THE INDEPENDENT DOMINATION NUMBER OF A RANDOM GRAPH

Lane Clark and Darin Johnson
Department of Mathematics
Southern Illinois University Carbondale
Carbondale, IL 62901-4408, USA

Abstract

We prove a two-point concentration for the independent domination number of the random graph $G_{n, p}$ provided $p^{2} \ln (n) \geq 64 \ln ((\ln n) / p)$.

Keywords: random graph, two-point concentration, independent domination.
2010 Mathematics Subject Classification: 05C80, 05C69.

1. Introduction

Let G be a graph with vertex set $[n]$ and let $S \subset[n]$. If for every vertex $u \notin S$ there is a vertex $v \in S$ such that u and v are adjacent then S is called a dominating set. If further for every $v, w \in S$ there is no edge between v and w then S is called an independent dominating set. The domination number, $\gamma(G)$ is the smallest integer s such that there exists a dominating set of cardinality s. The independent domination number, $i(G)$ is the smallest integer s such that there exists an independent dominating set of cardinality $s . \mathcal{G}(n, p)$ is the set of all graphs $G_{n, p}$ with vertex set $[n]$ and edges chosen independently with probability $0 \leq p=p(n) \leq 1$. Hence, for each $G_{n, p}$ $P\left(G_{n, p}\right)=p^{e\left(G_{n, p}\right)}(1-p)^{\binom{n}{2}-e\left(G_{n, p}\right)}$. For a graph property A we say A occurs asymptotically almost surely (a.a.s.) if $P\left(G_{n, p}\right.$ has property $\left.A\right) \rightarrow 1$ as $n \rightarrow \infty$. See Bollobás [2] for notation and terminology.

Weber [7] showed if $p=1 / 2$ then a.a.s. $\gamma\left(G_{n, p}\right)$ is either $\left\lfloor\log _{2} n-\right.$ $\left.\log _{2}\left(\log _{2} n \ln n\right)\right\rfloor+1$ or $\left\lfloor\log _{2} n-\log _{2}\left(\log _{2} n \ln n\right)\right\rfloor+2$ and a.a.s. $i\left(G_{n, p}\right)$
is $\left\lfloor\log _{2} n-\log _{2}\left(\log _{2} n \ln n\right)\right\rfloor+2$ or $\left\lfloor\log _{2} n-\log _{2}\left(\log _{2} n \ln n\right)\right\rfloor+3$. Godbole and Wieland [4] extended Weber's result showing if p is constant or $p=p(n) \rightarrow 0$ such that $p^{2} \ln n \geq 40 \ln \left(\left(\ln ^{2} n\right) / p\right)$ then a.a.s. $\gamma\left(G_{n, p}\right)$ is either $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)\right\rfloor+1$ or $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)\right\rfloor+2$, where $b=1 /(1-p)$. Very recently Bonato and Wang [3] showed that if p is constant then a.a.s. $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)\right\rfloor+1 \leq i\left(G_{n, p}\right) \leq\left\lfloor\log _{\mathrm{b}} n\right\rfloor$. In this paper we show that if p is constant or $p=p(n) \rightarrow 0$ such that $p^{2} \ln (n) \geq$ $64 \ln (\ln (n) / p)$ then a.a.s. $i\left(G_{n, p}\right)$ is either $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+$ 1 or $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2$. This extends Weber's result (the case $p=1 / 2$) and immediately implies Bonato and Wang's result (the case p is constant). We then empirically explore the number of independent dominating sets of size k ranging on $[n]$ and make a conjecture about the distribution.

2. Two-Point Concentration

Throughout this section we will use p as the probability an edge exists in $G=G_{n, p}, q=1-p$ the probability an edge does not exist in G and $b=\frac{1}{q}$. We will also make extensive use of two inequalities,

$$
\begin{gather*}
1-x \leq \exp \{-x\}, x \in \mathbb{R}, \tag{1}\\
1-x \geq \exp \left\{\frac{-x}{1-x}\right\}, x \in[0,1) .
\end{gather*}
$$

We begin by defining the random variables X_{k} and Y_{s} as the number of independent dominating sets of cardinality k in G and the number of independent dominating sets of cardinality s or less in G respectively. Clearly $Y_{s}=\sum_{k=1}^{s} X_{k}$. It is now obvious that

$$
E\left(X_{k}\right)=\binom{n}{k}\left(1-q^{k}\right)^{n-k} q^{\binom{k}{2}}
$$

and by linearity of expectation,

$$
E\left(Y_{s}\right)=\sum_{k=1}^{s} E\left(X_{k}\right)=\sum_{k=1}^{s}\binom{n}{k}\left(1-q^{k}\right)^{n-k} q^{\binom{k}{2}} .
$$

We now state our first lemma.

Lemma 2.1. Let $s=\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor$, then $E\left(Y_{s}\right) \rightarrow 0$ if p fixed or if $p \rightarrow 0$ as $n \rightarrow \infty$ and $p \geq \frac{e \ln ^{2} n}{n}$.

Proof. Lemma 2 of [4] states the expected number of dominating sets of size less than or equal to $r=\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)\right\rfloor$ goes to 0 if $p \geq \frac{e \ln ^{2} n}{n}$. Since every independent dominating set is a dominating set it is clear $E\left(Y_{r}\right) \rightarrow 0$ as $n \rightarrow \infty$. It remains to show,

$$
\sum_{k=r+1}^{s} E\left(X_{k}\right) \rightarrow 0
$$

Using Stirling's inequality, inequality (1),

$$
\begin{aligned}
E\left(X_{k}\right) & =\binom{n}{k}\left(1-q^{k}\right)^{n-k} q^{\binom{k}{2}} \\
& \leq \exp \left\{k \ln n+2 k-k \ln k-n q^{k}+\frac{k^{2}}{2} \ln q-\frac{k}{2} \ln q\right\} \\
& :=\exp \{f(k)\} .
\end{aligned}
$$

Now,

$$
f^{\prime}(k)=\ln n+1-\ln k+n q^{k} \ln \left(\frac{1}{q}\right)-k \ln \left(\frac{1}{q}\right)-\frac{1}{2} \ln \left(\frac{1}{q}\right) .
$$

Note $f^{\prime}(k)$ is decreasing for all positive value of k and $f^{\prime}\left(\log _{\mathrm{b}} n-\log _{\mathrm{b}}\right.$ $\left.\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right) \geq 0$ for sufficiently large n. So for sufficiently large n, we have $f(k)$ increasing for all $k \leq \log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2$. Hence, setting $k=\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2$ we have

$$
\begin{aligned}
E\left(Y_{s}\right) & \leq(k-r) \exp \{f(k)\} \\
& \leq\left(\log _{\mathrm{b}} 2\right) \exp \left\{k \ln n+2 k-k \ln k-n q^{k}+\frac{k^{2}}{2} \ln q-\frac{k}{2} \ln q\right\} \\
& \leq\left(\log _{\mathrm{b}} 2\right) \exp \left\{-k \ln k+3 k+\frac{k}{2} \ln \left(\frac{1}{q}\right)\right\} \\
& \rightarrow 0
\end{aligned}
$$

since $k \ln k$ clearly dominates the other two terms in the exponent.

We now note that since $i(G)$ is always at least 1 ,

$$
\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2 \geq 1 .
$$

A condition satisfied if

$$
p \geq \frac{e \ln ^{2} n}{2 n}
$$

which is easily seen after noting $p \leq \ln \frac{1}{q}$. However, the condition $p \geq \frac{e \ln ^{2} n}{n}$ used above is stronger so we must use it instead.

Lemma 2.2. If p fixed or if $p \rightarrow 0$ and $\frac{p^{2}}{64} \geq \frac{\ln \left(\frac{\ln n}{p}\right)}{\ln n}$ then $E\left(X_{s}\right) \rightarrow \infty$ for $s=\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2$.

Proof. Using inequality (2), Stirling's Formula, and that for $k^{2}=o(n)$ $(n)_{k}=(1-o(1)) n^{k}$

$$
\begin{aligned}
& E\left(X_{k}\right) \\
& =\binom{n}{k}\left(1-q^{k}\right)^{n-k} q^{\binom{k}{2}} \\
& \geq\binom{ n}{k}\left(1-q^{k}\right)^{n} q^{\frac{k^{2}}{2}} \\
(3) & \geq\binom{ n}{k} \exp \left\{\frac{-n q^{k}}{1-q^{k}}+\frac{k^{2}}{2} \ln q\right\} \\
& \geq(1-o(1)) \frac{n^{k}}{k!} \exp \left\{\frac{-n q^{k}}{1-q^{k}}+\frac{k^{2}}{2} \ln q\right\}\left(\text { if } k^{2}=o(n)\right) \\
& \geq(1-o(1))\left(\frac{n e}{k}\right)^{k}(2 \pi k)^{-\frac{1}{2}} \exp \left\{\frac{-n q^{k}}{1-q^{k}}+\frac{k^{2}}{2} \ln q\right\}(\text { if } k \rightarrow \infty) \\
& \geq(1-o(1)) \exp \left\{k \ln n+k-k \ln k-\frac{1}{2} \ln (2 \pi k)-\frac{n q^{k}}{1-q^{k}}+\frac{k^{2}}{2} \ln q\right\} .
\end{aligned}
$$

The condition $k^{2}=o(n)$ is satisfied if $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and $k=\log _{\mathrm{b}} n-\log _{\mathrm{b}}$ $\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2+\epsilon$, where $\epsilon>0$. One can easily show $\frac{d}{d k}\left(k \ln n+k-k \ln k-\frac{1}{2} \ln (2 \pi k)-\frac{n q^{k}}{1-q^{k}}+\frac{k^{2}}{2} \ln q\right) \geq 0$ as long as k is much smaller than $n q^{k}$, which is true for large n when assuming the just mentioned conditions. Substituting in (3) $k=s$ on the left and $k=$
$\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2+\frac{1}{2}$ on the right it is shown for sufficiently large n

$$
\begin{aligned}
E\left(X_{s}\right) \geq & (1-o(1)) \exp \left\{\frac{1}{2} \log _{\mathrm{b}} n \ln n\left(1-\frac{q^{\frac{1}{2}}}{1-q^{k}}\right)+\log _{\mathrm{b}} n\right. \\
& -\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right) \ln \left(\log _{\mathrm{b}} n \ln n\right)+\frac{1}{2} \ln \left(\log _{\mathrm{b}} n \ln n\right) \\
& \left.-\log _{\mathrm{b}} n \ln s-\left(1+\log _{\mathrm{b}} 2\right) \ln s-\frac{1}{2} \ln 2 \pi-\frac{1}{8} \ln \frac{1}{q}\right\} \\
\geq & (1-o(1)) \exp \{A-B\},
\end{aligned}
$$

where

$$
\begin{aligned}
A= & \frac{1}{2} \log _{\mathrm{b}} n \ln n\left(1-\frac{q^{\frac{1}{2}}}{1-q^{s}}\right)+\log _{\mathrm{b}} n, \\
B= & \log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right) \ln \left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} n \ln \left(\log _{\mathrm{b}} n\right), \\
& +\left(1+\log _{\mathrm{b}} 2\right) \ln \left(\log _{\mathrm{b}} n\right)+\frac{1}{2} \ln \left(2 \pi e^{L}\right)
\end{aligned}
$$

and L is any constant bounding $\frac{1}{8} \ln \frac{1}{q}$, which exists since $\ln \left(\frac{1}{q}\right)$ is constant or $\ln \left(\frac{1}{q}\right) \rightarrow 0$. Since $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and $\log _{\mathrm{b}} n \sim \frac{\ln n}{p}$ we have $p \gg \frac{\log _{\mathrm{b}} n \ln n}{n}$. So for n sufficiently large,

$$
\begin{aligned}
A & =\frac{1}{2} \log _{\mathrm{b}} n \ln n\left(1-\frac{q^{\frac{1}{2}}}{\left(1-q^{s}\right)}\right)+\log _{\mathrm{b}} n \\
& =\frac{1}{2} \log _{\mathrm{b}} n \ln n\left(1-\frac{q^{\frac{1}{2}}}{\left(1-\frac{q^{\frac{1}{2}} \log _{\mathrm{b}} n \ln n}{2 n}\right)}\right)+\log _{\mathrm{b}} n \\
& \geq \frac{1}{2} \log _{\mathrm{b}} n \ln n\left(1-\frac{q^{\frac{1}{2}}}{\left(1-\frac{p q^{\frac{1}{2}}}{2}\right)}\right)+\log _{\mathrm{b}} n \\
& =\frac{1}{2} \log _{\mathrm{b}} n \ln n\left(\frac{1-\frac{p q^{\frac{1}{2}}}{2}-q^{\frac{1}{2}}}{1-\frac{p q^{\frac{1}{2}}}{2}}\right)+\log _{\mathrm{b}} n
\end{aligned}
$$

Using the inequality, $\frac{x}{2} \leq 1-(1-x)^{\frac{1}{2}}$, we obtain

$$
\begin{aligned}
A & \geq \frac{p}{4} \log _{\mathrm{b}} n \ln n\left(\frac{1-(1-p)^{\frac{1}{2}}}{1-\frac{p q^{\frac{1}{2}}}{2}}\right)+\log _{\mathrm{b}} n \\
& \geq \frac{p}{4} \log _{\mathrm{b}} n \ln n\left(\frac{\frac{p}{2}}{1-\frac{p q^{\frac{1}{2}}}{2}}\right)+\log _{\mathrm{b}} n \\
& \geq \frac{p^{2}}{8} \log _{\mathrm{b}} n \ln n+\log _{\mathrm{b}} n
\end{aligned}
$$

Define C as:

$$
\begin{equation*}
C=\frac{p^{2} \log _{\mathrm{b}} n \ln n}{8}+\log _{\mathrm{b}} n \tag{4}
\end{equation*}
$$

We will now find p such that for n sufficiently large $\frac{C}{8}$ is larger than all terms in B. Hence

$$
\begin{align*}
(1-o(1)) \exp \{A-B\} & \geq(1-o(1)) \exp \{C-B\} \\
& \geq(1-o(1)) \exp \{C / 2\} \tag{5}\\
& \rightarrow \infty
\end{align*}
$$

It is obvious that the third and fourth terms of B are dominated by the first so we will only compare the first and second terms to $C / 8$. Comparing the first term,

$$
C / 8 \geq \frac{1}{2} \log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right) \ln \left(\log _{\mathrm{b}} n \ln n\right)
$$

if for sufficiently large n

$$
\begin{equation*}
\frac{p}{8} \geq \frac{\ln \left(\frac{\ln ^{2} n}{p}\right)}{\sqrt{2} \ln n} \tag{6}
\end{equation*}
$$

Comparing the second term,

$$
C / 8 \geq \log _{\mathrm{b}} n \ln \left(\log _{\mathrm{b}} n\right)
$$

if for sufficiently large n

$$
\begin{equation*}
\frac{p^{2}}{64} \geq \frac{\ln \left(\frac{\ln n}{p}\right)}{\ln n} \tag{7}
\end{equation*}
$$

Clearly (7) implies (6) and the condition $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and the lemma is proven.

Lemma 2.3. If p fixed or if $p \rightarrow 0$ and $\frac{p^{2}}{64} \geq \frac{\ln \left(\frac{\ln n}{p}\right)}{\ln n}$ then $\frac{V \text { ar } X_{s}}{E^{2}\left(X_{s}\right)} \rightarrow 0$ for $s=\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2$.

Proof. Following the proof of Lemma 3 in [4] it is easily derived that

$$
\begin{aligned}
\operatorname{Var}\left(X_{s}\right) \leq & E\left(X_{s}\right)-E^{2}\left(X_{s}\right) \\
& +\binom{n}{s} \sum_{m=0}^{s-1}\binom{s}{m}\binom{n-s}{s-m}\left(1-2 q^{s}+q^{2 s-m}\right)^{n-2 s+m} q^{2\binom{s}{2}-\binom{m}{2} .}
\end{aligned}
$$

We write $s=\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2+\epsilon$ where $\epsilon=\epsilon(n)=\left\lfloor\log _{\mathrm{b}} n-\right.$ $\left.\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2-\log _{\mathrm{b}} n+\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)-\log _{\mathrm{b}} 2$ and observe that $1 \leq \epsilon \leq 2$.

It is immediately obvious for any s such that $E\left(X_{s}\right) \rightarrow \infty$,

$$
E\left(X_{s}\right)=o\left(E^{2}\left(X_{s}\right)\right) .
$$

We will now show

$$
\begin{equation*}
\binom{n}{s}\binom{s}{0}\binom{n-s}{s}\left(1-2 q^{s}+q^{2 s}\right)^{n-2 s} q^{2\binom{s}{2}}-E^{2}\left(X_{s}\right)=o\left(E^{2}\left(X_{s}\right)\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
& \binom{n}{s} \sum_{m=1}^{s-1}\binom{s}{m}\binom{n-s}{s-m}\left(1-2 q^{s}+q^{2 s-m}\right)^{n-2 s+m} q^{2\binom{s}{2}-\binom{m}{2}} \tag{9}\\
& =o\left(E^{2}\left(X_{s}\right)\right) .
\end{align*}
$$

To show (8) note,

$$
\begin{aligned}
& \binom{n}{s}\binom{s}{0}\binom{n-s}{s}\left(1-2 q^{s}+q^{2 s}\right)^{n-2 s} q^{2\binom{s}{2}}-E^{2}\left(X_{s}\right) \\
& \leq E^{2}\left(X_{s}\right)\left(\left(1-q^{s}\right)^{-2 s}-1\right) \\
& \leq E^{2}\left(X_{s}\right)\left(\exp \left\{\frac{2 s q^{s}}{1-q^{s}}\right\}-1\right) \quad(\text { by }(2)) .
\end{aligned}
$$

Since $p \gg \frac{\ln ^{\frac{3}{2}} n}{n^{\frac{1}{2}}}$, we know that $\frac{2 s q^{s}}{1-q^{s}} \geq 0$ and approaches 0 as $n \rightarrow \infty$. Thus,

$$
\left(\exp \left\{\frac{2 s q^{s}}{1-q^{s}}\right\}-1\right) \rightarrow 0
$$

To show (9) let

$$
f(m)=\binom{s}{m}\binom{n-s}{s-m}\left(1-2 q^{s}+q^{2 s-m}\right)^{n-2 s+m} q^{2\binom{s}{2}-\binom{m}{2}}
$$

and note for sufficiently large n

$$
\begin{aligned}
f(m) & \leq\binom{ s}{m} \frac{n^{s-m}}{(s-m)!}\left(1-2 q^{s}+q^{2 s-m}\right)^{n-2 s+m} q^{2\binom{s}{2}-\binom{m}{2}} \\
& \leq 2\binom{s}{m} \frac{n^{s-m}}{(s-m)!}\left(1-2 q^{s}+q^{2 s-m}\right)^{n} q^{2\binom{s}{2}-\binom{m}{2}} \\
& \leq 2\binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp \left(n\left(-2 q^{s}+q^{2 s-m}\right)\right) q^{2\binom{s}{2}-\binom{m}{2} \quad \text { (by (1)) }}
\end{aligned}
$$

where the second inequality holds for $p \gg \frac{\ln \frac{3}{2} n}{n^{\frac{1}{2}}}$. Define

$$
g(m):=2\binom{s}{m} \frac{n^{s-m}}{(s-m)!} \exp \left(n\left(-2 q^{s}+q^{2 s-m}\right)\right) q^{2\binom{s}{2}-\binom{m}{2}}
$$

and consider the the ratio of consecutive terms of $g(m)$.

$$
\begin{equation*}
h(m):=\frac{g(m+1)}{g(m)}=\frac{(s-m)^{2}}{n q^{m}(m+1)} \exp \left\{n p q^{2 s-m-1}\right\} \tag{10}
\end{equation*}
$$

We will show $h(m) \geq 1$ iff $m \geq m_{0}$ for some $m_{0}(n) \rightarrow \infty$, hence g is first decreasing and then increasing. Further we will show $g(1) \geq g(s-1)$, which implies $\sum_{m=1}^{s-1} f(m) \leq s g(1)$. Observe for sufficiently large n,

$$
\begin{aligned}
h(1) & =\frac{(s-1)^{2}}{2 n q} \exp \left\{\frac{n p}{q^{2}} q^{2 s}\right\} \\
& \leq \frac{\log _{\mathrm{b}}{ }^{2} n}{2 n q} \exp \left\{\frac{\left(\log _{\mathrm{b}} n \ln n\right)^{2} p}{4 n q^{2-2 \epsilon}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\ln ^{2} n}{2 n p^{2} q} \exp \left\{\frac{\ln ^{4} n}{4 n p q^{2-2 \epsilon}}\right\} \quad \text { by (1)) } \\
& \rightarrow 0
\end{aligned}
$$

since $p \gg \frac{\ln n}{n^{\frac{1}{2}}}$ and

$$
\begin{aligned}
h(s-1) & =\frac{1}{n s q^{s-1}} \exp \left\{n p q^{s}\right\} \\
& \geq \frac{2 q^{1-\epsilon}}{\log _{\mathrm{b}}{ }^{2} n \ln n} \exp \left\{\frac{p q^{\epsilon} \log _{\mathrm{b}} n \ln n}{2}\right\} \\
& =\frac{2 q^{1-\epsilon} \ln ^{2} \frac{1}{q}}{\ln ^{3} n} \exp \left\{\frac{p q^{\epsilon} \ln ^{2} n}{-2 \ln q}\right\} \\
& \geq \frac{2 q^{1-\epsilon} p^{2}}{\ln ^{3} n} \exp \left\{\frac{q^{1+\epsilon} \ln ^{2} n}{2}\right\} \quad(\text { by }(1),(2)) \\
& \geq 1
\end{aligned}
$$

provided $p \neq 1-o(1)$. Also,

$$
h(m)=\frac{(s-m)^{2}}{n(m+1) q^{m}} \exp \left\{n p q^{2 s-m-1}\right\} \geq 1
$$

iff

$$
n p q^{2 s-m-1} \geq \ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)
$$

iff

$$
m \geq \log _{\mathrm{b}}\left(\frac{\ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)}{n p q^{2 s-1}}\right)
$$

iff

$$
m \geq \log _{\mathrm{b}}\left(\frac{4 n \ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)}{p \log _{\mathrm{b}}^{2}(n) \ln ^{2}(n)}\right)+2 \epsilon-1
$$

iff
$m \geq \log _{\mathrm{b}}\left(\frac{4 n}{p}\right)+\log _{\mathrm{b}}\left(\ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)\right)-2 \log _{\mathrm{b}}\left(\ln n \log _{\mathrm{b}} n\right)+2 \epsilon-1$.

Define
$x(m)=\log _{\mathrm{b}}\left(\frac{4 n}{p}\right)+\log _{\mathrm{b}}\left(\ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)\right)-2 \log _{\mathrm{b}}\left(\ln n \log _{\mathrm{b}} n\right)+2 \epsilon-1$.
Now,

$$
\frac{d}{d m} x(m)=\frac{\left(m^{2}-\left(s-1-\frac{1}{\ln \left(\frac{1}{q}\right)}\right) m-\left(1-\frac{1}{\ln \left(\frac{1}{q}\right)}\right) s+\frac{2}{\ln \left(\frac{1}{q}\right)}\right)}{(m+1)(s-m)\left(\ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)\right)}
$$

and the roots of the numerator are:

$$
\begin{aligned}
& \frac{s-1-\frac{1}{\ln \left(\frac{1}{q}\right)} \pm \sqrt{\left(s-1-\frac{1}{\ln \left(\frac{1}{q}\right)}\right)^{2}+4 s\left(1-\frac{1}{\ln \left(\frac{1}{q}\right)}\right)-\frac{8}{\ln \left(\frac{1}{q}\right)}}}{2} \\
& =\frac{s-1-\frac{1}{\ln \left(\frac{1}{q}\right)} \pm(s+1) \sqrt{\left(1-\frac{3}{(s+1) \ln \left(\frac{1}{q}\right)}\right)^{2}-\frac{8}{(s+1) \ln ^{2}\left(\frac{1}{q}\right)}}}{2} .
\end{aligned}
$$

Using Taylor Series with remainder about 0 , one can show if $0 \leq z \leq 3-2 \sqrt{2}$ then for any y such that $|y| \leq z$

$$
1-3 y-\frac{8 z^{2}}{\left(1-6 z+z^{2}\right)^{\frac{3}{2}}} \leq \sqrt{(1-3 y)^{2}-8 y^{2}} \leq 1-3 y+\frac{8 z^{2}}{\left(1-6 z+z^{2}\right)^{\frac{3}{2}}}
$$

Letting $y=z=\frac{1}{(s-1) \ln \left(\frac{1}{q}\right)}$, we show

$$
\frac{d}{d m} x(m)=\frac{\left(m+1-\frac{1}{\ln \left(\frac{1}{q}\right)}-\delta\right)\left(m-s+\frac{2}{\ln \left(\frac{1}{q}\right)}+\delta\right)}{(m+1)(s-m)\left(\ln \left(\frac{n(m+1) q^{m}}{(s-m)^{2}}\right)\right)}
$$

where $|\delta| \leq$

$$
(s+1) \ln ^{2}\left(\frac{1}{q}\right)\left(1-\frac{6}{(s+1) \ln \left(\frac{1}{q}\right)}+\frac{1}{(s+1)^{2} \ln ^{2}\left(\frac{1}{q}\right)}\right)^{\frac{3}{2}} .
$$

Thus $\delta=\Theta\left(\frac{1}{p \ln n}\right) \rightarrow 0$ as $n \rightarrow \infty$ since $p \gg \frac{1}{\ln (n)}$.
So on $(-\infty,-1)$ and $\left(\ln ^{-1}\left(\frac{1}{q}\right)-1+\delta, s-2 \ln ^{-1}\left(\frac{1}{q}\right)-\delta\right) x(m)$ is decreasing and on $\left(-1, \ln ^{-1}\left(\frac{1}{q}\right)-1+\delta\right)$ and $\left(s-2 \ln ^{-1}\left(\frac{1}{q}\right)-\delta, s\right) x(m)$ is increasing. Thus $m_{1}=\ln ^{-1}\left(\frac{1}{q}\right)-1+\delta$ is a relative maximum and $m_{2}=s-2 \ln ^{-1}\left(\frac{1}{q}\right)-\delta$ is a relative minimum of $x(m)$.

Note $m_{1} \in[1, s-1]$ iff $p \leq 1-e^{-\frac{1}{2-\delta}}$ and $m_{2} \in[1, s-1]$ iff $p \leq 1-e^{-\frac{2}{1-\delta}}$. Also for n sufficiently large, $x(m)$ is continuous on $[1, s-1]$, for every $m \in$ $[1, s-1] x(m) \in[1, s-1]$, and $s-1>x(1)>x(s-1)>1$.

If $p>1-e^{-\frac{2}{1-\delta}}$, on $[1, s-1] x(m)$ has an absolute maximum at 1 and an absolute minimum at $s-1$. So by the above information and the intermediate value theorem there exists a unique $m_{0} \in[1, s-1]$ such that $m_{0}=x\left(m_{0}\right)$ and $x\left(m_{0}\right)>x(s-1)$.

If $1-e^{-\frac{1}{2-\delta}}<p \leq 1-e^{-\frac{2}{1-\delta}}$, on $[1, s-1] x(m)$ has an absolute maximum at 1 and an absolute minimum at m_{2}. So by the above information and the intermediate value theorem there exists a unique $m_{0} \in[1, s-1]$ such that $m_{0}=x\left(m_{0}\right)$. Further, one can show by iteration that $x\left(m_{0}\right) \geq x(s-1)$.

If $p \leq 1-e^{-\frac{1}{2-\delta}}$ or $p \rightarrow 0$, on $[1, s-1] x(m)$ has an absolute maximum at m_{1} and an absolute minimum at m_{2}. So by the above information and the intermediate value theorem there exists a unique $m_{0} \in[1, s-1]$ such that $m_{0}=x\left(m_{0}\right)$. Further, one can show by iteration that $x\left(m_{0}\right) \geq x(s-1)$.

Thus, in any of the three cases there exists a unique $m_{0} \in[1, s-1]$ such that $\forall m \geq m_{0}=x\left(m_{0}\right) \geq x(m)$.

Now, for n sufficiently large

$$
\ln \left(\frac{n\left(m_{0}+1\right) q^{m_{0}}}{\left(s-m_{0}\right)^{2}}\right) \geq \ln \left(n s q^{s-1}\right) \geq \ln \left(\frac{\log _{\mathrm{b}}(n) \ln (n) s}{4 q^{1-\epsilon}}\right)
$$

which goes to infinity as n goes to infinity. Also, $\log _{\mathrm{b}}\left(\frac{4 n}{p}\right) \gg 2 \log _{\mathrm{b}}$ $\left(\log _{\mathrm{b}}(n) \ln (n)\right)$ and $2 \epsilon-1$ is bounded, thus $m_{0} \rightarrow \infty$. Therefore, $h(m) \geq 1$ iff $m \geq m_{0} \rightarrow \infty$ as $n \rightarrow \infty$.

Also, $g(1) \geq g(s-1)$ iff

$$
\frac{n^{s-1}}{(s-1)!} \exp \left\{n q^{2 s-1}\right\} \geq n \exp \left\{n q^{s+1}\right\} q^{-\binom{s-1}{2}}
$$

iff

$$
\frac{n^{s}}{s!} \exp \left\{-n\left(q^{s+1}-q^{2 s-1}\right)\right\} q^{\binom{s-1}{2}} \geq \frac{n^{2}}{s}
$$

which is true since

$$
\frac{n^{s}}{s!} \exp \left\{-n\left(q^{s+1}-q^{2 s-1}\right)\right\} q^{\binom{s-1}{2}} \geq E\left(X_{s}\right) \geq(1-o(1)) \exp \{C / 2\}
$$

where $C=\frac{p^{2} \log _{\mathrm{b}} n \ln n}{8}+\log _{\mathrm{b}} n$ and $(1-o(1)) \exp \{C / 2\} \geq n^{2} / s$ if $p \geq \frac{24}{\ln n}$, a condition clearly satisfied by our hypothesis. Hence we have shown,

$$
\binom{n}{s} \sum_{m=1}^{s-1}\binom{s}{m}\binom{n-s}{s-m}\left(1-2 q^{s}-q^{2 s-m}\right)^{n-2 s+m} q^{2\binom{s}{2}-\binom{m}{2}} \leq s\binom{n}{s} g(1) .
$$

Finally, we show $s\binom{n}{s} g(1)=o\left(E^{2}\left(X_{s}\right)\right)$,

$$
\begin{aligned}
\frac{s\binom{n}{s} g(1)}{E^{2}\left(X_{s}\right)} & =\frac{2 s^{2} n^{s-1} \exp \left\{n\left(q^{2 s-1}-2 q^{s}\right)\right\}}{\binom{n}{s}\left(1-q^{s}\right)^{2(n-s)}(s-1)!} \\
& \leq \frac{2 s^{3} \exp \left\{n\left(q^{2 s-1}-2 q^{s}\right)\right\}}{(1-o(1)) n\left(1-q^{s}\right)^{2 n}}\left(s^{2}=o(n)\right) \\
& \leq \frac{2 s^{3}}{(1-o(1)) n} \exp \left\{n\left(q^{2 s-1}-2 q^{s}+\frac{2 q^{s}}{1-q^{s}}\right)\right\}(\text { by }(2)) \\
& \leq \frac{2 s^{3}}{(1-o(1)) n} \exp \left\{\frac{n q^{2 s-1}(1+2 q)}{1-q^{s}}\right\} \\
& \leq \frac{2 \log _{\mathrm{b}}{ }^{3} n}{(1-o(1)) n} \exp \left\{\frac{3 \log _{\mathrm{b}}{ }^{2} n \ln ^{2} n}{4 n\left(1-q^{s}\right)} q^{2 \epsilon-1}\right\} \\
& \rightarrow 0
\end{aligned}
$$

since $p \gg \frac{\ln n}{n^{\frac{1}{3}}}$.
We have thus shown if $s=\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2+\epsilon=$ $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2$ then $\operatorname{Var}\left(X_{s}\right)=o\left(E^{2}\left(X_{s}\right)\right)$ provided $\frac{p^{2}}{64} \geq \frac{\ln \left(\frac{\ln n}{p}\right)}{\ln n}$.

We now can state our main result.
Theorem 2.4. Let p be fixed or $\frac{p^{2}}{64} \geq \frac{\ln \left(\frac{\ln n}{p}\right)}{\ln n}$ then $i(G)$ is equal to $\left\lfloor\log _{b} n-\right.$ $\left.\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+1$ or $\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2$ a.a.s.

Proof. By Markov's Inequality and Lemma 2.1 if $s=\left\lfloor\log _{\mathrm{b}} n-\log _{\mathrm{b}}\right.$ $\left.\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor$ then

$$
P(i(G) \leq s)=P\left(Y_{s} \geq 1\right) \leq E\left(Y_{s}\right) \rightarrow 0
$$

and by Chebyshev's Inequality, Lemma 2.2, and Lemma 2.3 if $s=\left\lfloor\log _{\mathrm{b}} n-\right.$ $\left.\log _{\mathrm{b}}\left(\log _{\mathrm{b}} n \ln n\right)+\log _{\mathrm{b}} 2\right\rfloor+2$ then

$$
P(i(G)>s) \leq P\left(X_{s}=0\right) \leq P\left(\left|X_{s}-E\left(X_{s}\right)\right| \geq E\left(X_{s}\right)\right) \leq \frac{\operatorname{Var}\left(X_{s}\right)}{E^{2}\left(X_{s}\right)} \rightarrow 0
$$

3. Empirical Data

In this section we used a standard random number generator which we verified to return a nearly uniform distribution for samples of size 10^{6} lending some credibility to the empirical results.

We generated $N=1000$ graphs G of order n, by randomly assigning edges with probability p, using a standard uniform random number generator. We then ran an algorithm of our design to count the number of graphs with an independent domination number of size k for each $k \in[n]$. The results are presented in the chart below for $n=16,32,64$, and 128 with probabilities $p=.5$ and .75 .

n, p	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$
$16, .5$	0	522	476	2	0
$32, .5$	0	36	962	2	0
$64, .5$	0	0	693	307	0
$64, .75$	0	998	2	0	0
$128, .75$	0	419	561	0	0

We generated $N=1000$ graphs G of order n, by randomly assigning edges with probability p , using a standard uniform random number generator. We then ran an algorithm of our design to calculate the average number of independent dominating sets of size k contained in all G for each $k \in[n]$. The results are presented in the chart below for $n=12,16,20,24$ and $p=.5$.

n	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$	$k=7$	$k=8$
12	0.1	1.96	7.87	4	0.56	.11	0	0
16	0	1.12	13.02	12.98	3.91	.14	0	0
20	0	0.55	13.08	26.33	8.83	1.39	0	0
24	0	0.17	15.81	45.94	21.6	2.66	0.05	0.01

This data appears to imply the following conjecture:
Conjecture 3.1. $Y=X_{1}+X_{2}+\cdots+X_{n}$ suitably normalized converges weakly to $N(0,1)$.

We have no proof to date. The random variables $\left\{X_{k}\right\}$ are highly dependent posing difficulty in verifying the conditions needed in many central limit theorems for dependent sums.

References

[1] N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992).
[2] B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).
[3] A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307-322.
[4] A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1-13.
[5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[6] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[7] K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium 16 (1981) 31-43.

