 and L(T2) are mutually disjoint.

Proof. Since (1) and (2) are symmetric, we only prove (1). By definition,
X1,1 ∩ L(T1) = ∅. Assume X1,2 ∩ L(T1) 6= ∅ and let x ∈ X1,2 ∩ L(T1). Let
T ′ = (T1 ∪ T2) + xv. Then T ′ is a spanning tree of G. Moreover, since
|V (T2)| ≥ 2, v /∈ End(T ′), and hence End(T ′) ⊂

(

End(T ) − {x}
)

∪ {u}.
Thus, T ′ is a k-ended tree. This contradicts the assumption.

Next assume X1,1 ∩ X1,2 6= ∅. Let x ∈ X1,1 ∩ X1,2. Then N+
T1
(x) ∩

NG(u) 6= ∅. Let y ∈ N+
T1
(x) ∩NG(u). Let T

′ = (T1 ∪ T2)− {xy}+ {vx, uy}.
Then T ′ is a spanning tree of G. Moreover, since degT a = degT ′ a for every
a ∈ V (G), T ′ is a k-ended tree. This is a contradiction. �

Claim 3.

(1) |X1,1| ≥ |NG(u) ∩ V (T1)| − |L(T1)|+ 1,
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(2) |X2,2| ≥ |NG(v) ∩ V (T2)| − |L(T2)|+ 1.

Proof. Since (1) and (2) are symmetric, we only prove (1).

|X1,1| =
∑

x∈X1,1

(1− |N+
T1
(x) ∩NG(u)|+ |N+

T1
(x) ∩NG(u)|)

=
∑

x∈X1,1

|N+
T1
(x) ∩NG(u)| −

∑

x∈X1,1

(|N+
T1
(x) ∩NG(u)| − 1)

= |NG(u) ∩ V (T1)| −
∑

x∈X1,1

(|N+
T1
(x) ∩NG(u)| − 1).

On the other hand,

∑

x∈X1,1

(|N+
T1
(x) ∩NG(u)| − 1) ≤

∑

x∈X1,1

(|N+
T1
(x)| − 1)

≤
∑

x∈V (T1)−L(T1)

(|N+
T1
(x)| − 1) = |L(T1)| − 1.

Therefore, (1) follows. �

By Claim 2 and Claim 3, we have

|X| = |X1|+ |X2| = |X1,1|+ |X1,2|+ |L(T1)|+ |X2,1|+ |X2,2|+ |L(T2)|

≥ |NG(u) ∩ V (T1)| − |L(T1)|+ 1 + |NG(v) ∩ V (T1)|+ |L(T1)|

+ |NG(u) ∩ V (T2)|+ |NG(v) ∩ V (T2)| − |L(T2)|+ 1 + |L(T2)|

= |NG(u) ∩ V (T1)|+ |NG(v) ∩ V (T1)|+ |NG(u) ∩ V (T2)|

+ |NG(v) ∩ V (T2)|+ 2

= degG u+ degG v + 2 ≥ n− r + 2.

Claim 4. W ∩X1 = ∅ or W ∩X2 = ∅.

Proof. Assume, to the contrary, W ∩ X1 6= ∅ and W ∩ X2 6= ∅. Let
w1 ∈ W ∩X1 and w2 ∈ W ∩X2. Since w1 ∈ W ⊂ Wuv, w1 /∈ X1,2 and hence
w1 ∈ X1,1 ∪ L(T1). Similarly, w2 ∈ X2,2 ∪ L(T2). Note w1w2 ∈ E(G) since
W induces a complete graph.

If w1 ∈ L(T1) and w2 ∈ L(T2), then let T ′ = (T1 ∪ T2) +w1w2. Then T ′

is a spanning tree of G, and since End(T ′) ⊂ (End(T )− {w1, w2}) ∪ {u, v},
T ′ is a k-ended tree. This contradicts the assumption.
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If w1 ∈ L(T1) and w2 ∈ X2,2, then N+
T2
(w2)∩NG(v) 6= ∅. Let x ∈ N+

T2
(w2)∩

NG(v). Let T
′ = (T1∪T2)−w2x+{vx,w1w2}. Then T ′ is a spanning tree of

G. Moreover, since End(T ′) ⊂ (End(T )−{w1})∪ {u}, T ′ is a k-ended tree.
This is a contradiction. By a similar argument, we obtain a a contradiction
if w1 ∈ X1,1 and w2 ∈ L(T2).

Finally, suppose w1 ∈ X1,1 and w2 ∈ X2,2. Let x1 ∈ N+
T1
(w1) ∩ NG(u)

and x2 ∈ N+
T2
(w2)∩NG(v), and let T ′ = T−{x1w1, x2w2}+{ux1, w1w2, vx2}.

Then T ′ is a spanning tree of G. Moreover, since degT ′(a) = degT (a) for
each a ∈ V (G), T ′ is a k-ended tree. This is a contradiction, and the claim
follows. �

For a ∈ V (T1), let Ta be the subtree of T1 induced by a and all of its
descendants. Note that Ta is a rooted tree with root a. Similarly, for
b ∈ V (T2), let Tb be the subtree of T2 induced by b and all of its descendants.

Claim 5.

(1) For each w ∈ W ∩ V (T1) and x ∈ N+
T1
(w−)− {w}, W ∩ V (Tx) = ∅.

(2) For each w ∈ W ∩ V (T2) and x ∈ N+
T2
(w−)− {w}, W ∩ V (Tx) = ∅.

Proof. By symmetry, we have only to prove (1). Assume W ∩V (Tx) 6= ∅.
Let w′ ∈ W ∩ V (Tx). Then ww′ ∈ E(G). Let T ′ = T1 − ww− + ww′. Since
V (T ′

1) = V (T1), (T
′

1, T2) satisfies the condition (1), (2) and (3) of Claim 1.
Note degT ′

1

w− = degT1
w−−1, degT ′

1

w′ = degT1
w′+1 and degT ′

1

a = degT1
a

for each a ∈ V (T1) − {w−, w′}. Since x ∈ N+
T ′

1

(w−), w− /∈ L(T ′

1), which

implies L(T ′

1) ⊂ L(T1) and |L(T ′

1)|+|L(T2)| ≤ k. Therefore, (T ′

1, T2) satisfies
all the conditions of Claim 1. Let a ∈ V (T1). If a /∈ V (Tw), then uT1a is
also a path in T ′

1, and hence dT ′(u, a) = dT1
(u, a). On the other hand,

if a ∈ V (Tw), then w−w ∈ E(uT1a). In this case, uT1w
′wT1a is a ua-

path in T ′

1, and dT ′

1
(u, a) > dT1

(u, a). In particular, dT ′

1
(u,w) > dT1

(u,w).
Therefore,

∑

w∈W∩V (T ′

1
)

dT ′

1
(u,w) +

∑

w∈W∩V (T2)

dT2
(v,w)

>
∑

w∈W∩V (T1)

dT1
(u,w) +

∑

w∈W∩V (T2)

dT2
(v,w).

This contradicts the choice of (T1, T2). �

By Claim 5, we have the following.
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Claim 6. For each w1, w2 ∈ W with w1 6= w2, we have w−

1 6= w−

2 . In
particular, |W−| = |W |.

Claim 7. W− ∩X1 ⊂ X1,2 and W− ∩X2 ⊂ X2,1.

Proof. By symmetry, we have only to prove W− ∩ X1 ⊂ X1,2. Let x ∈
W− ∩X1 and assume x /∈ X1,2. Since x is the parent of a vertex in W , x /∈
L(T1). Thus, x ∈ X1,1. Then N+

T1
(x)∩NG(u) 6= ∅. Let y ∈ N+

T1
(x)∩NG(u).

Note that since y ∈ NG(u), y /∈ W . On the other hand, since x ∈ W−,
N+

T1
(x) ∩W 6= ∅. Let w ∈ N+

T1
(x) ∩W . Note y 6= w. Note also that since

xw ∈ E(G), u 6= x.
By Claim 5, V (Ty)∩W = ∅. Let T ′

1 = T1−xy+uy. Then (T ′

1, T2) satisfies
the conditions (1), (2) and (3) of Claim 1. Note degT ′

1

u = degT1
u + 1,

degT ′

1

x = degT1
x − 1 and degT ′

1

a = degT1
a for each a ∈ V (T1) − {u, x}.

Moreover, since w ∈ N+
T ′

1

(x), x /∈ L(T ′

1). Hence |L(T ′

1)| = |L(T1)| and

|L(T ′

1)| + |L(T2)| ≤ k. Therefore, (T ′

1, T2) satisfies all the conditions of
Claim 1.

Let a ∈ V (T1). If a /∈ V (Ty), then uT1a is also a unique ua-path in
T ′

1 and dT ′

1
(u, a) = dT1

(u, a). On the other hand, if a ∈ V (Ty), then uyT1a
is a unique ua-path in T ′

1. Since u 6= x, we have dT ′

1
(u, a) < dT1

(u, a). In
particular, dT ′

1
(u, y) < dT1

(u, y). Since V (Ty) ∩W = ∅, we have

∑

w∈V (T ′

1
)∩W

dT ′

1
(u,w) +

∑

w∈V (T2)∩W

dT2
(v,w)

=
∑

w∈V (T1)∩W

dT1
(u,w) +

∑

w∈V (T2)∩W

dT2
(v,w)

and
∑

x∈V (T ′

1
)−W

dT ′

1
(u, x) +

∑

x∈V (T2)−W

dT2
(v, x)

<
∑

x∈V (T1)−W

dT1
(u, x) +

∑

x∈V (T2)−W

dT2
(v, x).

This contradicts the choice of (T1, T2), and the claim follows. �

Since |X| ≥ n − r + 2 and |W−| = |W | = r, we have |W−| + |X| ≥ n + 2,
which implies W− ∩X 6= ∅. By symmetry, we may assume W− ∩X1 6= ∅.
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Also by symmetry, if W− ∩ X2 6= ∅, we may assume max{dT1
(u, a) : a ∈

W− ∩ X1} ≥ max{dT2
(v, a) : a ∈ W− ∩ X2}. Choose z1 ∈ W− ∩ X1 so

that dT1
(u, z1) is as large as possible. Let d0 = dT1

(u, z1). By Claim 7,
z1 ∈ NG(v). By Claim 6, |N+

T1
(z1) ∩W | = 1. Let N+

T1
(z1) ∩W = {w1}.

Let W0 = W ∩ V (Tw1
). Note w1 ∈ W0 and hence z1 ∈ X ∩ W−

0 . On
the other hand, if X ∩W−

0 6= {z1}, we can take z ∈ X ∩W−

0 − {z1}. Then
z ∈ V (Tw1

), and hence dT1
(u, z) ≥ dT1

(u,w1) = dT1
(u, z1)+1 ≥ d0+1. This

contradicts the maximality of dT1
(u, z1). Therefore, X ∩W−

0 = {z1}.

SinceW0 ⊂ V (Tw1
) and (W−W0)∩V (Tw1

) = ∅, (W−W0)∩W
−

0 ⊂ {z1}.
However, since z1 ∈ NG(v), z1 /∈ W . Thus, we have (W −W0) ∩W−

0 = ∅.

Let Z = (W −W0) ∪W−

0 . By Claim 6, |W−

0 | = |W0|, and since (W −
W0) ∩ W−

0 = ∅, we have |Z| = |W − W0| + |W−

0 | = |W | = r. Then
|Z| + |X| ≥ n + 2, which implies |Z ∩ X| ≥ 2. Since |X ∩ W−

0 | = 1,
X ∩ (W −W0) 6= ∅. Let w2 ∈ X ∩ (W −W0).

First, suppose w2 ∈ V (T1). Then w2 ∈ X1∩W . This impliesX2∩W = ∅
by Claim 4. Since w2 ∈ W , w2 ∈ X1,1 ∪ L(T1). Note w1w2 ∈ E(G).

If w2 ∈ X1,1, then N+
T1
(w2) ∩ NG(u) 6= ∅. Let z2 ∈ N+

T1
(w2) ∩ NG(u).

Since w2 /∈ W0, z2 /∈ V (Tw1
) and z1 is the successor of w1 in w1T1w2. Let

P = z1T1z2. If z1 ∈ V (Tz2), then w2 /∈ V (P ). On the other hand, if
z1 /∈ V (Tz2), then w2 is the predecessor of z2 in P . In either case, let T ′ =
(T1 ∪ T2)−{w1z1, w2z2}+ {vz1, w1w2, z2u}. Then since w1z1 ∈ V (w1T1w2),
T ′ is a spanning tree of G. Furthermore, since degT ′ a = degT a for every
a ∈ V (G), T ′ is a k-ended tree. This is a contradiction.

Suppose w2 ∈ L(T1). Since w2 /∈ V (Tw1
), z1 is the successor of w1 in

w1T1w2. Let T ′ = (T1 ∪ T2) − w1z1 + {vz1, w1w2}. Then T ′ is a spanning
tree of G. Moreover, degT ′ u = degT u − 1, degT ′ w2 = degT ′ w2 + 1 and
degT ′ a = degT ′ a for every a ∈ V (G)−{u,w2}. Hence End(T

′) ⊂ (End(T )−
{w2}) ∪ {u} and T ′ is a k-ended tree. This is a contradiction.

Next, consider the case w2 ∈ V (T2). Then W ∩X2 6= ∅, which implies
W ∩X1 = ∅ by Claim 4. Then L(T1)∩W = ∅, and hence L(T1) ⊂ NG(u) ∪
NG(v). If L(T1)∩NG(v) 6= ∅, let x ∈ L(T1)∩NG(v) and T ′ = (T1∪T2)+vx.
Then T ′ is a spanning tree of G, and since End(T ′) ⊂ (End(T )−{x})∪{u},
T ′ is a k-ended tree, a contradiction. Therefore, we have L(T1) ⊂ NG(u).

Let x ∈ End(Tw1
). Since w2 /∈ NG(u), w2 ∈ X2,2 ∪ L(T2). If w2 ∈ X2,2,

N+
T2
(w2) ∩NG(v) 6= ∅. Let z2 ∈ N+

T2
(w2) ∩NG(v), and let T ′ = (T1 ∪ T2) −

{w1z1, w2z2} + {xu, vz2, w1w2}. Then T ′ is a spanning tree of G. We also
have degT ′ x = degT x+ 1, degT ′ z1 = degT z1 − 1 and degT ′ a = degT a for
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every a ∈ V (G) − {x, z1}. Hence End(T ′) ⊂ (End(T ) − {x}) ∪ {z1} and T ′

is a k-ended tree, a contradiction
Finally, suppose w2 ∈ L(T2). Let T

′ = (T1 ∪ T2)− z1w1 + {vz1, w1w2}.
Then T ′ is a spanning tree of G. Moreover, degT ′ u = degT u−1, degT ′ w2 =
degT w2+1 and degT ′ a = degT a for every a ∈ V (G)−{u,w2}. These imply
End(T ′) = (End(T )−{w2})∪ {u} and hence T ′ is a k-ended tree. This is a
final contradiction, and the theorem follows.

Theorem 1 is best-possible in the sense that we cannot replace the degree
sum condition from degG u+degG v ≥ n− r to degG u+degG v ≥ n− r− 1
if 1 ≤ r ≤ n − k − 2. Let G1 and G2 be copies of Kn−k−r−1 and Kr,
respectively. Let T3 be a copy of K1,k−1. Introduce a new vertex x, and join
x to every vertex of G1, every vertex of G2 and the center of T3. Let G be
the resulting graph. Let u be the center of T3 and let v be a vertex of G1.

The order of G is n, and degG u + degG v = n − r − 1. The distant
area for u and v is G2 and it is a complete graph of order r. Let T be
a spanning tree of G. All the endvertices of T3 are also endvertices of T .
Furthermore, since G−x hasG1 and G2 as its components, T has endvertices
both in G1 and G2. Thus, |End(T )| ≥ k+1 and G has no spanning k-ended
tree. On the other hand, G + uv has a spanning k-ended tree with no
endvertex in G1.

3. The Distant Area Forming a Complete Graph

As we have seen in Section 2, if the distant area contains a clique, we can
relax the degree sum condition of the Broersma-Tuinstra closure. One ex-
treme case is the one in which G[Wuv] itself is a complete graph. Theorem
1 requires G[Wuv] to have Kr for the condition degG u+ degG v ≥ n− r to
work. Therefore, if |Wuv| < r, we cannot apply Theorem 1 even if G[Wuv]
is a complete graph. However, in this section, we prove that if G[Wuv] is
complete and G is 2-connected, we no longer need any degree sum condition.
Actually, we prove a stronger statement under a weaker assumption that G
is just connected, which gives structural information when the closure does
not work.

Theorem 2. Let k be an integer with k ≥ 2. Let G be a connected graph and

let u and v be a pair of nonadjacent vertices in G. Suppose Wuv induces

a complete graph. If G + uv has a spanning k-ended tree but G has no

spanning k-ended tree, then one of the following holds.
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(1) There exists a vertex x ∈ Wuv such that x is a cutvertex of G and

Wuv − {x} is a component of G− x.

(2) There exists a vertex x ∈ V (G) −Wuv such that x is a cutvertex of G
and Wuv is a component of G− x.

Corollary 3. Let k ≥ 2. Let G be a 2-connected graph and let u and v be a

pair of nonadjacent vertices in G. Suppose Wuv induces a complete graph in

G. Then G has a spanning k-ended tree if and only if G+uv has a spanning

k-ended tree.

Proof of Theorem 2. If NG(u) = NG(v) = {x} for some x ∈ V (G), then
Wuv = V (G) − {u, v, x} and the second statement of the theorem follows.
Therefore, we may assume NG(u) 6= NG(v) or |NG(v)| ≥ 2.

Claim 1. There exist a pair of trees T1 and T2 such that

(1) V (T1) ∪ V (T2) = V (G), V (T1) ∩ V (T2) = ∅,

(2) u ∈ V (T1) and v ∈ V (T2),

(3) |V (T1)| ≥ 2 and |V (T2)| ≥ 2, and

(4) if we orient the edges of T1 and T2 so that T1 and T2 become rooted
trees with roots u and v, respectively, then |L(T1)|+ |L(T2)| ≤ k.

Proof. Let T be a spanning k-ended tree of G + uv. Since G does not
have a spanning k-ended tree, uv ∈ E(T ). Let T1 and T2 be the components
of T − uv with ∈ V (T1) and V (T2), and orient the edges of T1 and T2 so
that T1 and T2 become rooted trees with roots u and v, respectively. If
{u, v} ∩ End(T ) = ∅, then T1 and T2 satisfy the conditions (1)–(3) of the
claim. Moreover, since L(T1) ∪ L(T2) = End(T ), we also have |L(T1)| +
|L(T2)| ≤ k. Therefore, by symmetry, we may assume u ∈ End(T ), which
implies V (T1) = {u}. Let y ∈ N+

T2
(v). If NG(u)−{y} 6= ∅, then by the same

argument as in the proof of Claim 1 of Theorem 1, we can obtain two trees
satisfying the conditions (1)–(4) of the claim. Therefore, we may assume
NG(u) = {y}. Since NG(u) 6= NG(v) or |NG(v)| ≥ 2, NG(v)− {y} 6= ∅. Let
z ∈ NG(v) − {y} and T ′ = T − {uv, vy, zz−} + {uy, vz}. Let T ′

1 and T ′

2 be
the components of T ′ with u ∈ V (T ′

1) and v ∈ V (T ′

2), and orient the edges
of T ′

1 and T ′

2 so that T ′

1 and T ′

2 become rooted trees with roots u and v,
respectively. Then T ′

1 and T ′

2 satisfy the conditions (1) and (2). Moreover,
since y ∈ V (T ′

1) and z ∈ V (T ′

2), we have |V (T ′

1)| ≥ 2 and |V (T ′

2)| ≥ 2.
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By the construction of T ′

1 and T ′

2, L(T
′

1)∪L(T ′

2) ⊂ (L(T )−{u})∪{z−}, and
hence |L(T ′

1)|+ |L(T ′

2)| ≤ k. �

As in the proof of Theorem 1, in the subsequent arguments, when we have
a pair of trees satisfying the conditions of Claim 1, we always assume that
their edges are oriented so that they become rooted trees with roots u and v.

Now choose a pair of trees (T1, T2) satisfying the conditions (1)–(4) of
Claim 1 so that |(L(T1) ∪ L(T2)) ∩Wuv| is as small as possible. Let T =
(T1 ∪ T2) + uv. Note that T is a spanning k-ended tree of G+ uv.

Claim 2. EG(L(T1) ∪ {u}, L(T2) ∪ {v}) = ∅.

Proof. Assume EG(L(T1) ∪ {u}, L(T2) ∪ {v}) 6= ∅. Let xy ∈ E(G) with
x ∈ L(T1)∪ {u} and y ∈ L(T2)∪ {v}. Let T ′ = (T1 ∪ T2) + xy. Then T ′ is a
spanning tree ofG. If x = u, then y ∈ L(T2) and hence End(T ′) ⊂ (End(T )−
{y}) ∪ {v}. If y = v and x ∈ L(T1), then End(T ′) ⊂ (End(T )− {x}) ∪ {u}.
And if x ∈ L(T1) and y ∈ L(T2), then End(T ′) ⊂ (End(T )−{x, y})∪{u, v}.
Hence T ′ is a spanning k-ended tree of G in every case. This contradicts the
assumption, and the claim follows. �

Claim 3. (L(T1) ∪ L(T2)) ∩Wuv 6= ∅.

Proof. Assume (NG(u) ∪NG(v)) ∩Wuv = ∅. Then by Claim 2, L(T1) ⊂
NG(u) and L(T2) ⊂ NG(v). Since G is connected, G has an edge xy with x ∈
V (T1) and y ∈ V (T2). Take u′ ∈ L(T1) and v′ ∈ L(T2) with x ∈ V (uT1u

′)
and y ∈ V (vT2v

′). Note that u′ ∈ NG(u) and v′ ∈ NG(v), but possibly
uu′ ∈ E(T1) or vv

′ ∈ E(T2).
If x /∈ {u, u′} and y /∈ {v, v′}, then uu′ /∈ E(T1) and vv′ /∈ E(T2). Let

T ′ = (T1 ∪ T2) − {xx−, yy−} + {xy, uu′, vv′}. Then T ′ is a spanning tree
of G, and since L(T ′) ⊂ (L(T ) − {u′, v′}) ∪ {x−, y−}, T ′ is a k-ended tree.
This contradicts the assumption. Suppose x = u′. By Claim 2, y /∈ {v, v′}
and hence vv′ /∈ E(T ). Let T ′ = (T1 ∪ T2) − yy− + {u′y, vv′}. Then T ′ is
a spanning tree of G, and since L(T ′) ⊂ (L(T ) − {u′, v′}) ∪ {u, y−}, T ′ is
a k-ended tree, again a contradiction. By a similar argument, we reach a
contradiction if y = v′.

Suppose x = u. Then again by Claim 2, y /∈ {v, v′} and vv′ /∈ E(T ).
Let T ′ = (T1 ∪ T2)− yy− + {uy, vv′}. Then T ′ is a spanning tree of G, and
since L(T ′) ⊂ (L(T ) − {v′}) ∪ {y−}, T ′ is a k-ended tree, a contradiction.
By a similar argument, we reach a contradiction if y = v. Therefore, the
claim follows. �
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By symmetry, we may assume L(T1) ∩Wuv 6= ∅. Let w0 ∈ L(T1) ∩Wuv.

Claim 4. NG(w0) ⊂ V (T1). In particular, Wuv ⊂ V (T1).

Proof. Assume NG(w0) 6⊂ V (T1). Then NG(w0) ∩ V (T2) 6= ∅. Choose
z ∈ NG(w0) ∩ V (T2) so that dT2

(v, z) is as small as possible. By Claim 2,
z 6= v.

If z− ∈ Wuv, then z− ∈ NG(w0) since Wuv induces a complete graph in
G. This contradicts the minimality of dT2

(v, z). Hence z− /∈ Wuv.

Let T ′

1 and T ′

2 be the two components of (T1 ∪ T2) − zz− + w0z with
u ∈ V (T ′

1) and v ∈ V (T ′

2). Then (T ′

1, T
′

2) satisfies the conditions (1) and (2)
of Claim 1. Moreover, since V (T1) ⊂ V (T ′

1), |V (T ′

1)| ≥ 2.

Assume |V (T ′

2)| ≥ 2. Since L(T ′

1) ∪ L(T ′

2) ⊂ (L(T1) ∪ L(T2)) − {w0}) ∪
{z−}, |L(T ′

1)| + |L(T ′

2)| ≤ k. Therefore, (T ′

1, T
′

2) satisfies all the conditions
of Claim 1. On the other hand, since w0 ∈ Wuv and z− /∈ Wuv, |(L(T ′

1) ∪
L(T ′

2))∩Wuv| = |(L(T1)∪L(T2))∩Wuv|−1. This contradicts the minimality
of |(L(T1)∪L(T2))∩Wuv|. Therefore, we have |V (T ′

2)| = 1, or V (T ′

2) = {v}.
This implies N+

T2
(v) = {z}. By Claim 2, z /∈ L(T2). Let v′ ∈ L(T2). Then

z ∈ V (vT2v
′). If v′ ∈ Wuv, then w0v

′ ∈ E(G) since G[Wuv] is complete.
However, this contradicts Claim 2. Hence v′ /∈ Wuv. Also by Claim 2, we
have v′ /∈ NG(u). Therefore, v′ ∈ NG(v). Let T ′ = (T1 ∪ T2) − {vz} +
{vv′, w0z}. Then since z ∈ V (vT2v

′), T ′ is a spanning tree of G. Moreover,
since End(T ′) ⊂ (End(T ) − {w0, v

′}) ∪ {u, v}, T ′ is a k-ended tree. This
contradicts the assumption, and we have NG(w0) ⊂ V (T1).

Since Wuv induces a complete graph in G and w0 ∈ Wuv, we have
Wuv ⊂ V (T1). �

Claim 5. NG(w0) ⊂ V (uT1w0). In particular, Wuv ⊂ V (uT1w0).

Proof. Assume NG(w0) 6⊂ V (uT1w0), and choose z ∈ NG(w0)−V (uT1w0)
so that dT1

(u, z) is as small as possible. Then either z− /∈ NG(w0) or z
− ∈

V (uT1w0). Let T
′

1 = T1−zz−+zw0. Then T ′

1 is a tree with V (T ′

1) = V (T1).
Since L(T ′

1) ⊂ (L(T1)−{w0})∪{z
−}, |L(T ′

1)|+|L(T2)| ≤ k and hence (T ′

1, T2)
satisfies the conditions (1)–(4) of Claim 1.

If z− /∈ NG(w0), then since G[Wuv] is complete and w0 ∈ Wuv, we have
z− /∈ Wuv. If z− ∈ NG(w0), then z− ∈ V (uT1w0). This implies that z−

has at least two children, z and the one in uT1w0, and hence z− /∈ L(T ′

1).
Therefore, in either case, we have z− /∈ L(T ′

1)∩Wuv and |(L(T ′

1)∪L(T2)) ∩
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Wuv| = |(L(T1) ∪ L(T2)) ∩ Wuv| − 1. This contradicts the minimality of
|(L(T1) ∪ L(T2)) ∩Wuv|. �

By Claim 5, L(T1)∩Wuv = {w0}. Let w1 be the vertex in Wuv that is closest
from u in T1.

Claim 6. Wuv = V (w1T1w0).

Proof. Assume Wuv 6= V (w1T1w0). Since Wuv ⊂ V (w1T1w0) by Claim 5,
we can choose x ∈ V (w1T1w0)−Wuv so that x is as close to u as possible in
T1. Then x− ∈ Wuv. Since Wuv induces a complete graph, w0x

− ∈ E(G).
Let T ′

1 = T1 − xx− + w0x
−. Then T ′

1 is a tree with V (T ′

1) = V (T1) and
L(T ′

1) ⊂ (L(T1)−{w0})∪{x}, and since x /∈ Wuv, we have L(T
′

1)∩Wuv = ∅.
This contradicts the minimality of |(L(T1) ∪ L(T2)) ∩Wuv|. �

Claim 7. NG(w0) ⊂ Wuv ∪ {w−

1 }.

Proof. Assume the contrary. Then by Claim 5, NG(w0)∩V (uT1w
−−

1 ) 6= ∅.
Let x ∈ NG(w0) ∩ V (uT1w

−−

1 ). Let N+
T1
(x) ∩ V (uT1w0) = {y}. Then

since y ∈ V (uT1w
−

1 ), y /∈ Wuv. Let T ′

1 = T1 − xy + xw0. Then T ′

1 is
a tree with V (T ′

1) = V (T1) and L(T ′

1) ⊂ (L(T1) − {w0}) ∪ {y}, and hence
L(T ′

1)∩Wuv = ∅. This contradicts the minimality of |(L(T1)∪L(T2))∩Wuv|.
�

Let w ∈ V (w+
1 T1w0) = Wuv − {w1}. Then w− ∈ V (w1T1w

−

0 ) ⊂ Wuv and
hence w−w0 ∈ E(G). Let Tw = T1 −ww− +w−w0. Then Tw is a tree with
V (Tw) = V (T1) and L(Tw) ⊂ (L(T1)− {w0}) ∪ {w}. By the minimality of
|(L(T1) ∪ L(T2)) ∩Wuv|, we have L(Tw) ∩Wuv = {w}. Then we can apply
Claims 1–6 to (Tw, T2) instead of (T1, T2), and obtain NG(w) ⊂ Wuv ∪{w−

1 }
for each w ∈ Wuv − {w1}.

If NG(w
−

1 ) ∩ (Wuv − {w1}) = ∅, then NG(w) ⊂ Wuv for each w ∈
Wuv − {w1}. Thus, w1 is a cutvertex of G and Wuv − {w1} is a component
of G− w1.

SupposeNG(w
−

1 )∩(Wuv−{w1}) 6= ∅. Let w2 ∈ NG(w
−

1 )∩(Wuv−{w1}).
Then w2 ∈ V (w+

1 T1w0) and hence w−

2 ∈ V (w1T1w0) ⊂ Wuv. Therefore,
w0w

−

2 ∈ E(G). Let T ′′

1 = T1 − {w−

1 w1, w
−

2 w2} + {w−

1 w2, w
−

2 w0}. Then T ′′

1

is a tree with V (T1) = V (T ′′

1 ) and L(T ′′

1 ) = (L(T1) − {w0}) ∪ {w1}, and we
can apply Claims 1–6 to (T ′′

1 , T2) and obtain NG(w1) ⊂ Wuv ∪ {w−

1 }. Now
w−

1 is a cutvertex of G and Wuv is a component of G− w−

1 .

Two cases described in Theorem 2 can happen, and they are independent.
Consider the sharpness example G for Theorem 1, which is given at the end
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of Section 2. In this example, G2 is the distant area for u and v, and it is
a component of G − x. On the other hand, no vertex in G2 is a cutvertex
of G.

For a graph satisfying the statement (1) of Theorem 2, again let G1,
G2, T3, x, u and v be as in the previous example, where 2 ≤ r ≤ n− k − 3.
Take one vertex y in G1 − v and one vertex z in G2 and add edges ux,
xy, xz and yz. Let G′ be the resulting graph. Every spanning tree of G
has k − 1 endvertices of T3 as its endvertices. Moreover, it has at least one
endvertex in G1 − y and another endvertex in G2 − z. Thus, G′ does not
have a spanning k-ended tree. On the other hand, G + uv has a spanning
k-ended tree with no endvertices in G1. In this graph, G2 is the distant area
for u and v, and G2 − z is a component of G′ − z. On the other hand, G′

does not have a cutvertex which satisfies the condition (1) of Theorem 2.

4. Closure for Hamiltonian Cycles and Distant Area

In Section 2, we have proved that if the distant area contains a clique,
the Broersma-Tuinstra closure for a spanning k-ended tree can be applied
under a weaker degree sum condition. We can ask a similar question for
the Bondy-Chvátal closure for hamiltonian cycles, and give the following
theorem.

Theorem 4. Let n and r be positive integers. Let G be a 2-connected graph

of order n and let u and v be a pair of nonadjacent vertices in G. Suppose

G[Wuv ] contains a complete graph of order r and degG u+degG v ≥ n−r+1.
Then G has a hamiltonian cycle if and only if G + uv has a hamiltonian

cycle.

However, we can prove it as a corollary of the following theorem, which was
proved by Broersma and Schiermeyer [2].

Theorem C ([2]). Let u and v be a pair of nonadjacent vertices of a 2-
connected graph G of order n with |NG(u)∩NG(v)| ≥ 3. If |NG(u)∪NG(v)∪
NG(w)| ≥ n−|NG(u)∩NG(v)| holds for at least |Wuv|+2−|NG(u)∩NG(v)|
vertices w in Wuv, then G has a hamiltonian cycle if and only if G+uv has

a hamiltonian cycle.

Proof of Theorem 4. Let W be a set of vertices in Wuv which induces Kr

in G. Since degG u+degG v ≥ n−r+1, |NG(u)∪NG(v)| ≥ n−r+1−|NG(u)∩
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NG(v)|, and hence |Wuv| = n−2−|NG(u)∪NG(v)| ≤ r+|NG(u)∩NG(v)|−3.
On the other hand, since W ⊂ Wuv, we have |Wuv| ≥ r. Thus, we have
|NG(u) ∩NG(v)| ≥ 3.

Let w ∈ W . Then since G[W ] ≃ Kr, |NG(w)∩Wuv| ≥ r− 1. Therefore,

|NG(u) ∪NG(v) ∪NG(w)| = |NG(u) ∪NG(v)| + |NG(w) ∩Wuv|

≥ n− r + 1− |NG(u) ∩NG(v)| + r − 1

= n− |NG(u) ∩NG(v)|.

Since |Wuv| ≤ r+ |NG(u)∩NG(v)|−3, |Wuv|+2−|NG(u)∩NG(v)| ≤ r−1.
Since |W | ≥ r, we see that |NG(u)∪NG(v)∪NG(w)| ≥ n−|NG(u)∩NG(v)|
holds for at least |Wuv|+2− |NG(u)∩NG(v)| vertices w in Wuv. Thus, the
theorem follows from Theorem C.

In Section 3, we have proved that if u and v are a pair of nonadjacent vertices
in a 2-connected graph G and Wuv induces a complete graph, then G has
a spanning k-ended tree if and only if G + uv has a spanning k-ended tree
(Corollary 3). An analogue for a hamiltonian cycle has been proved by Zhu,
Tian and Deng [5].

Theorem D ([5]). Let u and v be a pair of nonadjacent vertices in a 3-
connected graph G. If G[Wuv ] is complete, then G has a hamiltonian cycle

if and only if G+ uv has a hamiltonian cycle.

5. Conclusion

In this paper, we have investigated the relationship between the degree sum
condition of the Broersma-Tuinstra closure and the order of a clique in the
distant area. We have proved that if the distant area contains Kr, then we
can relax the degree sum condition of their closure theorem. Moreover, if the
distant area is complete and the graph is 2-connected, we can entirely remove
the degree sum condition. We have also considered a similar problem for the
Bondy-Chvátal closure for hamiltonian cycles and studied the relationship
with the previous work.

We have proved in Section 4 that Theorem C implies Theorem 4. We
suspect that Theorem 1 admits a similar generalization to a closure based
on the neighborhood union of independent triples. Also, in Section 3, we
have given some structural information of the distant area when it induces
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a complete graph but the closure fails. We believe that Theorem D admits
a similar extension.

References
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