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Abstract

Let G = (V,E) be a graph and f be a function f : V → {0, 1, 2}.
A vertex u with f(u) = 0 is said to be undefended with respect to
f , if it is not adjacent to a vertex with positive weight. The function
f is a weak Roman dominating function (WRDF) if each vertex u

with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the
function f

′

: V → {0, 1, 2} defined by f
′

(u) = 1, f
′

(v) = f(v) − 1
and f

′

(w) = f(w) if w ∈ V − {u, v}, has no undefended vertex. The
weight of f is w(f) =

∑

v∈V f(v). The weak Roman domination

number, denoted by γr(G), is the minimum weight of a WRDF in G.
In this paper, we characterize the class of trees and split graphs for
which γr(G) = γ(G) and find γr-value for a caterpillar, a 2 × n grid
graph and a complete binary tree.
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1. Introduction

Cockayne et al. [1] defined a Roman dominating function (RDF) on a graph
G = (V,E) to be a function f : V → {0, 1, 2} satisfying the condition that
every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. For a real valued function f : V → R, the weight of f is
w(f) =

∑

v∈V f(v), and for S ⊆ V, f(S) =
∑

v∈S f(v), so w(f) = f(V ).
The Roman Domination number, denoted by γR(G) is the minimum weight
of an RDF in G; that is γR(G) = min{w(f) : f is a RDF in G}. An RDF
of weight γR(G) is called a γR(G)-function.

Let V0, V1 and V2 be the sets of vertices assigned the values 0, 1 and
2 respectively, under f . There is a one to one correspondence between the
functions f : V → {0, 1, 2} and the ordered partitions (V0, V1, V2) of V . Thus
f = (V0, V1, V2).

Henning et al. [4] defined the weak Roman dominating function as
follows. A vertex u ∈ V0 is undefended, if it is not adjacent to a vertex
in V1 or V2. The function f is a weak Roman dominating function if each
vertex u ∈ V0 is adjacent to a vertex v ∈ V1 ∪ V2 such that the function
f

′

: V → {0, 1, 2} defined by f
′

(u) = 1, f
′

(v) = f(v)− 1 and f
′

(w) = f(w)
if w ∈ V −{u, v}, has no undefended vertex. The weight w(f) of f is defined
to be |V1|+ 2|V2|. The weak Roman domination number, denoted by γr(G),
is the minimum weight of a WRDF in G; that is, γr(G) = min{w(f) : f is a
WRDF in G}. A WRDF of weight γr(G) is called a γr(G)-function. Roman
domination and Weak Roman domination in graphs have been studied in
[1, 4 − 12].

Notice that in a WRDF, every vertex in V0 is dominated by a vertex
in V1 ∪ V2, while in an RDF every vertex in V0 is dominated by at least
one vertex in V2 (this is more expensive). Furthermore, in a WRDF, every
vertex in V0 can be defended without creating an undefended vertex.

It has been observed that γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G). In this
paper, we focus our study on the relation γ(G) ≤ γr(G). We characterize
the class of trees and split graphs for which γr(G) = γ(G) and find γr-value
for some specific graphs.

2. Notation

For notation and graph theoretic terminology we in general follow [2].
Throughout this paper, we only consider finite undirected graphs with nei-
ther loops nor multiple edges. Let G = (V,E) be a graph with vertex
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set V of order n and edge set E, and let v be a vertex in V. The open

neighborhood of v is N(v) = {u ∈ V : uv ∈ E} and the closed neighbor-
hood of v is N [u] = {v} ∪ N(v). For a set S ⊆ V , its open neighborhood
N(S) =

⋃

v∈S N(v) and its closed neighborhood N [S] = N(S) ∪ S. A vertex
u is called a private neighbor of v with respect to S, or simply an S-pn of

v, if N [u] ∩ S = {v}. The set pn(v, S) = N [v] − N [S − {v}] of all S-pns
of v is called the private neighbor set of v with respect to S. The exter-

nal private neighbor set of v with respect to S is defined as epn(v, S) =
pn(v, S)−{v}. Hence the set epn(v, S) consist of all S-pns of v that belong
to V − S.

Distance between two vertices u and v is denoted as d(u, v). For k ≥ 1,
the open neighborhood of a vertex v ∈ V (T ), denoted by Nk(v) is the set of
vertices in V (T ) different from v whose distance from v is at most k. That
is Nk(v) = {w ∈ V (T ) − {v} : d(v,w) ≤ k}. The boundary of the open
k-neighborhood of v, denoted by ∂Nk(v) is the set of vertices in V (T ) whose
distance from v is exactly k. That is ∂Nk(v) = {w ∈ V (T ) : d(v,w) = k}.
Note that v 6∈ Nk(v), ∂Nk(v) ⊆ Nk(v) if k ≥ 1.

A star K1,n has one vertex v of degree n and n vertices of degree one.
A split graph is a graph G = (V,E) whose vertices can be partitioned into
two sets X and Y where the vertices in X are independent and vertices in
Y form a complete graph. A leaf is a vertex whose degree is one. A support

is a vertex which is adjacent to at least one leaf. A weak support is a vertex
which is adjacent to exactly one leaf. A strong support is a vertex which is
adjacent to at least two leaf vertices. A rooted tree is a tree in which one of
the vertices is distinguished from others. The distinguished vertex is called
the root of the tree. The length of the path from the root r to a vertex x

is the depth of x in T . A complete binary tree is a 2-ary tree in which all
leaves have the same depth and all internal vertices have degree 3, except
the root. If T is a complete binary tree with root vertex v, the set of all
vertices with depth k are called vertices at level k. A caterpillar is a tree
whose removal of leaf vertices leaves a path which is called the spine of the
caterpillar.

For arbitrary graphs G and H, the Cartesian product of G and H is
defined to be the graph G�H with vertices {(u, v) : u ∈ G, v ∈ H}. Two
vertices (u1, v1) and (u2, v2) are adjacent in G�H if and only if one of the
following is true: u1 = u2 and v1 is adjacent to v2 in H; or v1 = v2 and u1
is adjacent to u2 in G. If G = Pm and H = Pn, then the Cartesian product
G�H is called the m× n grid graph and is denoted by Gm,n.
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A set S ⊆ V dominates a set U ⊆ V , if every vertex in U is adjacent to a
vertex of S. If S dominates V − S, then S is called a dominating set of G.
The domination number γ(G) is the minimum cardinality of a dominating
set of G. A dominating set of cardinality γ(G) is called a γ(G)-set. The
literature on Domination and its variations in graphs has been surveyed and
detailed in the two books by Haynes et al. [2, 3].

We need the following results for our further discussion.

Theorem 2.1 [4]. For any graph G, γ(G) ≤ γr(G) ≤ γR(G) ≤ 2γ(G).

Theorem 2.2 [4]. For n ≥ 4, γr(Cn) = γr(Pn) =
⌈

3n
7

⌉

.

Theorem 2.3 [4]. For any graph G, γ(G) = γr(G) if and only if there exists

a γ(G)-set S such that

(i) pn(v, S) induces a clique for every v ∈ S.

(ii) for every vertex u ∈ V (G) − S that is not a private neighbor of any

vertex of S, there exists a vertex v ∈ S such that pn(v, S)
⋃

{u} induces

a clique.

3. Properties of Weak Roman Domination Number

Theorem 3.1. For any graph G, γr(G) = 1 if and only if G is complete.

Theorem 3.2. For any graph G of order n, n > 3 which is not complete,

γr(G) = 2 and γ(G) = 1 if and only if G has a vertex of degree n− 1.

Theorem 3.3. For any graph G on n vertices, γr(G) = n if and only if

G = Kn.

We omit the proof of the above theorems as they are straightforward.

4. Classifying Graphs with γr(G) = γ(G)

In this section, we first characterize trees T for which γr(T ) = γ(T ). For
this purpose we introduce a family ℑ of trees as follows. A tree T ∈ ℑ if the
following conditions hold.

(i) No vertex of T is a strong support.
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(ii) If u ∈ V (T ) is a non support which is adjacent to a support, then N(u)
contains exactly one vertex which is neither a support nor adjacent to a
support and all other members of N(u) are either supports or adjacent
to supports [see Figure 1].

(iii) For any vertex u of degree at least two, there exist at least one leaf v
such that d(u, v) ≤ 3.

(iv) Two vertices which are neither supports nor adjacent to supports are
not adjacent.

u

Figure 1. A tree T ∈ ℑ.

We now prove the following lemmas.

Lemma 4.1. Let T be a tree with γr(T ) = γ(T ). Then there exists a γ(T )-
set S such that for every u in V −S, there exists a v ∈ S adjacent to u such

that either pn(v, S) = ∅ or pn(v, S) = {u}.

Proof. Follows directly from Theorem 2.3.

Lemma 4.2. Let T be a tree with γr(T ) = γ(T ). Then no support of T is

a strong support.

Proof. Suppose not. Then there exists a strong support w in T and clearly
w ∈ S where S is any γ(T )-set and by Theorem 2.3, pn(w,S) forms a clique,
which is a contradiction.

Lemma 4.3. Let T be a tree with γr(T ) = γ(T ) and S be a γ(T )-set. Then

if x1, x2 ∈ S are adjacent then both x1 and x2 are supports.

Proof. Suppose not. Then the following cases arise.
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Case (i). x1 is a support and x2 is not a support.

Clearly x2 has a private neighbor z in V − S. For otherwise, S1 = S −{x2}
will be a γ(T )-set contradicting the minimality of S. Since x2 is not a
support, there exists a path (x2, z, w, y) such that either pn(y, S) = ∅ or
pn(y, S) = {w} where w ∈ V − S and y ∈ S. Now S1 = [S − {x2, y}]

⋃

{w}
is a γ(T )-set contradicting the minimality of S.

Case (ii). x1 and x2 are not supports.

Then as in case (i) corresponding to each xi, i = 1, 2, there exists paths (xi,
zi, yi, wi) i = 1, 2 such that either pn(yi, S) = ∅ or pn(yi, S) = {wi} and
zi is a private neighbor of xi, i = 1, 2 where wi ∈ V − S and yi ∈ S. Now
S1 = S−{x1, x2, y1, y2}

⋃

{w1, w2} is a γ(T )-set, which is a contradiction.

Lemma 4.4. Let T be a tree with γr(T ) = γ(T ). If u ∈ V (T ) is a non

support which is adjacent to a support, then N(u) contains exactly one vertex

which is neither a support nor adjacent to a support and all other members

of N(u) are either supports or adjacent to supports.

Proof. Let u ∈ V (T ) be at a distance two from a leaf. By Lemma 4.1,
there exists a γ(T )-set S such that for every w ∈ V −S, there exists a v ∈ S

adjacent to w such that either pn(v, S) = ∅ or pn(v, S) = {w}. By Lemma
4.1, u ∈ V −S. Now there exists a vertex z1 ∈ S which is adjacent to u such
that pn(z1, S) = ∅. Now we claim that each member of N(u)−{z1} is either
a support or adjacent to a support. Suppose not. Let u1 ∈ N(u)− {z1} be
neither a support nor adjacent to a support.

Case (i). u1 ∈ S.

Since u1 is neither a support nor adjacent to a support, there is a path (u1,
u2, u3, u4) such that u1, u4 ∈ S and u2, u3 ∈ V − S. Now u2 is a private
neighbor of u1 with respect to S. For otherwise S1 = S −{z1, u1}

⋃

{u} is a
γ(T )-set, a contradiction. Further either pn(u4, S) = {u3} or pn(u4, S) = ∅.
Hence S1 = S−{z1, u1, u4}

⋃

{u, u3} is a γ(T )-set, which is a contradiction.

Case (ii). u1 6∈ S.

Then there exists a path (u1, u2, u3, u4) such that u1, u3 ∈ V −S and u2, u4 ∈
S and pn(u4, S) = ∅. Now S1 = S−{z1, u2, u4}

⋃

{u, u3} is a γ(T )-set, which
is a contradiction. Hence in both the cases each member of N(u) − {z1} is
a support.
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Lemma 4.5. Let T be a tree with γr(T ) = γ(T ). For any vertex u of degree

at least two, there exists at least one leaf v such that d(u, v) ≤ 3.

Proof. By Lemma 4.1, there exists a γ(T )-set such that for every u in
V − S, there exists a v ∈ S adjacent to u such that either pn(v, S) = ∅ or
pn(v, S) = {u}. Let v ∈ V (T ) with deg(v) ≥ 2. Suppose no leaf w exists
such that d(v,w) ≤ 3.

Case (i). v ∈ S.

Since deg(v) ≥ 2, by Lemmas 4.1 and 4.3, there exists a path (v, v1, v2, v3, v4)
such that v2, v4 ∈ S and v1, v3 ∈ V − S where pn(vi, S) = ∅, i = {2, 4}.
Now S1 = (S − {v2, v4})

⋃

{v3} is a dominating set, contradicting the
minimality of S.

Case (ii). v 6∈ S.

Subcase (a). pn(v1, S) = {v}.
Then as in case (i), there exists a path (v1, v2, v3, v4, v5) such that v1, v3, v5 ∈
S and v2, v4 ∈ V − S with pn(vi, S) = ∅, where i = 3, 5. Hence S1 =
(S −{v3, v5})∪ {v4} is a dominating set, contradicting the minimality of S.

Subcase (b). v 6∈ pn(v1, S).

As in Subcase (a), we get a contradiction.

Lemma 4.6. Let T be a tree with γr(T ) = γ(T ). Two vertices which are

neither supports nor adjacent to supports are not adjacent.

Proof. Proof follows from Lemmas 4.3, 4.4 and 4.5.

As an immediate consequence of Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, we
have the following characterization of trees T that satisfy γr(T ) = γ(T ).

Theorem 4.7. Let T be a tree, then γr(T ) = γ(T ) if and only if T ∈ ℑ.

Proof. Suppose T ∈ ℑ. Let f : V (T ) → {0, 1, 2} be defined by f(w) = 1 if
w is a support or not adjacent to a support and f(w) = 0 otherwise. Then
clearly f is a γr-function with V2 = ∅ and |V1| = γ(T ). Hence γr(T ) = γ(T ).
Converse follows from Lemma 4.2, 4.4, 4.5 and 4.6.

We now proceed to characterize the class of split graphs for which γr(G) =
γ(G).
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Theorem 4.8. For any split graph G with bipartition (X,Y ) where X is

independent and Y is complete, γr(G) = γ(G) if and only if deg(y) = n, for

every y in Y , where |Y | = n.

Proof. Let G be a split graph satisfying the given conditions. Then the
function f = (V0, V1, V2) defined by V1 = X,V2 = ∅ and V0 = V − S is a
weak Roman dominating function and S = X is the minimum dominating
set. Hence γr(G) = 2|V2|+ |V1| = |X| = |S| = γ(G).

Conversely suppose that G is a split graph with bipartition (X,Y ) where
X is independent and Y is complete satisfying γr(G) = γ(G). Let f =
(V0, V1, V2) be a γr-function of G and S be a γ-set of G. Since γr(G) = γ(G),
V2 = ∅. Thus S = V1 is a γ(G)-set.

First we claim that deg(y) = n, for every y ∈ Y . Let y ∈ Y and
(y1, y2, . . . , ym) be the neighbors of y ∈ X.

Case (i). y ∈ S.

We claim that yi ∈ epn(y, S), 1 ≤ i ≤ m. Suppose not. Then there exists a
yj for some j such that yj 6∈ epn(y, S). Then by Theorem 2.3, there exists a
w ∈ S such that pn(w,S)

⋃

{yj} induces a clique, which is a contradiction.
Hence our claim, Further by Theorem 2.3, pn(y, S) induces a clique which
implies that m = 1. Therefore deg(y) = n for every y in Y .

Case (ii). y 6∈ S.

Subcase (a). yi 6∈ S, 1 ≤ i ≤ m.

We claim that m = 1. Suppose not. Then corresponding to each yi, there
exists zi ∈ Y ∩ S, 1 ≤ i ≤ m, m ≥ 2 such that ziyi ∈ E and deg(zi) = n

(by Case (i)). Hence S1 = (S −
⋃m

i=1 zi)
⋃

{y} is a γ-set, which is a contra-
diction to the minimality of S. Therefore m = 1 and deg(y) = n, for every
y in Y .

Subcase (b). yj ∈ S for some j.

We claim that m = 1. Suppose not. Then corresponding to each yi, i 6= j,
there exists a zi ∈ S, i 6= j, 1 ≤ i ≤ m, m ≥ 2 such that ziyi ∈ E and
deg(zi) = n (by Case (i)). Hence S1 = (S − (

⋃m
i=1 zi))

⋃

{yj}, i 6= j is a
γ-set, which is a contradiction to the minimality of S. Therefore m = 1 and
deg(y) = n, for every y in Y.
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5. Specific Values of Weak Roman Domination Number

In this section we first determine the value of γr for a caterpillar T . For this
purpose we proceed as follows.

Let v1, v2, v3, . . . , vk be the support vertices of T and ni be the number
of internal vertices of the (vi, vi+1)-path, 1 ≤ i ≤ k−1. Let ni ≡ ji (mod 7).
Now we consider a weak support (6= v1) as an artificial strong support using
the following procedure.

Let vr(6= v1) be the first weak support of the spine of T . It will be
considered as an artificial strong support, if one of the following conditions
hold.

(i) Both vr−1 and vr+1 are strong supports with jr−1 ∈ {2, 4} and jr ∈
{2, 4}.

(ii) vr−1 is a strong support with jr−1 ∈ {2, 4} and vr+1 is a weak support
with jr ∈ {1, 3}.

(ii) vr−1 is a weak support with jr−1 ∈ {1, 3} and vr+1 is a strong support
with jr ∈ {2, 4}.

Let vs be the next weak support on the spine of T . Then it is considered as
an artificial strong support if one of the following conditions hold.

(a) Both vs−1 and vs+1 are weak supports with js−1 ∈ {1, 3} and js ∈
{1, 3}.

(b) vs−1 is a strong (artificial strong) support and vs+1 is a strong support
with js−1 ∈ {2, 4} and js ∈ {2, 4}.

(c) vs−1 is a strong (artificial strong) support and vs+1 is a weak support
with js−1 ∈ {2, 4} and js ∈ {1, 3}.

(d) vs−1 is a weak support and vs+1 is a strong support with js−1 ∈ {1, 3}
and js ∈ {2, 4}.

We repeat this process of identifying artificial strong supports till all the
support vertices in the spine are exhausted. Consider the caterpillar in
Figure 2. v2, v5 and v7 are artificial strong supports by (i), (a) and (d)
respectively.

We now determine the value of γr for a caterpillar in the following
theorem.

Theorem 5.1. Let T be any caterpillar. Let S = {s : s is either a strong

support or an artificial strong support} and W = {w : w is a weak support}.
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Let T1 = T − (N [S]
⋃

W ). Let Q1, Q2, Q3, . . . , Qk be the components of T1.

Then γr(T ) = 2|S|+
∑k

i=1 γr(Qi).

v5v4
v3v2

v1 v6 v7

v8
..... ..... ..... ..... .....} } } } }.....}multiples of 7

Figure 2

Proof. Let T be any caterpillar. Identify the artificial strong supports
using the above said procedure. Let S and W be as defined in the theorem.

Let v be an artificial strong support. Let u1 and u2 be the supports
that precede and succeed v on the spine. Let P be the (u1, u2) path.
Let w1, w2, w3, . . . , wk be the internal vertices of the (u1, v)-path and z1, z2,

z3, . . . , zs be the internal vertices of the (v, u2)-path.

Case (i). u1 and u2 are weak supports.

If one legion is posted at v, then
⌈

3k
7

⌉

+
⌈

3s
7

⌉

+ 3 = M1 legions are required
to safeguard the vertices on the path P . But on the other hand, if two
legions are posted at v, then

⌈3(k−1)
7

⌉

+
⌈3(s−1)

7

⌉

+ 4 legions are required to
safeguard the path P , which is less than M1. Hence we assign two legions
at v to safeguard N [v].

Case (ii). u1 is a weak support and u2 is a strong support.

If one legion is posted at v, then
⌈

3k
7

⌉

+
⌈3(s−1)

7

⌉

+4 = M2 legions are required
to safeguard the path P . But on the other hand, if two legions are posted at
v, then

⌈3(k−1)
7

⌉

+
⌈3(s−2)

7

⌉

+5 legions are required to safeguard the path P ,
which is less than M2. Hence we assign two legions at v to safeguard N [v].

Case (iii). u1 is a strong support and u2 is a weak support.

If one legion is posted at v, then
⌈3(k−1)

7

⌉

+
⌈

3s
7

⌉

+4 = M3 legions are required
to safeguard the path P . But on the other hand, if two legions are posted at
v, then

⌈3(k−2)
7

⌉

+
⌈3(s−1)

7

⌉

+5 legions are required to safeguard the path P ,
which is less than M3. Hence we assign two legions at v to safeguard N [v].

Case (iv). Both u1 and u2 are strong supports.
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If one legion is posted at v, then
⌈3(k−1)

7

⌉

+
⌈3(s−1)

7

⌉

+ 5 = M4 legions are
required to safeguard the path P . But on the other hand, if two legions are
posted at v, then

⌈3(k−2)
7

⌉

+
⌈3(s−2)

7

⌉

+ 6 legions are required to safeguard
the path P , which is less than M4. Hence we assign two legions at v to
safeguard N [v].

Hence in all the cases we see that two legions are needed at v to safeguard
N [v].

Let T1 = T − (N [S]
⋃

W ). Let Qi, 1 ≤ i ≤ k be the components of
T1. Now we define a function f : V → {0, 1, 2} by f(u) = 2 when u ∈ S,
f(u) = 0 when u ∈ N(S) and f(u) = fi(u) if u ∈ Qi, 1 ≤ i ≤ k where fi is
a γr-function of Qi. Hence γr(T ) = 2|S|+

∑k
i=1 γr(Qi).

In the following two theorems we determine the values of γr for a 2×n grid
graph G2,n and a complete binary tree.

Theorem 5.2. For any 2× n grid graph G2,n,

γr(G2,n) =



















⌊

4n

5

⌋

if n ≡ 0 (mod 5),

⌊

4n

5

⌋

+ 1 otherwise.

Proof. Let f = (V0, V1, V2) be a weak Roman dominating function for
G2,n. Then any vertex of V2 can dominate at most four vertices, while
two vertices in V1 can dominate at most five vertices. Thus in order to
safeguard G2,n, we must have V2 = 0 and 5

2 |V1| ≥ 2n. Therefore f(V ) =
2|V2|+ |V1| ≥

⌊

4n
5

⌋

.

When n = 5k, k ≥ 1, clearly 4k legions are needed to safeguard 10k
vertices. Therefore γr(G2,n) =

⌊

4n
5

⌋

. When n = 5k + i, k ≥ 0, 4k legions
can safeguard only 10k vertices. Therefore γr(G2,n) >

⌊

4n
5

⌋

.

We show that γr(G2,n) =
⌊

4n
5

⌋

+ 1 by construction (see Figure 3). Let
the vertices of G2,n be v1,1, v1,2, v1,3, . . . , v1,n and v2,1, v2,2, v2,3, . . . , v2,n. Now
we define a weak Roman dominating function g as follows. When n = 5k+i,
0 ≤ i ≤ 4, g(v1,5r+j) = 1, j ∈ {2, 5} and g(v2,5r+j) = 1, j ∈ {1, 4}, 0 ≤ r ≤ k.
When n = 5k + 3, g(v2,n) = 1.

For all the remaining vertices u, let g(u) = 0. It is easily seen that
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g(V ) =



















⌊

4n

5

⌋

if n ≡ 0 (mod 5),

⌊

4n

5

⌋

+ 1 otherwise.

n = 5k n = 5k + 1 n = 5k + 2

n = 5k + 3 n = 5k + 4

Figure 3. The construction for G2,n, where n = 5k + i, 0 ≤ i ≤ 4.

Filled in circles denote vertices in V1.

Theorem 5.3. For any complete binary tree T with level k, γr(T ) = 2m(1+
23 + 26 + · · · + 2k−1), where k ≡ m (mod 3).

Proof. Let T be a k-level complete binary tree rooted at v. We define a
function f : V (T ) → {0, 1, 2} as follows

Case (i). k ≡ 0 (mod 3).
For each j such that 3j + 2 < k, j ≥ 0, f(∂N3j+2(v)) = 2, f(v) = 1 and
f(w) = 0, if w ∈ V−({v}∪∂N3j+2(v)). Then |V2| = 2k−1+2k−4+· · ·+25+22,
|V1| = 1. Clearly f is a γr function and

γr(T ) = 2|V2|+ |V1|

= 2(22 + 25 + · · ·+ 2k−1) + 1

= 1 + 23 + 26 + · · ·+ 2k

= 20(1 + 23 + 26 + · · ·+ 2k).

Hence γr(T ) = 2m(1 + 23 + 26 + · · · + 2k) where m = 0.
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Case (ii). k ≡ 1 (mod 3).
For each j such that 0 ≤ 3j ≤ k− 1, j ≥ 0, f(∂N3j(v)) = 2 and f(w) = 0, if
w ∈ V − ∂N3j(v). Then |V2| = 1+ |∂N3(v)|+ |∂N6(v)|+ · · ·+ |∂Nk−1(v)| =
1 + 23 + 26 + · · ·+ 2k−1 and |V1| = 0. Clearly f is a γr function and

γr(T ) = 2|V2|+ |V1|

= 2(1 + 23 + 26 + · · ·+ 2k−1)

Hence γr(T ) = 2m(1 + 23 + 26 + · · · + 2k−1) where m = 1.

Case (iii). k ≡ 2 (mod 3).

For each j such that 1 ≤ 3j + 1 ≤ k − 1, j ≥ 0, f(∂N3j+1(v)) = 2 and
f(w) = 0, for all w ∈ V − ∂N3j+1(v). Then |V2| = |∂N1(v)| + |∂N4(v)| +
· · · + |∂Nk−1(v)| and |V1| = 0. Clearly f is a γr function and

γr(T ) = 2|V2|+ |V1|

= 2(2 + 24 + 27 + · · ·+ 2k−1)

= 22(1 + 23 + 26 + · · · + 2k−2)

Hence γr(T ) = 2m(1 + 23 + 26 + · · · + 2k−m) where m = 2.
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