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1. Introduction

Let G be a graph with vertex set [n] and let S ⊂ [n]. If for every vertex
u /∈ S there is a vertex v ∈ S such that u and v are adjacent then S is called
a dominating set. If further for every v,w ∈ S there is no edge between
v and w then S is called an independent dominating set. The domination

number, γ(G) is the smallest integer s such that there exists a dominating set
of cardinality s. The independent domination number, i(G) is the smallest
integer s such that there exists an independent dominating set of cardinality
s. G(n, p) is the set of all graphs Gn,p with vertex set [n] and edges chosen
independently with probability 0 ≤ p = p(n) ≤ 1. Hence, for each Gn,p

P (Gn,p) = pe(Gn,p)(1 − p)(
n
2
)−e(Gn,p). For a graph property A we say A

occurs asymptotically almost surely (a.a.s.) if P (Gn,p has property A) → 1
as n → ∞. See Bollobás [2] for notation and terminology.

Weber [7] showed if p = 1/2 then a.a.s. γ(Gn,p) is either ⌊log2 n −
log2(log2 n lnn)⌋ + 1 or ⌊log2 n − log2(log2 n lnn)⌋ + 2 and a.a.s. i(Gn,p)
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is ⌊log2 n − log2(log2 n lnn)⌋ + 2 or ⌊log2 n − log2(log2 n lnn)⌋ + 3. God-
bole and Wieland [4] extended Weber’s result showing if p is constant or
p = p(n) → 0 such that p2 lnn ≥ 40 ln((ln2 n)/p) then a.a.s. γ(Gn,p) is
either ⌊logb n− logb(logb n lnn)⌋+1 or ⌊logb n− logb(logb n lnn)⌋+2, where
b = 1/(1 − p). Very recently Bonato and Wang [3] showed that if p is con-
stant then a.a.s. ⌊logb n− logb(logb n lnn)⌋+1 ≤ i(Gn,p) ≤ ⌊logb n⌋. In this
paper we show that if p is constant or p = p(n) → 0 such that p2 ln(n) ≥
64 ln(ln(n)/p) then a.a.s. i(Gn,p) is either ⌊logb n−logb(logb n lnn)+logb 2⌋+
1 or ⌊logb n − logb(logb n lnn) + logb 2⌋ + 2. This extends Weber’s result
(the case p = 1/2) and immediately implies Bonato and Wang’s result (the
case p is constant). We then empirically explore the number of indepen-
dent dominating sets of size k ranging on [n] and make a conjecture about
the distribution.

2. Two-Point Concentration

Throughout this section we will use p as the probability an edge exists in
G = Gn,p, q = 1− p the probability an edge does not exist in G and b = 1

q
.

We will also make extensive use of two inequalities,

(1) 1− x ≤ exp{−x}, x ∈ R,

(2) 1− x ≥ exp

{ −x

1− x

}

, x ∈ [0, 1).

We begin by defining the random variables Xk and Ys as the number of
independent dominating sets of cardinality k in G and the number of inde-
pendent dominating sets of cardinality s or less in G respectively. Clearly
Ys =

∑s
k=1Xk. It is now obvious that

E(Xk) =

(

n

k

)

(1− qk)n−kq(
k

2
)

and by linearity of expectation,

E(Ys) =

s
∑

k=1

E(Xk) =

s
∑

k=1

(

n

k

)

(1− qk)n−kq(
k
2
).

We now state our first lemma.
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Lemma 2.1. Let s = ⌊logb n − logb(logb n lnn) + logb 2⌋, then E(Ys) → 0

if p fixed or if p → 0 as n → ∞ and p ≥ e ln2 n
n

.

Proof. Lemma 2 of [4] states the expected number of dominating sets
of size less than or equal to r = ⌊logb n − logb (logb n lnn)⌋ goes to 0 if

p ≥ e ln2 n
n

. Since every independent dominating set is a dominating set it is
clear E(Yr) → 0 as n → ∞. It remains to show,

s
∑

k=r+1

E(Xk) → 0.

Using Stirling’s inequality, inequality (1),

E(Xk) =

(

n

k

)

(1− qk)n−kq(
k

2
)

≤ exp

{

k lnn+ 2k − k ln k − nqk +
k2

2
ln q − k

2
ln q

}

:= exp{f(k)}.

Now,

f ′(k) = lnn+ 1− ln k + nqk ln

(

1

q

)

− k ln

(

1

q

)

− 1

2
ln

(

1

q

)

.

Note f ′(k) is decreasing for all positive value of k and f ′(logb n − logb
(logb n lnn) + logb 2) ≥ 0 for sufficiently large n. So for sufficiently large n,
we have f(k) increasing for all k ≤ logb n− logb(logb n lnn)+logb 2. Hence,
setting k = logb n− logb(logb n lnn) + logb 2 we have

E(Ys) ≤ (k − r) exp{f(k)}

≤ (logb 2) exp

{

k lnn+ 2k − k ln k − nqk +
k2

2
ln q − k

2
ln q

}

≤ (logb 2) exp

{

−k ln k + 3k +
k

2
ln

(

1

q

)}

→ 0

since k ln k clearly dominates the other two terms in the exponent.
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We now note that since i(G) is always at least 1,

logb n− logb(logb n lnn) + logb 2 ≥ 1.

A condition satisfied if

p ≥ e ln2 n

2n

which is easily seen after noting p ≤ ln 1
q
. However, the condition p ≥ e ln2 n

n

used above is stronger so we must use it instead.

Lemma 2.2. If p fixed or if p → 0 and p2

64 ≥ ln ( lnn
p

)

lnn
then E(Xs) → ∞ for

s = ⌊logb n− logb (logb n lnn) + logb 2⌋+ 2.

Proof. Using inequality (2), Stirling’s Formula, and that for k2 = o(n)
(n)k = (1− o(1))nk

(3)

E(Xk)

=

(

n

k

)

(1− qk)n−kq(
k

2
)

≥
(

n

k

)

(1− qk)nq
k2

2

≥
(

n

k

)

exp

{ −nqk

1− qk
+

k2

2
ln q

}

≥ (1− o(1))
nk

k!
exp

{ −nqk

1− qk
+

k2

2
ln q

}

(if k2 = o(n))

≥ (1− o(1))
(ne

k

)k

(2πk)−
1

2 exp

{ −nqk

1− qk
+

k2

2
ln q

}

(if k → ∞)

≥ (1− o(1)) exp

{

k lnn+ k − k ln k − 1

2
ln (2πk) − nqk

1− qk
+

k2

2
ln q

}

.

The condition k2 = o(n) is satisfied if p ≫ lnn

n
1
2

and k = logb n − logb

(logb n lnn) + logb 2 + ǫ, where ǫ > 0. One can easily show
d
dk

(

k lnn + k − k ln k − 1
2 ln (2πk) −

nqk

1−qk
+ k2

2 ln q
)

≥ 0 as long as k is

much smaller than nqk, which is true for large n when assuming the just
mentioned conditions. Substituting in (3) k = s on the left and k =
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logb n− logb (logb n lnn)+ logb 2+
1
2 on the right it is shown for sufficiently

large n

E(Xs) ≥ (1− o(1)) exp
{1

2
logb n lnn

(

1− q
1

2

1− qk

)

+ logb n

− logb (logb n lnn) ln (logb n lnn) +
1

2
ln (logb n lnn)

− logb n ln s− (1 + logb 2) ln s−
1

2
ln 2π − 1

8
ln

1

q

}

≥ (1− o(1)) exp {A−B} ,

where

A =
1

2
logb n lnn

(

1− q
1

2

1− qs

)

+ logb n,

B = logb (logb n lnn) ln (logb n lnn) + logb n ln (logb n),

+ (1 + logb 2) ln (logb n) +
1

2
ln (2πeL)

and L is any constant bounding 1
8 ln

1
q
, which exists since ln

(

1
q

)

is constant

or ln
(

1
q

)

→ 0. Since p ≫ lnn

n
1
2

and logb n ∼ lnn
p

we have p ≫ logb n lnn
n

. So

for n sufficiently large,

A =
1

2
logb n lnn

(

1− q
1

2

(1− qs)

)

+ logb n

=
1

2
logb n lnn



1− q
1

2

(1− q
1
2 logb n lnn

2n )



+ logb n

≥ 1

2
logb n lnn



1− q
1

2

(1− pq
1
2

2 )



+ logb n

=
1

2
logb n lnn





1− pq
1
2

2 − q
1

2

1− pq
1
2

2



+ logb n.

Using the inequality, x
2 ≤ 1− (1− x)

1

2 , we obtain



134 L. Clark and D. Johnson

A ≥ p

4
logb n lnn





1− (1− p)
1

2

1− pq
1
2

2



+ logb n

≥ p

4
logb n lnn





p
2

1− pq
1
2

2



+ logb n

≥ p2

8
logb n lnn+ logb n.

Define C as:

(4) C =
p2 logb n lnn

8
+ logb n.

We will now find p such that for n sufficiently large C
8 is larger than all terms

in B. Hence

(5)

(1− o(1)) exp {A−B} ≥ (1− o(1)) exp {C −B}
≥ (1− o(1)) exp {C/2}
→ ∞.

It is obvious that the third and fourth terms of B are dominated by the first
so we will only compare the first and second terms to C/8. Comparing the
first term,

C/8 ≥ 1

2
logb (logb n lnn) ln (logb n lnn)

if for sufficiently large n

(6) p

8
≥

ln
(

ln2 n
p

)

√
2 lnn

.

Comparing the second term,

C/8 ≥ logb n ln (logb n)

if for sufficiently large n

(7) p2

64
≥

ln
(

lnn
p

)

lnn
.

Clearly (7) implies (6) and the condition p ≫ lnn

n
1
2

and the lemma is proven.
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Lemma 2.3. If p fixed or if p → 0 and p2

64 ≥
ln

(

lnn
p

)

lnn
then V arXs

E2(Xs)
→ 0 for

s = ⌊logb n− logb (logb n lnn) + logb 2⌋+ 2.

Proof. Following the proof of Lemma 3 in [4] it is easily derived that

V ar(Xs) ≤ E(Xs)− E2(Xs)

+

(

n

s

) s−1
∑

m=0

(

s

m

)(

n− s

s−m

)

(

1− 2qs + q2s−m
)n−2s+m

q2(
s

2
)−(m

2
).

We write s = logb n− logb(logb n lnn)+logb 2+ǫ where ǫ = ǫ(n) = ⌊logb n−
logb (logb n lnn)+ logb 2⌋+2− logb n+logb (logb n lnn)− logb 2 and observe
that 1 ≤ ǫ ≤ 2.

It is immediately obvious for any s such that E(Xs) → ∞,

E(Xs) = o(E2(Xs)).

We will now show

(8)

(

n

s

)(

s

0

)(

n− s

s

)

(

1− 2qs + q2s
)n−2s

q2(
s
2
) − E2(Xs) = o(E2(Xs))

and

(9)

(

n

s

) s−1
∑

m=1

(

s

m

)(

n− s

s−m

)

(

1− 2qs + q2s−m
)n−2s+m

q2(
s

2
)−(m

2
)

= o(E2(Xs)).

To show (8) note,

(

n

s

)(

s

0

)(

n− s

s

)

(

1− 2qs + q2s
)n−2s

q2(
s
2
) − E2(Xs)

≤ E2(Xs)
(

(1− qs)−2s − 1
)

≤ E2(Xs)

(

exp

{

2sqs

1− qs

}

− 1

)

(by (2)).
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Since p ≫ ln
3
2 n

n
1
2

, we know that 2sqs

1−qs
≥ 0 and approaches 0 as n → ∞. Thus,

(

exp

{

2sqs

1− qs

}

− 1

)

→ 0.

To show (9) let

f(m) =

(

s

m

)(

n− s

s−m

)

(

1− 2qs + q2s−m
)n−2s+m

q2(
s

2
)−(m

2
)

and note for sufficiently large n

f(m) ≤
(

s

m

)

ns−m

(s−m)!

(

1− 2qs + q2s−m
)n−2s+m

q2(
s
2
)−(m

2
)

≤ 2

(

s

m

)

ns−m

(s−m)!

(

1− 2qs + q2s−m
)n

q2(
s

2
)−(m

2
)

≤ 2

(

s

m

)

ns−m

(s−m)!
exp

(

n(−2qs + q2s−m)
)

q2(
s
2
)−(m

2
) (by (1))

where the second inequality holds for p ≫ ln 3

2
n

n
1
2

. Define

g(m) := 2

(

s

m

)

ns−m

(s−m)!
exp

(

n(−2qs + q2s−m)
)

q2(
s
2
)−(m

2
)

and consider the the ratio of consecutive terms of g(m).

(10) h(m) :=
g(m+ 1)

g(m)
=

(s−m)2

nqm(m+ 1)
exp

{

npq2s−m−1
}

.

We will show h(m) ≥ 1 iff m ≥ m0 for some m0(n) → ∞, hence g is first
decreasing and then increasing. Further we will show g(1) ≥ g(s−1), which
implies

∑s−1
m=1 f(m) ≤ sg(1). Observe for sufficiently large n,

h(1) =
(s − 1)2

2nq
exp

{

np

q2
q2s
}

≤ logb
2 n

2nq
exp

{

(logb n lnn)2p

4nq2−2ǫ

}
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≤ ln2 n

2np2q
exp

{

ln4 n

4npq2−2ǫ

}

(by (1))

→ 0

since p ≫ lnn

n
1
2

and

h(s− 1) =
1

nsqs−1
exp {npqs}

≥ 2q1−ǫ

logb
2 n lnn

exp

{

pqǫ logb n lnn

2

}

=
2q1−ǫ ln2 1

q

ln3 n
exp

{

pqǫ ln2 n

−2 ln q

}

≥ 2q1−ǫp2

ln3 n
exp

{

q1+ǫ ln2 n

2

}

(by (1), (2))

≥ 1

provided p 6= 1− o(1). Also,

h(m) =
(s−m)2

n(m+ 1)qm
exp

{

npq2s−m−1
}

≥ 1

iff

npq2s−m−1 ≥ ln

(

n(m+ 1)qm

(s−m)2

)

iff

m ≥ logb





ln
(

n(m+1)qm

(s−m)2

)

npq2s−1





iff

m ≥ logb





4n ln
(

n(m+1)qm

(s−m)2

)

p logb
2 (n) ln2 (n)



+ 2ǫ− 1

iff

m ≥ logb

(

4n

p

)

+ logb

(

ln

(

n(m+ 1)qm

(s−m)2

))

− 2 logb (lnn logb n) + 2ǫ− 1.
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Define

x(m) = logb

(

4n

p

)

+logb

(

ln

(

n(m+ 1)qm

(s−m)2

))

−2 logb (ln n logb n)+2ǫ−1.

Now,

d

dm
x(m) =

(

m2 −
(

s− 1− 1

ln
(

1

q

)

)

m−
(

1− 1

ln
(

1

q

)

)

s+ 2

ln
(

1

q

)

)

(m+ 1)(s −m)
(

ln
(

n(m+1)qm

(s−m)2

))

and the roots of the numerator are:

s− 1− 1

ln
(

1

q

) ±

√

√

√

√

(

s− 1− 1

ln
(

1

q

)

)2

+ 4s

(

1− 1

ln
(

1

q

)

)

− 8

ln
(

1

q

)

2

=

s− 1− 1

ln
(

1

q

) ± (s+ 1)

√

√

√

√

(

1− 3

(s+1) ln
(

1

q

)

)2

− 8

(s+1) ln2
(

1

q

)

2
.

Using Taylor Series with remainder about 0, one can show if 0 ≤ z ≤ 3−2
√
2

then for any y such that |y| ≤ z

1− 3y − 8z2

(1− 6z + z2)
3

2

≤
√

(1− 3y)2 − 8y2 ≤ 1− 3y +
8z2

(1− 6z + z2)
3

2

.

Letting y = z = 1

(s−1) ln
(

1

q

) , we show

d

dm
x(m) =

(

m+ 1− 1

ln
(

1

q

) − δ

)(

m− s+ 2

ln
(

1

q

) + δ

)

(m+ 1)(s −m)
(

ln
(

n(m+1)qm

(s−m)2

))

where |δ| ≤ 8

(s+ 1) ln2
(

1
q

)

(

1− 6

(s+1) ln
(

1

q

) + 1

(s+1)2 ln2
(

1

q

)

)
3

2

.
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Thus δ = Θ
(

1
p lnn

)

→ 0 as n → ∞ since p ≫ 1
ln(n) .

So on (−∞,−1) and
(

ln−1
(

1
q

)

−1+δ, s−2 ln−1
(

1
q

)

−δ
)

x(m) is decreas-

ing and on
(

−1, ln−1
(

1
q

)

−1+δ
)

and
(

s−2 ln−1
(

1
q

)

−δ, s
)

x(m) is increasing.

Thusm1 = ln−1
(

1
q

)

−1+δ is a relative maximum andm2 = s−2 ln−1
(

1
q

)

−δ
is a relative minimum of x(m).

Note m1 ∈ [1, s−1] iff p ≤ 1−e−
1

2−δ and m2 ∈ [1, s−1] iff p ≤ 1−e−
2

1−δ .
Also for n sufficiently large, x(m) is continuous on [1, s − 1], for every m ∈
[1, s − 1] x(m) ∈ [1, s − 1], and s− 1 > x(1) > x(s − 1) > 1.

If p > 1 − e−
2

1−δ , on [1, s − 1] x(m) has an absolute maximum at 1
and an absolute minimum at s − 1. So by the above information and the
intermediate value theorem there exists a unique m0 ∈ [1, s − 1] such that
m0 = x(m0) and x(m0) > x(s− 1).

If 1−e−
1

2−δ < p ≤ 1−e−
2

1−δ , on [1, s−1] x(m) has an absolute maximum
at 1 and an absolute minimum at m2. So by the above information and the
intermediate value theorem there exists a unique m0 ∈ [1, s − 1] such that
m0 = x(m0). Further, one can show by iteration that x(m0) ≥ x(s− 1).

If p ≤ 1− e−
1

2−δ or p → 0, on [1, s− 1] x(m) has an absolute maximum
at m1 and an absolute minimum at m2. So by the above information and
the intermediate value theorem there exists a unique m0 ∈ [1, s − 1] such
that m0 = x(m0). Further, one can show by iteration that x(m0) ≥ x(s−1).

Thus, in any of the three cases there exists a unique m0 ∈ [1, s−1] such
that ∀m ≥ m0 = x(m0) ≥ x(m).

Now, for n sufficiently large

ln

(

n(m0 + 1)qm0

(s−m0)2

)

≥ ln
(

nsqs−1
)

≥ ln

(

logb (n) ln (n)s

4q1−ǫ

)

which goes to infinity as n goes to infinity. Also, logb

(

4n
p

)

≫ 2 logb

(logb (n) ln (n)) and 2ǫ− 1 is bounded, thus m0 → ∞. Therefore, h(m) ≥ 1
iff m ≥ m0 → ∞ as n → ∞.

Also, g(1) ≥ g(s − 1) iff

ns−1

(s− 1)!
exp

{

nq2s−1
}

≥ n exp
{

nqs+1
}

q−(
s−1

2
)

iff
ns

s!
exp

{

−n(qs+1 − q2s−1)
}

q(
s−1

2
) ≥ n2

s
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which is true since

ns

s!
exp

{

−n(qs+1 − q2s−1)
}

q(
s−1

2
) ≥ E(Xs) ≥ (1− o(1)) exp{C/2}

where C = p2 logb n lnn
8 + logb n and (1 − o(1)) exp{C/2} ≥ n2/s if p ≥ 24

lnn
,

a condition clearly satisfied by our hypothesis. Hence we have shown,

(

n

s

) s−1
∑

m=1

(

s

m

)(

n− s

s−m

)

(

1− 2qs − q2s−m
)n−2s+m

q2(
s
2
)−(m

2
) ≤ s

(

n

s

)

g(1).

Finally, we show s
(

n
s

)

g(1) = o(E2(Xs)),

s
(

n
s

)

g(1)

E2(Xs)
=

2s2ns−1 exp{n(q2s−1 − 2qs)}
(

n
s

)

(1− qs)2(n−s)(s− 1)!

≤ 2s3 exp{n(q2s−1 − 2qs)}
(1− o(1))n(1 − qs)2n

(s2 = o(n))

≤ 2s3

(1− o(1))n
exp

{

n

(

q2s−1 − 2qs +
2qs

1− qs

)}

(by (2))

≤ 2s3

(1− o(1))n
exp

{

nq2s−1(1 + 2q)

1− qs

}

≤ 2 logb
3 n

(1− o(1))n
exp

{

3 logb
2 n ln2 n

4n(1− qs)
q2ǫ−1

}

→ 0

since p ≫ lnn

n
1
3

.

We have thus shown if s = logb n − logb (logb n lnn) + logb 2 + ǫ =
⌊logb n− logb (logb n lnn)+ logb 2⌋+2 then V ar(Xs) = o(E2(Xs)) provided

p2

64 ≥ ln ( lnn
p

)

lnn
.

We now can state our main result.

Theorem 2.4. Let p be fixed or p2

64 ≥
ln

(

lnn
p

)

lnn
then i(G) is equal to ⌊logb n−

logb (logb n lnn)+logb 2⌋+1 or ⌊logb n− logb (logb n lnn)+logb 2⌋+2 a.a.s.
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Proof. By Markov’s Inequality and Lemma 2.1 if s = ⌊logb n − logb
(logb n lnn) + logb 2⌋ then

P (i(G) ≤ s) = P (Ys ≥ 1) ≤ E(Ys) → 0

and by Chebyshev’s Inequality, Lemma 2.2, and Lemma 2.3 if s = ⌊logb n−
logb (logb n lnn) + logb 2⌋ + 2 then

P (i(G) > s) ≤ P (Xs = 0) ≤ P (|Xs − E(Xs)| ≥ E(Xs)) ≤
V ar(Xs)

E2(Xs)
→ 0.

3. Empirical Data

In this section we used a standard random number generator which we
verified to return a nearly uniform distribution for samples of size 106 lending
some credibility to the empirical results.

We generated N = 1000 graphs G of order n, by randomly assigning
edges with probability p, using a standard uniform random number genera-
tor. We then ran an algorithm of our design to count the number of graphs
with an independent domination number of size k for each k ∈ [n]. The
results are presented in the chart below for n = 16, 32, 64, and 128 with
probabilities p = .5 and .75.

n, p k = 1 k = 2 k = 3 k = 4 k = 5

16, .5 0 522 476 2 0

32, .5 0 36 962 2 0

64, .5 0 0 693 307 0

64, .75 0 998 2 0 0

128, .75 0 419 561 0 0

We generated N = 1000 graphs G of order n, by randomly assigning edges
with probability p, using a standard uniform random number generator.
We then ran an algorithm of our design to calculate the average number of
independent dominating sets of size k contained in all G for each k ∈ [n].
The results are presented in the chart below for n = 12, 16, 20, 24 and p = .5.
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n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

12 0.1 1.96 7.87 4 0.56 .11 0 0

16 0 1.12 13.02 12.98 3.91 .14 0 0

20 0 0.55 13.08 26.33 8.83 1.39 0 0

24 0 0.17 15.81 45.94 21.6 2.66 0.05 0.01

This data appears to imply the following conjecture:

Conjecture 3.1. Y = X1 + X2 + · · · + Xn suitably normalized converges
weakly to N(0, 1).

We have no proof to date. The random variables {Xk} are highly dependent
posing difficulty in verifying the conditions needed in many central limit
theorems for dependent sums.
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