THE INDEPENDENT DOMINATION NUMBER OF A RANDOM GRAPH

LANE CLARK AND DARIN JOHNSON

Department of Mathematics Southern Illinois University Carbondale Carbondale, IL 62901–4408, USA

Abstract

We prove a two-point concentration for the independent domination number of the random graph $G_{n,p}$ provided $p^2 \ln(n) \ge 64 \ln((\ln n)/p)$.

Keywords: random graph, two-point concentration, independent domination.

2010 Mathematics Subject Classification: 05C80, 05C69.

1. Introduction

Let G be a graph with vertex set [n] and let $S \subset [n]$. If for every vertex $u \notin S$ there is a vertex $v \in S$ such that u and v are adjacent then S is called a dominating set. If further for every $v, w \in S$ there is no edge between v and w then S is called an independent dominating set. The domination number, $\gamma(G)$ is the smallest integer s such that there exists a dominating set of cardinality s. The independent domination number, i(G) is the smallest integer s such that there exists an independent dominating set of cardinality s. G(n,p) is the set of all graphs $G_{n,p}$ with vertex set [n] and edges chosen independently with probability $0 \le p = p(n) \le 1$. Hence, for each $G_{n,p}$ $P(G_{n,p}) = p^{e(G_{n,p})}(1-p)^{\binom{n}{2}-e(G_{n,p})}$. For a graph property A we say A occurs asymptotically almost surely (a.a.s.) if $P(G_{n,p})$ has property A > 1 as $n \to \infty$. See Bollobás [2] for notation and terminology.

Weber [7] showed if p = 1/2 then a.a.s. $\gamma(G_{n,p})$ is either $\lfloor \log_2 n - \log_2(\log_2 n \ln n) \rfloor + 1$ or $\lfloor \log_2 n - \log_2(\log_2 n \ln n) \rfloor + 2$ and a.a.s. $i(G_{n,p})$

is $\lfloor \log_2 n - \log_2(\log_2 n \ln n) \rfloor + 2$ or $\lfloor \log_2 n - \log_2(\log_2 n \ln n) \rfloor + 3$. Godbole and Wieland [4] extended Weber's result showing if p is constant or $p = p(n) \to 0$ such that $p^2 \ln n \geq 40 \ln((\ln^2 n)/p)$ then a.a.s. $\gamma(G_{n,p})$ is either $\lfloor \log_b n - \log_b(\log_b n \ln n) \rfloor + 1$ or $\lfloor \log_b n - \log_b(\log_b n \ln n) \rfloor + 2$, where b = 1/(1-p). Very recently Bonato and Wang [3] showed that if p is constant then a.a.s. $\lfloor \log_b n - \log_b(\log_b n \ln n) \rfloor + 1 \leq i(G_{n,p}) \leq \lfloor \log_b n \rfloor$. In this paper we show that if p is constant or $p = p(n) \to 0$ such that $p^2 \ln(n) \geq 64 \ln(\ln(n)/p)$ then a.a.s. $i(G_{n,p})$ is either $\lfloor \log_b n - \log_b(\log_b n \ln n) + \log_b 2 \rfloor + 1$ or $\lfloor \log_b n - \log_b(\log_b n \ln n) + \log_b 2 \rfloor + 2$. This extends Weber's result (the case p = 1/2) and immediately implies Bonato and Wang's result (the case p is constant). We then empirically explore the number of independent dominating sets of size k ranging on $\lfloor n \rfloor$ and make a conjecture about the distribution.

2. Two-Point Concentration

Throughout this section we will use p as the probability an edge exists in $G = G_{n,p}$, q = 1 - p the probability an edge does not exist in G and $b = \frac{1}{q}$. We will also make extensive use of two inequalities,

$$(1) 1 - x \le \exp\{-x\}, x \in \mathbb{R},$$

(2)
$$1 - x \ge \exp\left\{\frac{-x}{1 - x}\right\}, \ x \in [0, 1).$$

We begin by defining the random variables X_k and Y_s as the number of independent dominating sets of cardinality k in G and the number of independent dominating sets of cardinality s or less in G respectively. Clearly $Y_s = \sum_{k=1}^s X_k$. It is now obvious that

$$E(X_k) = \binom{n}{k} (1 - q^k)^{n-k} q^{\binom{k}{2}}$$

and by linearity of expectation,

$$E(Y_s) = \sum_{k=1}^{s} E(X_k) = \sum_{k=1}^{s} \binom{n}{k} (1 - q^k)^{n-k} q^{\binom{k}{2}}.$$

We now state our first lemma.

Lemma 2.1. Let $s = \lfloor \log_b n - \log_b(\log_b n \ln n) + \log_b 2 \rfloor$, then $E(Y_s) \to 0$ if p fixed or if $p \to 0$ as $n \to \infty$ and $p \ge \frac{e \ln^2 n}{n}$.

Proof. Lemma 2 of [4] states the expected number of dominating sets of size less than or equal to $r = \lfloor \log_b n - \log_b (\log_b n \ln n) \rfloor$ goes to 0 if $p \geq \frac{e \ln^2 n}{n}$. Since every independent dominating set is a dominating set it is clear $E(Y_r) \to 0$ as $n \to \infty$. It remains to show,

$$\sum_{k=r+1}^{s} E(X_k) \to 0.$$

Using Stirling's inequality, inequality (1),

$$E(X_k) = \binom{n}{k} (1 - q^k)^{n-k} q^{\binom{k}{2}}$$

$$\leq \exp\left\{k \ln n + 2k - k \ln k - nq^k + \frac{k^2}{2} \ln q - \frac{k}{2} \ln q\right\}$$

$$:= \exp\{f(k)\}.$$

Now,

$$f'(k) = \ln n + 1 - \ln k + nq^k \ln \left(\frac{1}{q}\right) - k \ln \left(\frac{1}{q}\right) - \frac{1}{2} \ln \left(\frac{1}{q}\right).$$

Note f'(k) is decreasing for all positive value of k and $f'(\log_b n - \log_b (\log_b n \ln n) + \log_b 2) \ge 0$ for sufficiently large n. So for sufficiently large n, we have f(k) increasing for all $k \le \log_b n - \log_b (\log_b n \ln n) + \log_b 2$. Hence, setting $k = \log_b n - \log_b (\log_b n \ln n) + \log_b 2$ we have

$$E(Y_s) \le (k-r) \exp\{f(k)\}$$

$$\le (\log_b 2) \exp\left\{k \ln n + 2k - k \ln k - nq^k + \frac{k^2}{2} \ln q - \frac{k}{2} \ln q\right\}$$

$$\le (\log_b 2) \exp\left\{-k \ln k + 3k + \frac{k}{2} \ln \left(\frac{1}{q}\right)\right\}$$

$$\to 0$$

since $k \ln k$ clearly dominates the other two terms in the exponent.

We now note that since i(G) is always at least 1,

$$\log_b n - \log_b(\log_b n \ln n) + \log_b 2 \ge 1.$$

A condition satisfied if

$$p \ge \frac{e \ln^2 n}{2n}$$

which is easily seen after noting $p \leq \ln \frac{1}{q}$. However, the condition $p \geq \frac{e \ln^2 n}{n}$ used above is stronger so we must use it instead.

Lemma 2.2. If p fixed or if $p \to 0$ and $\frac{p^2}{64} \ge \frac{\ln{(\frac{\ln n}{p})}}{\ln n}$ then $E(X_s) \to \infty$ for $s = \lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor + 2$.

Proof. Using inequality (2), Stirling's Formula, and that for $k^2 = o(n)$ $(n)_k = (1 - o(1))n^k$

$$\begin{split} E(X_k) &= \binom{n}{k} (1 - q^k)^{n-k} q^{\binom{k}{2}} \\ &\geq \binom{n}{k} (1 - q^k)^n q^{\frac{k^2}{2}} \\ (3) &\geq \binom{n}{k} \exp\left\{\frac{-nq^k}{1 - q^k} + \frac{k^2}{2} \ln q\right\} \\ &\geq (1 - o(1)) \frac{n^k}{k!} \exp\left\{\frac{-nq^k}{1 - q^k} + \frac{k^2}{2} \ln q\right\} \ (\text{if } k^2 = o(n)) \\ &\geq (1 - o(1)) \left(\frac{ne}{k}\right)^k (2\pi k)^{-\frac{1}{2}} \exp\left\{\frac{-nq^k}{1 - q^k} + \frac{k^2}{2} \ln q\right\} \ (\text{if } k \to \infty) \\ &\geq (1 - o(1)) \exp\left\{k \ln n + k - k \ln k - \frac{1}{2} \ln (2\pi k) - \frac{nq^k}{1 - q^k} + \frac{k^2}{2} \ln q\right\}. \end{split}$$

The condition $k^2 = o(n)$ is satisfied if $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and $k = \log_b n - \log_b (\log_b n \ln n) + \log_b 2 + \epsilon$, where $\epsilon > 0$. One can easily show $\frac{d}{dk} (k \ln n + k - k \ln k - \frac{1}{2} \ln (2\pi k) - \frac{nq^k}{1-q^k} + \frac{k^2}{2} \ln q) \geq 0$ as long as k is much smaller than nq^k , which is true for large n when assuming the just mentioned conditions. Substituting in (3) k = s on the left and k = s

 $\log_b n - \log_b (\log_b n \ln n) + \log_b 2 + \frac{1}{2}$ on the right it is shown for sufficiently large n

$$E(X_s) \ge (1 - o(1)) \exp\left\{\frac{1}{2}\log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - q^k}\right) + \log_b n - \log_b (\log_b n \ln n) \ln (\log_b n \ln n) + \frac{1}{2}\ln (\log_b n \ln n) - \log_b n \ln s - (1 + \log_b 2) \ln s - \frac{1}{2}\ln 2\pi - \frac{1}{8}\ln \frac{1}{q}\right\}$$

$$\ge (1 - o(1)) \exp\left\{A - B\right\},$$

where

$$A = \frac{1}{2} \log_{b} n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{1 - q^{s}} \right) + \log_{b} n,$$

$$B = \log_{b} (\log_{b} n \ln n) \ln (\log_{b} n \ln n) + \log_{b} n \ln (\log_{b} n),$$

$$+ (1 + \log_{b} 2) \ln (\log_{b} n) + \frac{1}{2} \ln (2\pi e^{L})$$

and L is any constant bounding $\frac{1}{8} \ln \frac{1}{q}$, which exists since $\ln \left(\frac{1}{q}\right)$ is constant or $\ln \left(\frac{1}{q}\right) \to 0$. Since $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and $\log_b n \sim \frac{\ln n}{p}$ we have $p \gg \frac{\log_b n \ln n}{n}$. So for n sufficiently large,

$$\begin{split} A &= \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{(1 - q^s)} \right) + \log_b n \\ &= \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{(1 - \frac{q^{\frac{1}{2}} \log_b n \ln n}{2n})} \right) + \log_b n \\ &\geq \frac{1}{2} \log_b n \ln n \left(1 - \frac{q^{\frac{1}{2}}}{(1 - \frac{pq^{\frac{1}{2}}}{2})} \right) + \log_b n \\ &= \frac{1}{2} \log_b n \ln n \left(\frac{1 - \frac{pq^{\frac{1}{2}}}{2} - q^{\frac{1}{2}}}{1 - \frac{pq^{\frac{1}{2}}}{2}} \right) + \log_b n. \end{split}$$

Using the inequality, $\frac{x}{2} \le 1 - (1 - x)^{\frac{1}{2}}$, we obtain

$$A \ge \frac{p}{4} \log_b n \ln n \left(\frac{1 - (1 - p)^{\frac{1}{2}}}{1 - \frac{pq^{\frac{1}{2}}}{2}} \right) + \log_b n$$

$$\ge \frac{p}{4} \log_b n \ln n \left(\frac{\frac{p}{2}}{1 - \frac{pq^{\frac{1}{2}}}{2}} \right) + \log_b n$$

$$\ge \frac{p^2}{8} \log_b n \ln n + \log_b n.$$

Define C as:

(4)
$$C = \frac{p^2 \log_b n \ln n}{8} + \log_b n.$$

We will now find p such that for n sufficiently large $\frac{C}{8}$ is larger than all terms in B. Hence

(5)
$$(1 - o(1)) \exp \{A - B\} \ge (1 - o(1)) \exp \{C - B\}$$
$$\ge (1 - o(1)) \exp \{C/2\}$$
$$\to \infty.$$

It is obvious that the third and fourth terms of B are dominated by the first so we will only compare the first and second terms to C/8. Comparing the first term,

$$C/8 \ge \frac{1}{2}\log_b(\log_b n \ln n)\ln(\log_b n \ln n)$$

if for sufficiently large n

(6)
$$\frac{p}{8} \ge \frac{\ln\left(\frac{\ln^2 n}{p}\right)}{\sqrt{2}\ln n}.$$

Comparing the second term,

$$C/8 \ge \log_b n \ln (\log_b n)$$

if for sufficiently large n

(7)
$$\frac{p^2}{64} \ge \frac{\ln\left(\frac{\ln n}{p}\right)}{\ln n}.$$

Clearly (7) implies (6) and the condition $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and the lemma is proven.

Lemma 2.3. If p fixed or if $p \to 0$ and $\frac{p^2}{64} \ge \frac{\ln\left(\frac{\ln n}{p}\right)}{\ln n}$ then $\frac{VarX_s}{E^2(X_s)} \to 0$ for $s = \lfloor \log_b n - \log_b \left(\log_b n \ln n\right) + \log_b 2 \rfloor + 2$.

Proof. Following the proof of Lemma 3 in [4] it is easily derived that

$$Var(X_s) \le E(X_s) - E^2(X_s) + \binom{n}{s} \sum_{m=0}^{s-1} \binom{s}{m} \binom{n-s}{s-m} \left(1 - 2q^s + q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}}.$$

We write $s = \log_b n - \log_b (\log_b n \ln n) + \log_b 2 + \epsilon$ where $\epsilon = \epsilon(n) = \lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor + 2 - \log_b n + \log_b (\log_b n \ln n) - \log_b 2$ and observe that $1 \le \epsilon \le 2$.

It is immediately obvious for any s such that $E(X_s) \to \infty$,

$$E(X_s) = o(E^2(X_s)).$$

We will now show

(8)
$$\binom{n}{s} \binom{s}{0} \binom{n-s}{s} \left(1 - 2q^s + q^{2s}\right)^{n-2s} q^{2\binom{s}{2}} - E^2(X_s) = o(E^2(X_s))$$

and

(9)
$$\binom{n}{s} \sum_{m=1}^{s-1} \binom{s}{m} \binom{n-s}{s-m} \left(1 - 2q^s + q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}}$$
$$= o(E^2(X_s)).$$

To show (8) note,

$$\binom{n}{s} \binom{s}{0} \binom{n-s}{s} \left(1 - 2q^s + q^{2s}\right)^{n-2s} q^{2\binom{s}{2}} - E^2(X_s)$$

$$\leq E^2(X_s) \left((1 - q^s)^{-2s} - 1 \right)$$

$$\leq E^2(X_s) \left(\exp\left\{ \frac{2sq^s}{1 - q^s} \right\} - 1 \right) \text{ (by (2))}.$$

Since $p \gg \frac{\ln^{\frac{3}{2}} n}{n^{\frac{1}{2}}}$, we know that $\frac{2sq^s}{1-q^s} \geq 0$ and approaches 0 as $n \to \infty$. Thus,

$$\left(\exp\left\{\frac{2sq^s}{1-q^s}\right\}-1\right)\to 0.$$

To show (9) let

$$f(m) = \binom{s}{m} \binom{n-s}{s-m} \left(1 - 2q^s + q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}}$$

and note for sufficiently large n

$$f(m) \leq \binom{s}{m} \frac{n^{s-m}}{(s-m)!} \left(1 - 2q^s + q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}}$$

$$\leq 2\binom{s}{m} \frac{n^{s-m}}{(s-m)!} \left(1 - 2q^s + q^{2s-m}\right)^n q^{2\binom{s}{2} - \binom{m}{2}}$$

$$\leq 2\binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp\left(n(-2q^s + q^{2s-m})\right) q^{2\binom{s}{2} - \binom{m}{2}} \quad \text{(by (1))}$$

where the second inequality holds for $p \gg \frac{\ln \frac{3}{2}n}{n^{\frac{1}{2}}}$. Define

$$g(m) := 2 \binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp\left(n(-2q^s + q^{2s-m})\right) q^{2\binom{s}{2} - \binom{m}{2}}$$

and consider the the ratio of consecutive terms of g(m).

(10)
$$h(m) := \frac{g(m+1)}{g(m)} = \frac{(s-m)^2}{nq^m(m+1)} \exp\left\{npq^{2s-m-1}\right\}.$$

We will show $h(m) \geq 1$ iff $m \geq m_0$ for some $m_0(n) \to \infty$, hence g is first decreasing and then increasing. Further we will show $g(1) \geq g(s-1)$, which implies $\sum_{m=1}^{s-1} f(m) \leq sg(1)$. Observe for sufficiently large n,

$$h(1) = \frac{(s-1)^2}{2nq} \exp\left\{\frac{np}{q^2}q^{2s}\right\}$$
$$\leq \frac{\log_b^2 n}{2nq} \exp\left\{\frac{(\log_b n \ln n)^2 p}{4nq^{2-2\epsilon}}\right\}$$

$$\leq \frac{\ln^2 n}{2np^2 q} \exp\left\{\frac{\ln^4 n}{4npq^{2-2\epsilon}}\right\} \quad \text{(by (1))}$$

$$\to 0$$

since $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and

$$h(s-1) = \frac{1}{nsq^{s-1}} \exp\left\{npq^{s}\right\}$$

$$\geq \frac{2q^{1-\epsilon}}{\log_{b}^{2} n \ln n} \exp\left\{\frac{pq^{\epsilon} \log_{b} n \ln n}{2}\right\}$$

$$= \frac{2q^{1-\epsilon} \ln^{2} \frac{1}{q}}{\ln^{3} n} \exp\left\{\frac{pq^{\epsilon} \ln^{2} n}{-2 \ln q}\right\}$$

$$\geq \frac{2q^{1-\epsilon} p^{2}}{\ln^{3} n} \exp\left\{\frac{q^{1+\epsilon} \ln^{2} n}{2}\right\} \quad \text{(by (1), (2))}$$

$$\geq 1$$

provided $p \neq 1 - o(1)$. Also,

$$h(m) = \frac{(s-m)^2}{n(m+1)q^m} \exp\{npq^{2s-m-1}\} \ge 1$$

iff

$$npq^{2s-m-1} \ge \ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)$$

iff

$$m \ge \log_{\mathrm{b}} \left(\frac{\ln \left(\frac{n(m+1)q^m}{(s-m)^2} \right)}{npq^{2s-1}} \right)$$

iff

$$m \ge \log_{\mathbf{b}} \left(\frac{4n \ln \left(\frac{n(m+1)q^m}{(s-m)^2} \right)}{p \log_{\mathbf{b}}^2(n) \ln^2(n)} \right) + 2\epsilon - 1$$

iff

$$m \ge \log_{\mathbf{b}}\left(\frac{4n}{p}\right) + \log_{\mathbf{b}}\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right) - 2\log_{\mathbf{b}}\left(\ln n \log_{\mathbf{b}} n\right) + 2\epsilon - 1.$$

Define

$$x(m) = \log_{\mathbf{b}} \left(\frac{4n}{p} \right) + \log_{\mathbf{b}} \left(\ln \left(\frac{n(m+1)q^m}{(s-m)^2} \right) \right) - 2\log_{\mathbf{b}} \left(\ln n \log_{\mathbf{b}} n \right) + 2\epsilon - 1.$$

Now,

$$\frac{d}{dm}x(m) = \frac{\left(m^2 - \left(s - 1 - \frac{1}{\ln\left(\frac{1}{q}\right)}\right)m - \left(1 - \frac{1}{\ln\left(\frac{1}{q}\right)}\right)s + \frac{2}{\ln\left(\frac{1}{q}\right)}\right)}{(m+1)(s-m)\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right)}$$

and the roots of the numerator are:

$$\frac{s - 1 - \frac{1}{\ln\left(\frac{1}{q}\right)} \pm \sqrt{\left(s - 1 - \frac{1}{\ln\left(\frac{1}{q}\right)}\right)^2 + 4s\left(1 - \frac{1}{\ln\left(\frac{1}{q}\right)}\right) - \frac{8}{\ln\left(\frac{1}{q}\right)}}}{2}$$

$$= \frac{s - 1 - \frac{1}{\ln\left(\frac{1}{q}\right)} \pm (s + 1)\sqrt{\left(1 - \frac{3}{(s+1)\ln\left(\frac{1}{q}\right)}\right)^2 - \frac{8}{(s+1)\ln^2\left(\frac{1}{q}\right)}}}{2}.$$

Using Taylor Series with remainder about 0, one can show if $0 \le z \le 3 - 2\sqrt{2}$ then for any y such that $|y| \le z$

$$1 - 3y - \frac{8z^2}{(1 - 6z + z^2)^{\frac{3}{2}}} \le \sqrt{(1 - 3y)^2 - 8y^2} \le 1 - 3y + \frac{8z^2}{(1 - 6z + z^2)^{\frac{3}{2}}}.$$

Letting $y = z = \frac{1}{(s-1)\ln\left(\frac{1}{a}\right)}$, we show

$$\frac{d}{dm}x(m) = \frac{\left(m+1-\frac{1}{\ln\left(\frac{1}{q}\right)}-\delta\right)\left(m-s+\frac{2}{\ln\left(\frac{1}{q}\right)}+\delta\right)}{(m+1)(s-m)\left(\ln\left(\frac{n(m+1)q^m}{(s-m)^2}\right)\right)}$$

where
$$|\delta| \le \frac{8}{(s+1)\ln^2\left(\frac{1}{q}\right)\left(1 - \frac{6}{(s+1)\ln\left(\frac{1}{q}\right)} + \frac{1}{(s+1)^2\ln^2\left(\frac{1}{q}\right)}\right)^{\frac{3}{2}}}$$
.

Thus $\delta = \Theta\left(\frac{1}{p\ln n}\right) \to 0$ as $n \to \infty$ since $p \gg \frac{1}{\ln(n)}$. So on $(-\infty, -1)$ and $\left(\ln^{-1}\left(\frac{1}{q}\right) - 1 + \delta, s - 2\ln^{-1}\left(\frac{1}{q}\right) - \delta\right) x(m)$ is decreasing and on $\left(-1, \ln^{-1}\left(\frac{1}{q}\right) - 1 + \delta\right)$ and $\left(s - 2\ln^{-1}\left(\frac{1}{q}\right) - \delta, s\right) x(m)$ is increasing. Thus $m_1 = \ln^{-1}\left(\frac{1}{q}\right) - 1 + \delta$ is a relative maximum and $m_2 = s - 2\ln^{-1}\left(\frac{1}{q}\right) - \delta$ is a relative minimum of x(m).

Note $m_1 \in [1, s-1]$ iff $p \le 1 - e^{-\frac{1}{2-\delta}}$ and $m_2 \in [1, s-1]$ iff $p \le 1 - e^{-\frac{2}{1-\delta}}$. Also for n sufficiently large, x(m) is continuous on [1, s-1], for every $m \in$ [1, s-1] $x(m) \in [1, s-1]$, and s-1 > x(1) > x(s-1) > 1.

If $p > 1 - e^{-\frac{2}{1-\delta}}$, on [1, s-1] x(m) has an absolute maximum at 1 and an absolute minimum at s-1. So by the above information and the intermediate value theorem there exists a unique $m_0 \in [1, s-1]$ such that $m_0 = x(m_0)$ and $x(m_0) > x(s-1)$.

If $1-e^{-\frac{1}{2-\delta}} , on <math>[1,s-1]$ x(m) has an absolute maximum at 1 and an absolute minimum at m_2 . So by the above information and the intermediate value theorem there exists a unique $m_0 \in [1, s-1]$ such that $m_0 = x(m_0)$. Further, one can show by iteration that $x(m_0) \ge x(s-1)$.

If $p \le 1 - e^{-\frac{1}{2-\delta}}$ or $p \to 0$, on [1, s-1] x(m) has an absolute maximum at m_1 and an absolute minimum at m_2 . So by the above information and the intermediate value theorem there exists a unique $m_0 \in [1, s-1]$ such that $m_0 = x(m_0)$. Further, one can show by iteration that $x(m_0) \ge x(s-1)$.

Thus, in any of the three cases there exists a unique $m_0 \in [1, s-1]$ such that $\forall m \geq m_0 = x(m_0) \geq x(m)$.

Now, for n sufficiently large

$$\ln\left(\frac{n(m_0+1)q^{m_0}}{(s-m_0)^2}\right) \ge \ln\left(nsq^{s-1}\right) \ge \ln\left(\frac{\log_b\left(n\right)\ln\left(n\right)s}{4q^{1-\epsilon}}\right)$$

which goes to infinity as n goes to infinity. Also, $\log_b\left(\frac{4n}{p}\right) \gg 2\log_b$ $(\log_b(n)\ln(n))$ and $2\epsilon-1$ is bounded, thus $m_0\to\infty$. Therefore, $h(m)\geq 1$ iff $m \ge m_0 \to \infty$ as $n \to \infty$.

Also, $g(1) \ge g(s-1)$ iff

$$\frac{n^{s-1}}{(s-1)!} \exp\left\{nq^{2s-1}\right\} \ge n \exp\left\{nq^{s+1}\right\} q^{-\binom{s-1}{2}}$$

iff

$$\frac{n^s}{s!} \exp\left\{-n(q^{s+1} - q^{2s-1})\right\} q^{\binom{s-1}{2}} \ge \frac{n^2}{s}$$

which is true since

$$\frac{n^s}{s!} \exp\left\{-n(q^{s+1} - q^{2s-1})\right\} q^{\binom{s-1}{2}} \ge E(X_s) \ge (1 - o(1)) \exp\{C/2\}$$

where $C = \frac{p^2 \log_b n \ln n}{8} + \log_b n$ and $(1 - o(1)) \exp\{C/2\} \ge n^2/s$ if $p \ge \frac{24}{\ln n}$, a condition clearly satisfied by our hypothesis. Hence we have shown,

$$\binom{n}{s} \sum_{m=1}^{s-1} \binom{s}{m} \binom{n-s}{s-m} \left(1 - 2q^s - q^{2s-m}\right)^{n-2s+m} q^{2\binom{s}{2} - \binom{m}{2}} \le s \binom{n}{s} g(1).$$

Finally, we show $s\binom{n}{s}g(1) = o(E^2(X_s)),$

$$\frac{s\binom{n}{s}g(1)}{E^{2}(X_{s})} = \frac{2s^{2}n^{s-1}\exp\{n(q^{2s-1}-2q^{s})\}}{\binom{n}{s}(1-q^{s})^{2(n-s)}(s-1)!}
\leq \frac{2s^{3}\exp\{n(q^{2s-1}-2q^{s})\}}{(1-o(1))n(1-q^{s})^{2n}} (s^{2}=o(n))
\leq \frac{2s^{3}}{(1-o(1))n}\exp\left\{n\left(q^{2s-1}-2q^{s}+\frac{2q^{s}}{1-q^{s}}\right)\right\} (\text{by (2)})
\leq \frac{2s^{3}}{(1-o(1))n}\exp\left\{\frac{nq^{2s-1}(1+2q)}{1-q^{s}}\right\}
\leq \frac{2\log_{b}^{3}n}{(1-o(1))n}\exp\left\{\frac{3\log_{b}^{2}n\ln^{2}n}{4n(1-q^{s})}q^{2\epsilon-1}\right\}
\to 0$$

since $p \gg \frac{\ln n}{n^{\frac{1}{3}}}$.

We have thus shown if $s = \log_b n - \log_b (\log_b n \ln n) + \log_b 2 + \epsilon = \lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor + 2$ then $Var(X_s) = o(E^2(X_s))$ provided $\frac{p^2}{64} \ge \frac{\ln(\frac{\ln n}{p})}{\ln n}$.

We now can state our main result.

Theorem 2.4. Let p be fixed or $\frac{p^2}{64} \ge \frac{\ln\left(\frac{\ln n}{p}\right)}{\ln n}$ then i(G) is equal to $\lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor + 1$ or $\lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor + 2$ a.a.s.

Proof. By Markov's Inequality and Lemma 2.1 if $s = \lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor$ then

$$P(i(G) \le s) = P(Y_s \ge 1) \le E(Y_s) \to 0$$

and by Chebyshev's Inequality, Lemma 2.2, and Lemma 2.3 if $s = \lfloor \log_b n - \log_b (\log_b n \ln n) + \log_b 2 \rfloor + 2$ then

$$P(i(G) > s) \le P(X_s = 0) \le P(|X_s - E(X_s)| \ge E(X_s)) \le \frac{Var(X_s)}{E^2(X_s)} \to 0.$$

3. Empirical Data

In this section we used a standard random number generator which we verified to return a nearly uniform distribution for samples of size 10^6 lending some credibility to the empirical results.

We generated N=1000 graphs G of order n, by randomly assigning edges with probability p, using a standard uniform random number generator. We then ran an algorithm of our design to count the number of graphs with an independent domination number of size k for each $k \in [n]$. The results are presented in the chart below for n=16,32,64, and 128 with probabilities p=.5 and .75.

n, p	k = 1	k = 2	k = 3	k = 4	k = 5
16,.5	0	522	476	2	0
32,.5	0	36	962	2	0
64, .5	0	0	693	307	0
64, .75	0	998	2	0	0
128, .75	0	419	561	0	0

We generated N=1000 graphs G of order n, by randomly assigning edges with probability p, using a standard uniform random number generator. We then ran an algorithm of our design to calculate the average number of independent dominating sets of size k contained in all G for each $k \in [n]$. The results are presented in the chart below for n=12, 16, 20, 24 and p=.5.

n	k = 1	k = 2	k = 3	k=4	k = 5	k = 6	k = 7	k = 8
12	0.1	1.96	7.87	4	0.56	.11	0	0
16	0	1.12	13.02	12.98	3.91	.14	0	0
20	0	0.55	13.08	26.33	8.83	1.39	0	0
24	0	0.17	15.81	45.94	21.6	2.66	0.05	0.01

This data appears to imply the following conjecture:

Conjecture 3.1. $Y = X_1 + X_2 + \cdots + X_n$ suitably normalized converges weakly to N(0,1).

We have no proof to date. The random variables $\{X_k\}$ are highly dependent posing difficulty in verifying the conditions needed in many central limit theorems for dependent sums.

References

- [1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992).
- [2] B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).
- [3] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307–322.
- [4] A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1–13.
- [5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
- [6] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
- [7] K. Weber, *Domination number for almost every graph*, Rostocker Matematisches Kolloquium **16** (1981) 31–43.

Received 2 March 2010 Accepted 13 April 2010