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Abstract

We prove a two-point concentration for the independent domination
number of the random graph G, ,, provided p? In(n) > 64In((Inn)/p).
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1. INTRODUCTION

Let G be a graph with vertex set [n] and let S C [n]. If for every vertex
u ¢ S there is a vertex v € S such that u and v are adjacent then S is called
a dominating set. If further for every v,w € S there is no edge between
v and w then § is called an independent dominating set. The domination
number, v(G) is the smallest integer s such that there exists a dominating set
of cardinality s. The independent domination number, i(G) is the smallest
integer s such that there exists an independent dominating set of cardinality
s. G(n,p) is the set of all graphs G, , with vertex set [n] and edges chosen
independently with probability 0 < p = p(n) < 1. Hence, for each G,
P(Gnyp) = pe(Gnp) (1 — p)(g)_e(G"”’). For a graph property A we say A
occurs asymptotically almost surely (a.a.s.) if P(G,p has property A) — 1
as n — oo. See Bollobas [2] for notation and terminology.

Weber [7] showed if p = 1/2 then a.a.s. v(Gyp) is either [logan —
loga(loganlnn)| + 1 or [logan — loga(loganlnn)| + 2 and a.a.s. i(Gpyp)
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is |logan — loga(loganlnn)| + 2 or |[logan — loga(loganlnn)| + 3. God-
bole and Wieland [4] extended Weber’s result showing if p is constant or
p = p(n) — 0 such that p?’Inn > 40In((In®n)/p) then a.as. v(Gp,) is
either [logy n—logy(log, nlnn)| +1 or |logy, n—logy,(logy nlnn) | +2, where
b=1/(1 —p). Very recently Bonato and Wang [3] showed that if p is con-
stant then a.a.s. [logy, n—logy(log, n Inn)|+1 < i(Gy ) < |logyn|. In this
paper we show that if p is constant or p = p(n) — 0 such that p?In(n) >
64 In(In(n)/p) then a.a.s. i(Gyp) is either |logy, n—logy, (logy, n Inn)+logy 2|+
1 or |logy n — logy(log, nlnn) + logy, 2| + 2. This extends Weber’s result
(the case p = 1/2) and immediately implies Bonato and Wang’s result (the
case p is constant). We then empirically explore the number of indepen-
dent dominating sets of size k ranging on [n| and make a conjecture about
the distribution.

2. Two-PoINT CONCENTRATION

Throughout this section we will use p as the probability an edge exists in
G = Gy p, ¢ = 1 — p the probability an edge does not exist in G and b = %.
We will also make extensive use of two inequalities,

(1) 1 —z <exp{—-z},z € R,

(2) 1—x2exp{ﬁ},me[0,1).

We begin by defining the random variables X and Y, as the number of
independent dominating sets of cardinality & in G and the number of inde-
pendent dominating sets of cardinality s or less in G respectively. Clearly
Ys =>4 X It is now obvious that

B = ()@ - 4

and by linearity of expectation,

E(Ys) =) B(Xy) = <Z> (1 ¢")"*qla),
k=1

k=1

We now state our first lemma.
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Lemma 2.1. Let s = |logy n — logy, (logy nlnn) + logy, 2], then E(Ys) — 0
if p fixed or if p — 0 asn — oo and p > %

Proof. Lemma 2 of [4] states the expected number of dominating sets
of size less than or equal to r = |logyn — logy, (logy nlnn)| goes to 0 if
D> % Since every independent dominating set is a dominating set it is
clear E(Y,) — 0 as n — co. It remains to show,

S

> E(Xi) —0.

k=r+1

Using Stirling’s inequality, inequality (1),

B = ()@ -t

k2 k
< exp{klnn—i—Zk—klnk—nqk—i- Elnq— §lnq}

= exp{f(k)}.

1 1 1 1
fl(k)=Inn+1-Ink+ng*In(=)—kln(=)—=In(=).
q a/ 2 \q

Note f/(k) is decreasing for all positive value of k£ and f’(log,n — logy
(log, n Inn) + logy, 2) > 0 for sufficiently large n. So for sufficiently large n,
we have f(k) increasing for all k& < logy, n —logy, (logy, n Inn)+logy, 2. Hence,
setting k = logy, n — logy, (logy n Inn) + logy, 2 we have

Now,

E(Ys) < (k—r)exp{f(K)}

ka
< (logb2)exp{klnn—|—2kz—kzlnkz—nqk+ 7111(]— §lnq}

k 1
< (logp 2) exp {—klnk+3k+ 5111 <—>}

q
— 0

since kIn k clearly dominates the other two terms in the exponent.
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We now note that since i(G) is always at least 1,
logy, n — logy (logp nlnn) + log, 2 > 1.
A condition satisfied if

eln?n
2n

p=

A . . . 2
which is easily seen after noting p < In %. However, the condition p > elnT"
used above is stronger so we must use it instead. [ |

(22)

Lemma 2.2. If p fixed or if p — 0 and g—i > —2— then E(Xs) — oo for
s = |logp n — logy, (logy nlnn) + logy, 2] + 2.

Proof. Using inequality (2), Stirling’s Formula, and that for k2 = o(n)

(n)e = (1= o(1))n*

nk Cnd 2
> (1 - 0(1))ﬁ exp{ —Ci]k + %ln q} (if k2 = o(n))

> (1—o0(1)) (%)k (277]{:)_% exp { ;quz + %211& q} (if E — o0)

> (1—o(1)) exp {k‘lnn +k—klnk— llm (2rk) — n_qk + k—2 lnq}.
2 1—q¢k 2
The condition k? = o(n) is satisfied if p > ln—%" and k = logpn — logy,
(logy, nlnn) + logy, 2 + €, where € > 0. One can gasily show
d%(k:lnn +k—klnk — In(2nk) — % + k—;lnq) > 0 as long as k is
much smaller than ng¢®, which is true for large n when assuming the just
mentioned conditions. Substituting in (3) £ = s on the left and k =
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logy, n — logy, (logp nlnn) + logy, 2 + % on the right it is shown for sufficiently
large n

1

1
E(Xs) > (1 —o(1))exp {5 logy, nlnn (1 1 Zk) + logp n

1
— logy, (logy nlnn)In (logy nlnn) + 3 In (log, nlnn)

1 1.1
— logpnlns — (1 +1logp2)Ins — §ln27r— gln—}
q

> (1—o(1))exp{A - B},

where

1

1 1
A = §logbnlnn (1 — 1 q2q8> +10gbn7

B = logy, (logp nlnn)In (logy nlnn) + logy, n1In (logy, n),

1
+ (1 +logp, 2) In (logp n) + 3 In (2mel)

and L is any constant bounding %ln é, which exists since In <%> is constant

or In (%) — 0. Since p > lif and logy n ~ an we have p > w. So
n?2

for n sufficiently large,

A= Ylog nian (1 a* 11
= —logpnlnn|1— ogp N
2 (1—-¢°)

1 1
2
= —logpnlnn |1 — 1q + logy n
2 (1 g2 logbnlnn)
2n
1 1
2
> —logpnlnn | 1— d T + logy n
2 1_I£)
2
1
1 1- 222 _ g3
= —logynlnn 2 - + logy n
2 1_pq7

Using the inequality, § <1 — (1 — x)%, we obtain
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1
Azglogbnlnn il _f)z + logy n
1— pa2
2
P 4
> =logpnlnn 2 __ | +log,n
4 pq2
1 b4z
2
p2
> glogbnlnn—i—logb n.
Define C as:
21 1
@ o Plogonlnn o

8

We will now find p such that for n sufficiently large % is larger than all terms
in B. Hence

(1—o(1)) exp {A— B} > (1 — o(1)) exp {C — B}
(5) > (1 - o1)) exp {C/2}
— OQ.

It is obvious that the third and fourth terms of B are dominated by the first
so we will only compare the first and second terms to C'//8. Comparing the
first term,

1
C/8 > 5 logy, (logp, n1nn) In (logy, nlnn)
if for sufficiently large n
n()
(6) p, M\ )
8~ V2Inn

Comparing the second term,
C/8 > logy, nln (logy, n)

if for sufficiently large n
Inn
(7) 2 (%)

Clearly (7) implies (6) and the condition p > 2 and the lemma is proven.
n2
|
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In (122)

P VarXs
o then — 0 for

E2(Xs)

Lemma 2.3. If p fized or if p — 0 and ’é—i >
s = [logp n — logy, (logp nlnn) + logy, 2] + 2.

Proof. Following the proof of Lemma 3 in [4] it is easily derived that

Var(X,) < E(X,) — E*(X,)
(S G 0y -
m=0

We write s = logy, n —logy (log, nInn) +logy 2+ € where € = €(n) = |logy, n—
logy, (logy, n1Inn) +logy, 2] 4+ 2 —logy, n + logy, (log, nInn) —logy, 2 and observe
that 1 <e < 2.

It is immediately obvious for any s such that E(X) — oo,
E(X,) = o(E*(Xy)).

We will now show

®  ()(G)("77) -y D - B o) = o5 ()

S

and

ARSYE T (1-2g0 g R 2R)-(2)
) s) 2 \m)\s—m

— o(F(X,)).

To show (8) note,
() () a2 e
< BX(X,) (1 —¢°)"> —1)

< E*(X,) (exp{ 250 } - 1> (by (2))-

1—¢s
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3

Since p > 227 we know that ff‘f; > 0 and approaches 0 as n — oco. Thus,
n2

(exp{ 254 } — 1> — 0.
1—¢*
To show (9) let

f(m) = <S> <" - 3) (1= 2° + g2—m)"= 2+ 2(3)=(2)

m s—m

and note for sufficiently large n

i < (2) iy (1=t gy )

s —m)!

< z()% (1= 267 + g>-m)" 2()-()

IN

2(8 ) ra— e (n(-20" + ) G by (1)

m) (s —m)
. . In3
where the second inequality holds for p > izlﬁ Define
n2

S

g(m) = 2(3 > % exp (n(_gqs + q23*m)) q2(2)_(2)

m) (s —m)
and consider the the ratio of consecutive terms of g(m).

_gm+1) _ (s—m)?
(10) h(m) = S mgim+ 1) exp {npq

2s—m—1 } )

We will show h(m) > 1 iff m > myg for some mg(n) — oo, hence g is first
decreasing and then increasing. Further we will show g(1) > g(s—1), which
implies an;ll (m) < sg(1). Observe for sufficiently large n,

wy = L {n—fq%}

2nq q

logy,% n (logp, nInn)?p
S XDy T oo
2ngq 4ng?—2e
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Inn

since p > 4 and

T
n2

1
h(s—1) = g1 P {npqg*}

2¢' ¢ {pqE logy nlnn }
~ logp?nlnn P 2

2¢'~¢In’ % pgtIn®n
= ——F——expy ——
In®n P —21Ingq

2q176p2 q1+e ln2 n
> 2P ot T (by (1), (2)

Inn
>1
provided p # 1 — o(1). Also,
2

n(m+1)q

1)g™
nquS—m—l > In (n(m+ )q >

iff

iff
In (*2=55)

npq2sfl

iff

137
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Define
x(m) = logy, <4?n> +logy, <ln (%)) —2logy, (Innlogy, n)+2e—1.
Now,
< pm) = <m2_ <8_1_@>m_ <1_ln<1%)> Hlné))
dm (m+1)(s —m) (ln (%))

and the roots of the numerator are:

sty {(aty) o oaty) s

2
1 . §

2

Using Taylor Series with remainder about 0, one can show if 0 < z < 3— 22
then for any y such that |y| < z

822 822
1-3y— ——————— < /1 -3y2-82<1-3y+——"— .
(1—-62+22)2 (1—62z+22)2
Letting y = 2 = ———, we show
LR (371)1n<%>
m+l——t< -4 — s+ +6

4 (m) = ( n(3) ) ( (%) )

dm (m+1)(s—m) ( ("(mH ))
where [0] < 5 3 -

2
2
(s+1)In G) (1 B (s+1)?n(%) + (s+1)211n2<%)>
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Thus 6 = @(plim) — 0 as n — oo since p > %

So on (—oo, —1) and (ln_1 (%) —146,5—2In"! (%) —6) x(m) is decreas-
ing and on (—1,In"* (%) —1+6) and (s—2In"! (%) —4,5) z(m) is increasing.
Thus my = In~! (l) — 1494 is a relative maximum and ms = s—2In~" (%) )
is a relative minimum of x(m).

Note m; € [1,s—1]iff p < 1—e 7% and ma € [1,s—1]iff p < 1—e 13,
Also for n sufficiently large, 2:(m) is continuous on [1,s — 1], for every m €
[1,s —1] z(m) € [l,s —1],and s =1 > z(1) > z(s — 1) > 1.

Ifp>1- 67%, on [1,s — 1] (m) has an absolute maximum at 1
and an absolute minimum at s — 1. So by the above information and the
intermediate value theorem there exists a unique mg € [1,s — 1] such that
mo = x(mp) and xz(mg) > x(s — 1).

Ifl-e 29 <p< 1—6_13—5, on [1,s—1] 2(m) has an absolute maximum
at 1 and an absolute minimum at msy. So by the above information and the
intermediate value theorem there exists a unique mg € [1,s — 1] such that
mo = x(mg). Further, one can show by iteration that z(mg) > x(s — 1).

Ifp<l—e 23 orp—0,0n [l,s—1] z(m) has an absolute maximum
at m1 and an absolute minimum at ms. So by the above information and
the intermediate value theorem there exists a unique mg € [1,s — 1] such
that mo = x(mg). Further, one can show by iteration that x(mg) > z(s—1).

Thus, in any of the three cases there exists a unique mg € [1, s — 1] such
that Ym > mg = x(mg) > z(m).

Now, for n sufficiently large

In <M> > In (nsg*!) > In (M)

(s —myp)? 4ql—e

which goes to infinity as n goes to infinity. Also, logy (47") > 2logp
(logp (n)In(n)) and 2¢ — 1 is bounded, thus my — oo. Therefore, h(m) > 1
iff m > mg — oo as n — oo.

Also, g(1) > g(s — 1) iff
s—1

(s—1 7P {ng® "} > nexp {ng**'} ¢ (=)

iff
s a1 TL2

n _
geXp{—n(qs+1 — g N} > —
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which is true since

Mexp (e — )} 2 B(X) > (1 o) exp{C/2)

where C' = EELM +logp n and (1 — o(1)) exp{C/2} > n?/s if p > %’

a condition clearly satisfied by our hypothesis. Hence we have shown,

s—1

<Z> Z <;> <:__;> (1-2¢°— ng_m)n—2s+m £33 < 3<Z>g(1).

m=1
Finally, we show s(7)g(1) = o(E?(X})),

s(Ng() _ 262 expln(g® ! — 2¢°))

S

E2(X,) (M1 —g¢5)2=9)(s — 1)!

s

2 epln(@ -2} o
= oyt gy & =)

< %exp {n <q231 —2¢° + 12_qsqs>} (by (2))

< 253 exp nq25_1(1 + 2q)
“(1—-0(1))n 1—g¢°
( (1)) q
2logy3 n . 3logp?nln®n o
~ (1—o(1))n dn(1 — ¢*)
—0

Inn
=.

since p > 1
We have thus shown if s = logy,n — logy (logp, nlnn) + log, 2 + € =
|logp, n — logy, (logy, nInn) +logy 2| +2 then Var(Xs) = o( E?(X,)) provided
n(lnn
B .

We now can state our main result.

P2 (lnTn) ~ '
Theorem 2.4. Let p be fived or &5 > ———+ then i(G) is equal to [logy n—
logp, (logp, nInn)+logy 2| +1 or [log, n—logy, (logp nlnn)+logy, 2] +2 a.a.s.
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Proof. By Markov’s Inequality and Lemma 2.1 if s = |logyn — logy
(logy, n1lnn) + logy, 2] then

P(i(G) < s) = P(Y, > 1) < E(Y,) = 0

and by Chebyshev’s Inequality, Lemma 2.2, and Lemma 2.3 if s = |[logp n —
logy, (logp n1lnn) + logy, 2] + 2 then

P(i(G) > s) < P(X, = 0) < P(|X, — E(X,)| > E(X,)) < ‘;Qg)) .

3. EMPIRICAL DATA

In this section we used a standard random number generator which we
verified to return a nearly uniform distribution for samples of size 10° lending
some credibility to the empirical results.

We generated N = 1000 graphs G of order n, by randomly assigning
edges with probability p, using a standard uniform random number genera-
tor. We then ran an algorithm of our design to count the number of graphs
with an independent domination number of size k for each k € [n]. The
results are presented in the chart below for n = 16,32,64, and 128 with
probabilities p = .5 and .75.

n,p k=1|k=2 k=3 |k=4]|k=5
16,.5 0 522 476 2 0
32,.5 0 36 962 2 0
64,.5 0 0 693 307 0
64,.75 0 998 2 0

128,.75 0 419 561 0 0

We generated N = 1000 graphs G of order n, by randomly assigning edges
with probability p, using a standard uniform random number generator.
We then ran an algorithm of our design to calculate the average number of
independent dominating sets of size k contained in all G for each k € [n].
The results are presented in the chart below for n = 12,16, 20,24 and p = .5.
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n|k=1k=2|k=3|k=4|k=5|k=6|k=T7T|k=28
12| 0.1 1.96 7.87 4 0.56 11 0 0
16 0 1.12 13.02 | 12.98 | 3.91 .14 0 0
20 0 0.55 | 13.08 | 26.33 | 8.83 1.39 0 0
24 0 0.17 | 15.81 | 45.94 | 21.6 2.66 0.05 0.01

This data appears to imply the following conjecture:

Conjecture 3.1. Y = X; + Xy + --- + X, suitably normalized converges
weakly to N(0,1).

We have no proof to date. The random variables { X} } are highly dependent
posing difficulty in verifying the conditions needed in many central limit
theorems for dependent sums.

[1]
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