Discussiones Mathematicae Graph Theory 31 (2011) 115–128

WEAK ROMAN DOMINATION IN GRAPHS

P. ROUSHINI LEELY PUSHPAM

D.B. Jain College Chennai – 600 097, Tamil Nadu, India

e-mail: roushinip@yahoo.com

AND

T.N.M. MALINI MAI

SRR Engineering College Chennai – 603 103, Tamil Nadu, India

e-mail: malinitnm2008@yahoo.com

Abstract

Let G = (V, E) be a graph and f be a function $f: V \to \{0, 1, 2\}$. A vertex u with f(u) = 0 is said to be *undefended* with respect to f, if it is not adjacent to a vertex with positive weight. The function f is a weak Roman dominating function (WRDF) if each vertex u with f(u) = 0 is adjacent to a vertex v with f(v) > 0 such that the function $f': V \to \{0, 1, 2\}$ defined by f'(u) = 1, f'(v) = f(v) - 1 and f'(w) = f(w) if $w \in V - \{u, v\}$, has no undefended vertex. The weight of f is $w(f) = \sum_{v \in V} f(v)$. The weak Roman domination number, denoted by $\gamma_r(G)$, is the minimum weight of a WRDF in G. In this paper, we characterize the class of trees and split graphs for which $\gamma_r(G) = \gamma(G)$ and find γ_r -value for a caterpillar, a $2 \times n$ grid graph and a complete binary tree.

Keywords: domination number, weak Roman domination number.

2010 Mathematics Subject Classification: 05C.

1. INTRODUCTION

Cockayne et al. [1] defined a Roman dominating function (RDF) on a graph G = (V, E) to be a function $f : V \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. For a real valued function $f : V \to R$, the weight of f is $w(f) = \sum_{v \in V} f(v)$, and for $S \subseteq V, f(S) = \sum_{v \in S} f(v)$, so w(f) = f(V). The Roman Domination number, denoted by $\gamma_R(G)$ is the minimum weight of an RDF in G; that is $\gamma_R(G) = \min\{w(f) : f \text{ is a RDF in } G\}$. An RDF of weight $\gamma_R(G)$ is called a $\gamma_R(G)$ -function.

Let V_0, V_1 and V_2 be the sets of vertices assigned the values 0, 1 and 2 respectively, under f. There is a one to one correspondence between the functions $f: V \to \{0, 1, 2\}$ and the ordered partitions (V_0, V_1, V_2) of V. Thus $f = (V_0, V_1, V_2)$.

Henning et al. [4] defined the weak Roman dominating function as follows. A vertex $u \in V_0$ is undefended, if it is not adjacent to a vertex in V_1 or V_2 . The function f is a weak Roman dominating function if each vertex $u \in V_0$ is adjacent to a vertex $v \in V_1 \cup V_2$ such that the function $f': V \to \{0, 1, 2\}$ defined by f'(u) = 1, f'(v) = f(v) - 1 and f'(w) = f(w)if $w \in V - \{u, v\}$, has no undefended vertex. The weight w(f) of f is defined to be $|V_1| + 2|V_2|$. The weak Roman domination number, denoted by $\gamma_r(G)$, is the minimum weight of a WRDF in G; that is, $\gamma_r(G) = \min\{w(f): f \text{ is a}$ WRDF in G}. A WRDF of weight $\gamma_r(G)$ is called a $\gamma_r(G)$ -function. Roman domination and Weak Roman domination in graphs have been studied in [1, 4 - 12].

Notice that in a WRDF, every vertex in V_0 is dominated by a vertex in $V_1 \cup V_2$, while in an RDF every vertex in V_0 is dominated by at least one vertex in V_2 (this is more expensive). Furthermore, in a WRDF, every vertex in V_0 can be defended without creating an undefended vertex.

It has been observed that $\gamma(G) \leq \gamma_r(G) \leq \gamma_R(G) \leq 2\gamma(G)$. In this paper, we focus our study on the relation $\gamma(G) \leq \gamma_r(G)$. We characterize the class of trees and split graphs for which $\gamma_r(G) = \gamma(G)$ and find γ_r -value for some specific graphs.

2. NOTATION

For notation and graph theoretic terminology we in general follow [2]. Throughout this paper, we only consider finite undirected graphs with neither loops nor multiple edges. Let G = (V, E) be a graph with vertex

set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of v is $N(v) = \{u \in V : uv \in E\}$ and the closed neighborhood of v is $N[u] = \{v\} \cup N(v)$. For a set $S \subseteq V$, its open neighborhood $N(S) = \bigcup_{v \in S} N(v)$ and its closed neighborhood $N[S] = N(S) \cup S$. A vertex u is called a private neighbor of v with respect to S, or simply an S-pn of v, if $N[u] \cap S = \{v\}$. The set $pn(v, S) = N[v] - N[S - \{v\}]$ of all S-pns of v is called the private neighbor set of v with respect to S. The external private neighbor set of v with respect to S is defined as epn(v, S) = $pn(v, S) - \{v\}$. Hence the set epn(v, S) consist of all S-pns of v that belong to V - S.

Distance between two vertices u and v is denoted as d(u, v). For $k \ge 1$, the open neighborhood of a vertex $v \in V(T)$, denoted by $N_k(v)$ is the set of vertices in V(T) different from v whose distance from v is at most k. That is $N_k(v) = \{w \in V(T) - \{v\} : d(v, w) \le k\}$. The boundary of the open k-neighborhood of v, denoted by $\partial N_k(v)$ is the set of vertices in V(T) whose distance from v is exactly k. That is $\partial N_k(v) = \{w \in V(T) : d(v, w) = k\}$. Note that $v \notin N_k(v), \partial N_k(v) \subseteq N_k(v)$ if $k \ge 1$.

A star $K_{1,n}$ has one vertex v of degree n and n vertices of degree one. A split graph is a graph G = (V, E) whose vertices can be partitioned into two sets X and Y where the vertices in X are independent and vertices in Y form a complete graph. A leaf is a vertex whose degree is one. A support is a vertex which is adjacent to at least one leaf. A weak support is a vertex which is adjacent to exactly one leaf. A strong support is a vertex which is adjacent to at least two leaf vertices. A rooted tree is a tree in which one of the vertices is distinguished from others. The distinguished vertex is called the root of the tree. The length of the path from the root r to a vertex xis the depth of x in T. A complete binary tree is a 2-ary tree in which all leaves have the same depth and all internal vertices have degree 3, except the root. If T is a complete binary tree with root vertex v, the set of all vertices with depth k are called vertices at level k. A caterpillar is a tree whose removal of leaf vertices leaves a path which is called the spine of the caterpillar.

For arbitrary graphs G and H, the Cartesian product of G and H is defined to be the graph $G \Box H$ with vertices $\{(u, v) : u \in G, v \in H\}$. Two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G \Box H$ if and only if one of the following is true: $u_1 = u_2$ and v_1 is adjacent to v_2 in H; or $v_1 = v_2$ and u_1 is adjacent to u_2 in G. If $G = P_m$ and $H = P_n$, then the Cartesian product $G \Box H$ is called the $m \times n$ grid graph and is denoted by $G_{m,n}$. A set $S \subseteq V$ dominates a set $U \subseteq V$, if every vertex in U is adjacent to a vertex of S. If S dominates V - S, then S is called a *dominating set* of G. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of G. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. The literature on Domination and its variations in graphs has been surveyed and detailed in the two books by Haynes *et al.* [2, 3].

We need the following results for our further discussion.

Theorem 2.1 [4]. For any graph G, $\gamma(G) \leq \gamma_r(G) \leq \gamma_R(G) \leq 2\gamma(G)$.

Theorem 2.2 [4]. For $n \ge 4$, $\gamma_r(C_n) = \gamma_r(P_n) = \left\lceil \frac{3n}{7} \right\rceil$.

Theorem 2.3 [4]. For any graph $G, \gamma(G) = \gamma_r(G)$ if and only if there exists a $\gamma(G)$ -set S such that

- (i) pn(v, S) induces a clique for every $v \in S$.
- (ii) for every vertex $u \in V(G) S$ that is not a private neighbor of any vertex of S, there exists a vertex $v \in S$ such that $pn(v, S) \bigcup \{u\}$ induces a clique.

3. PROPERTIES OF WEAK ROMAN DOMINATION NUMBER

Theorem 3.1. For any graph $G, \gamma_r(G) = 1$ if and only if G is complete.

Theorem 3.2. For any graph G of order n, n > 3 which is not complete, $\gamma_r(G) = 2$ and $\gamma(G) = 1$ if and only if G has a vertex of degree n - 1.

Theorem 3.3. For any graph G on n vertices, $\gamma_r(G) = n$ if and only if $G = \overline{K_n}$.

We omit the proof of the above theorems as they are straightforward.

4. Classifying Graphs with $\gamma_r(G) = \gamma(G)$

In this section, we first characterize trees T for which $\gamma_r(T) = \gamma(T)$. For this purpose we introduce a family \Im of trees as follows. A tree $T \in \Im$ if the following conditions hold.

(i) No vertex of T is a strong support.

- (ii) If $u \in V(T)$ is a non support which is adjacent to a support, then N(u) contains exactly one vertex which is neither a support nor adjacent to a support and all other members of N(u) are either supports or adjacent to supports [see Figure 1].
- (iii) For any vertex u of degree at least two, there exist at least one leaf v such that $d(u, v) \leq 3$.
- (iv) Two vertices which are neither supports nor adjacent to supports are not adjacent.

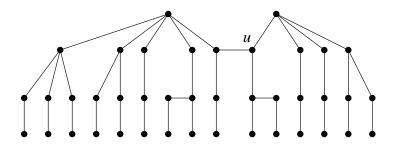


Figure 1. A tree $T \in \Im$.

We now prove the following lemmas.

Lemma 4.1. Let T be a tree with $\gamma_r(T) = \gamma(T)$. Then there exists a $\gamma(T)$ -set S such that for every u in V - S, there exists a $v \in S$ adjacent to u such that either $pn(v, S) = \emptyset$ or $pn(v, S) = \{u\}$.

Proof. Follows directly from Theorem 2.3.

Lemma 4.2. Let T be a tree with $\gamma_r(T) = \gamma(T)$. Then no support of T is a strong support.

Proof. Suppose not. Then there exists a strong support w in T and clearly $w \in S$ where S is any $\gamma(T)$ -set and by Theorem 2.3, pn(w, S) forms a clique, which is a contradiction.

Lemma 4.3. Let T be a tree with $\gamma_r(T) = \gamma(T)$ and S be a $\gamma(T)$ -set. Then if $x_1, x_2 \in S$ are adjacent then both x_1 and x_2 are supports.

Proof. Suppose not. Then the following cases arise.

Case (i). x_1 is a support and x_2 is not a support.

Clearly x_2 has a private neighbor z in V - S. For otherwise, $S_1 = S - \{x_2\}$ will be a $\gamma(T)$ -set contradicting the minimality of S. Since x_2 is not a support, there exists a path (x_2, z, w, y) such that either $pn(y, S) = \emptyset$ or $pn(y, S) = \{w\}$ where $w \in V - S$ and $y \in S$. Now $S_1 = [S - \{x_2, y\}] \bigcup \{w\}$ is a $\gamma(T)$ -set contradicting the minimality of S.

Case (ii). x_1 and x_2 are not supports.

Then as in case (i) corresponding to each x_i , i = 1, 2, there exists paths (x_i, z_i, y_i, w_i) i = 1, 2 such that either $pn(y_i, S) = \emptyset$ or $pn(y_i, S) = \{w_i\}$ and z_i is a private neighbor of x_i , i = 1, 2 where $w_i \in V - S$ and $y_i \in S$. Now $S_1 = S - \{x_1, x_2, y_1, y_2\} \bigcup \{w_1, w_2\}$ is a $\gamma(T)$ -set, which is a contradiction.

Lemma 4.4. Let T be a tree with $\gamma_r(T) = \gamma(T)$. If $u \in V(T)$ is a non support which is adjacent to a support, then N(u) contains exactly one vertex which is neither a support nor adjacent to a support and all other members of N(u) are either supports or adjacent to supports.

Proof. Let $u \in V(T)$ be at a distance two from a leaf. By Lemma 4.1, there exists a $\gamma(T)$ -set S such that for every $w \in V - S$, there exists a $v \in S$ adjacent to w such that either $pn(v, S) = \emptyset$ or $pn(v, S) = \{w\}$. By Lemma 4.1, $u \in V - S$. Now there exists a vertex $z_1 \in S$ which is adjacent to u such that $pn(z_1, S) = \emptyset$. Now we claim that each member of $N(u) - \{z_1\}$ is either a support or adjacent to a support. Suppose not. Let $u_1 \in N(u) - \{z_1\}$ be neither a support nor adjacent to a support.

Case (i). $u_1 \in S$.

Since u_1 is neither a support nor adjacent to a support, there is a path (u_1, u_2, u_3, u_4) such that $u_1, u_4 \in S$ and $u_2, u_3 \in V - S$. Now u_2 is a private neighbor of u_1 with respect to S. For otherwise $S_1 = S - \{z_1, u_1\} \bigcup \{u\}$ is a $\gamma(T)$ -set, a contradiction. Further either $pn(u_4, S) = \{u_3\}$ or $pn(u_4, S) = \emptyset$. Hence $S_1 = S - \{z_1, u_1, u_4\} \bigcup \{u, u_3\}$ is a $\gamma(T)$ -set, which is a contradiction.

Case (ii). $u_1 \notin S$.

Then there exists a path (u_1, u_2, u_3, u_4) such that $u_1, u_3 \in V - S$ and $u_2, u_4 \in S$ and $pn(u_4, S) = \emptyset$. Now $S_1 = S - \{z_1, u_2, u_4\} \bigcup \{u, u_3\}$ is a $\gamma(T)$ -set, which is a contradiction. Hence in both the cases each member of $N(u) - \{z_1\}$ is a support.

120

Lemma 4.5. Let T be a tree with $\gamma_r(T) = \gamma(T)$. For any vertex u of degree at least two, there exists at least one leaf v such that $d(u, v) \leq 3$.

Proof. By Lemma 4.1, there exists a $\gamma(T)$ -set such that for every u in V - S, there exists a $v \in S$ adjacent to u such that either $pn(v, S) = \emptyset$ or $pn(v, S) = \{u\}$. Let $v \in V(T)$ with $deg(v) \geq 2$. Suppose no leaf w exists such that $d(v, w) \leq 3$.

Case (i). $v \in S$.

Since $deg(v) \geq 2$, by Lemmas 4.1 and 4.3, there exists a path (v, v_1, v_2, v_3, v_4) such that $v_2, v_4 \in S$ and $v_1, v_3 \in V - S$ where $pn(v_i, S) = \emptyset$, $i = \{2, 4\}$. Now $S_1 = (S - \{v_2, v_4\}) \bigcup \{v_3\}$ is a dominating set, contradicting the minimality of S.

Case (ii). $v \notin S$.

Subcase (a). $pn(v_1, S) = \{v\}.$

Then as in case (i), there exists a path $(v_1, v_2, v_3, v_4, v_5)$ such that $v_1, v_3, v_5 \in S$ and $v_2, v_4 \in V - S$ with $pn(v_i, S) = \emptyset$, where i = 3, 5. Hence $S_1 = (S - \{v_3, v_5\}) \cup \{v_4\}$ is a dominating set, contradicting the minimality of S.

Subcase (b). $v \notin pn(v_1, S)$.

As in Subcase (a), we get a contradiction.

Lemma 4.6. Let T be a tree with $\gamma_r(T) = \gamma(T)$. Two vertices which are neither supports nor adjacent to supports are not adjacent.

Proof. Proof follows from Lemmas 4.3, 4.4 and 4.5.

As an immediate consequence of Lemmas 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, we have the following characterization of trees T that satisfy $\gamma_r(T) = \gamma(T)$.

Theorem 4.7. Let T be a tree, then $\gamma_r(T) = \gamma(T)$ if and only if $T \in \mathfrak{S}$.

Proof. Suppose $T \in \mathfrak{F}$. Let $f: V(T) \to \{0, 1, 2\}$ be defined by f(w) = 1 if w is a support or not adjacent to a support and f(w) = 0 otherwise. Then clearly f is a γ_r -function with $V_2 = \emptyset$ and $|V_1| = \gamma(T)$. Hence $\gamma_r(T) = \gamma(T)$. Converse follows from Lemma 4.2, 4.4, 4.5 and 4.6.

We now proceed to characterize the class of split graphs for which $\gamma_r(G) = \gamma(G)$.

Theorem 4.8. For any split graph G with bipartition (X, Y) where X is independent and Y is complete, $\gamma_r(G) = \gamma(G)$ if and only if deg(y) = n, for every y in Y, where |Y| = n.

Proof. Let G be a split graph satisfying the given conditions. Then the function $f = (V_0, V_1, V_2)$ defined by $V_1 = X, V_2 = \emptyset$ and $V_0 = V - S$ is a weak Roman dominating function and S = X is the minimum dominating set. Hence $\gamma_r(G) = 2|V_2| + |V_1| = |X| = |S| = \gamma(G)$.

Conversely suppose that G is a split graph with bipartition (X, Y) where X is independent and Y is complete satisfying $\gamma_r(G) = \gamma(G)$. Let $f = (V_0, V_1, V_2)$ be a γ_r -function of G and S be a γ -set of G. Since $\gamma_r(G) = \gamma(G)$, $V_2 = \emptyset$. Thus $S = V_1$ is a $\gamma(G)$ -set.

First we claim that deg(y) = n, for every $y \in Y$. Let $y \in Y$ and (y_1, y_2, \ldots, y_m) be the neighbors of $y \in X$.

Case (i). $y \in S$.

We claim that $y_i \in epn(y, S)$, $1 \leq i \leq m$. Suppose not. Then there exists a y_j for some j such that $y_j \notin epn(y, S)$. Then by Theorem 2.3, there exists a $w \in S$ such that $pn(w, S) \bigcup \{y_j\}$ induces a clique, which is a contradiction. Hence our claim, Further by Theorem 2.3, pn(y, S) induces a clique which implies that m = 1. Therefore deg(y) = n for every y in Y.

Case (ii). $y \notin S$.

Subcase (a). $y_i \notin S, 1 \leq i \leq m$.

We claim that m = 1. Suppose not. Then corresponding to each y_i , there exists $z_i \in Y \cap S$, $1 \leq i \leq m$, $m \geq 2$ such that $z_i y_i \in E$ and $deg(z_i) = n$ (by Case (i)). Hence $S_1 = (S - \bigcup_{i=1}^m z_i) \bigcup \{y\}$ is a γ -set, which is a contradiction to the minimality of S. Therefore m = 1 and deg(y) = n, for every y in Y.

Subcase (b). $y_j \in S$ for some j.

We claim that m = 1. Suppose not. Then corresponding to each y_i , $i \neq j$, there exists a $z_i \in S$, $i \neq j$, $1 \leq i \leq m$, $m \geq 2$ such that $z_i y_i \in E$ and $deg(z_i) = n$ (by Case (i)). Hence $S_1 = (S - (\bigcup_{i=1}^m z_i)) \bigcup \{y_j\}, i \neq j$ is a γ -set, which is a contradiction to the minimality of S. Therefore m = 1 and deg(y) = n, for every y in Y.

5. Specific Values of Weak Roman Domination Number

In this section we first determine the value of γ_r for a caterpillar T. For this purpose we proceed as follows.

Let $v_1, v_2, v_3, \ldots, v_k$ be the support vertices of T and n_i be the number of internal vertices of the (v_i, v_{i+1}) -path, $1 \le i \le k-1$. Let $n_i \equiv j_i \pmod{7}$. Now we consider a weak support $(\ne v_1)$ as an *artificial strong support* using the following procedure.

Let $v_r \neq v_1$ be the first weak support of the spine of T. It will be considered as an artificial strong support, if one of the following conditions hold.

- (i) Both v_{r-1} and v_{r+1} are strong supports with $j_{r-1} \in \{2,4\}$ and $j_r \in \{2,4\}$.
- (ii) v_{r-1} is a strong support with $j_{r-1} \in \{2, 4\}$ and v_{r+1} is a weak support with $j_r \in \{1, 3\}$.
- (ii) v_{r-1} is a weak support with $j_{r-1} \in \{1,3\}$ and v_{r+1} is a strong support with $j_r \in \{2,4\}$.

Let v_s be the next weak support on the spine of T. Then it is considered as an artificial strong support if one of the following conditions hold.

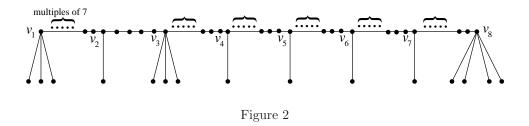
- (a) Both v_{s-1} and v_{s+1} are weak supports with $j_{s-1} \in \{1,3\}$ and $j_s \in \{1,3\}$.
- (b) v_{s-1} is a strong (artificial strong) support and v_{s+1} is a strong support with $j_{s-1} \in \{2, 4\}$ and $j_s \in \{2, 4\}$.
- (c) v_{s-1} is a strong (artificial strong) support and v_{s+1} is a weak support with $j_{s-1} \in \{2, 4\}$ and $j_s \in \{1, 3\}$.
- (d) v_{s-1} is a weak support and v_{s+1} is a strong support with $j_{s-1} \in \{1, 3\}$ and $j_s \in \{2, 4\}$.

We repeat this process of identifying artificial strong supports till all the support vertices in the spine are exhausted. Consider the caterpillar in Figure 2. v_2, v_5 and v_7 are artificial strong supports by (i), (a) and (d) respectively.

We now determine the value of γ_r for a caterpillar in the following theorem.

Theorem 5.1. Let T be any caterpillar. Let $S = \{s : s \text{ is either a strong support or an artificial strong support}\}$ and $W = \{w : w \text{ is a weak support}\}$.

Let $T_1 = T - (N[S] \bigcup W)$. Let $Q_1, Q_2, Q_3, \ldots, Q_k$ be the components of T_1 . Then $\gamma_r(T) = 2|S| + \sum_{i=1}^k \gamma_r(Q_i)$.



Proof. Let T be any caterpillar. Identify the artificial strong supports using the above said procedure. Let S and W be as defined in the theorem.

Let v be an artificial strong support. Let u_1 and u_2 be the supports that precede and succeed v on the spine. Let P be the (u_1, u_2) path. Let $w_1, w_2, w_3, \ldots, w_k$ be the internal vertices of the (u_1, v) -path and $z_1, z_2, z_3, \ldots, z_s$ be the internal vertices of the (v, u_2) -path.

Case (i). u_1 and u_2 are weak supports.

If one legion is posted at v, then $\left\lceil \frac{3k}{7} \right\rceil + \left\lceil \frac{3s}{7} \right\rceil + 3 = M_1$ legions are required to safeguard the vertices on the path P. But on the other hand, if two legions are posted at v, then $\left\lceil \frac{3(k-1)}{7} \right\rceil + \left\lceil \frac{3(s-1)}{7} \right\rceil + 4$ legions are required to safeguard the path P, which is less than M_1 . Hence we assign two legions at v to safeguard N[v].

Case (ii). u_1 is a weak support and u_2 is a strong support. If one legion is posted at v, then $\left\lceil \frac{3k}{7} \right\rceil + \left\lceil \frac{3(s-1)}{7} \right\rceil + 4 = M_2$ legions are required to safeguard the path P. But on the other hand, if two legions are posted at v, then $\left\lceil \frac{3(k-1)}{7} \right\rceil + \left\lceil \frac{3(s-2)}{7} \right\rceil + 5$ legions are required to safeguard the path P, which is less than M_2 . Hence we assign two legions at v to safeguard N[v].

Case (iii). u_1 is a strong support and u_2 is a weak support. If one legion is posted at v, then $\left\lceil \frac{3(k-1)}{7} \right\rceil + \left\lceil \frac{3s}{7} \right\rceil + 4 = M_3$ legions are required to safeguard the path P. But on the other hand, if two legions are posted at v, then $\left\lceil \frac{3(k-2)}{7} \right\rceil + \left\lceil \frac{3(s-1)}{7} \right\rceil + 5$ legions are required to safeguard the path P, which is less than M_3 . Hence we assign two legions at v to safeguard N[v].

Case (iv). Both u_1 and u_2 are strong supports.

If one legion is posted at v, then $\left\lceil \frac{3(k-1)}{7} \right\rceil + \left\lceil \frac{3(s-1)}{7} \right\rceil + 5 = M_4$ legions are required to safeguard the path P. But on the other hand, if two legions are posted at v, then $\left\lceil \frac{3(k-2)}{7} \right\rceil + \left\lceil \frac{3(s-2)}{7} \right\rceil + 6$ legions are required to safeguard the path P, which is less than M_4 . Hence we assign two legions at v to safeguard N[v].

Hence in all the cases we see that two legions are needed at v to safeguard N[v].

Let $T_1 = T - (N[S] \bigcup W)$. Let $Q_i, 1 \le i \le k$ be the components of T_1 . Now we define a function $f: V \to \{0, 1, 2\}$ by f(u) = 2 when $u \in S$, f(u) = 0 when $u \in N(S)$ and $f(u) = f_i(u)$ if $u \in Q_i, 1 \le i \le k$ where f_i is a γ_r -function of Q_i . Hence $\gamma_r(T) = 2|S| + \sum_{i=1}^k \gamma_r(Q_i)$.

In the following two theorems we determine the values of γ_r for a $2 \times n$ grid graph $G_{2,n}$ and a complete binary tree.

Theorem 5.2. For any $2 \times n$ grid graph $G_{2,n}$,

$$\gamma_r(G_{2,n}) = \begin{cases} \left\lfloor \frac{4n}{5} \right\rfloor & \text{if } n \equiv 0 \pmod{5}, \\ \left\lfloor \frac{4n}{5} \right\rfloor + 1 & \text{otherwise.} \end{cases}$$

Proof. Let $f = (V_0, V_1, V_2)$ be a weak Roman dominating function for $G_{2,n}$. Then any vertex of V_2 can dominate at most four vertices, while two vertices in V_1 can dominate at most five vertices. Thus in order to safeguard $G_{2,n}$, we must have $V_2 = 0$ and $\frac{5}{2}|V_1| \ge 2n$. Therefore $f(V) = 2|V_2| + |V_1| \ge \lfloor \frac{4n}{5} \rfloor$.

When $n = 5k, k \ge 1$, clearly 4k legions are needed to safeguard 10k vertices. Therefore $\gamma_r(G_{2,n}) = \lfloor \frac{4n}{5} \rfloor$. When $n = 5k + i, k \ge 0, 4k$ legions can safeguard only 10k vertices. Therefore $\gamma_r(G_{2,n}) > \lfloor \frac{4n}{5} \rfloor$.

We show that $\gamma_r(G_{2,n}) = \lfloor \frac{4n}{5} \rfloor + 1$ by construction (see Figure 3). Let the vertices of $G_{2,n}$ be $v_{1,1}, v_{1,2}, v_{1,3}, \ldots, v_{1,n}$ and $v_{2,1}, v_{2,2}, v_{2,3}, \ldots, v_{2,n}$. Now we define a weak Roman dominating function g as follows. When n = 5k + i, $0 \le i \le 4, g(v_{1,5r+j}) = 1, j \in \{2,5\}$ and $g(v_{2,5r+j}) = 1, j \in \{1,4\}, 0 \le r \le k$. When $n = 5k + 3, g(v_{2,n}) = 1$.

For all the remaining vertices u, let g(u) = 0. It is easily seen that

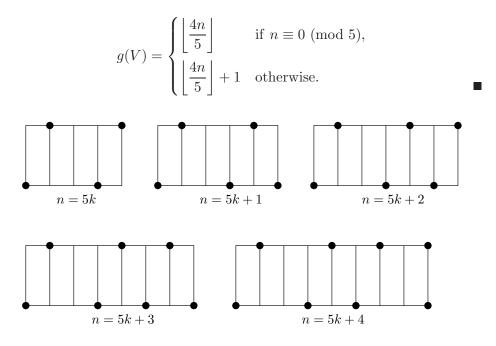


Figure 3. The construction for $G_{2,n}$, where n = 5k + i, $0 \le i \le 4$. Filled in circles denote vertices in V_1 .

Theorem 5.3. For any complete binary tree T with level k, $\gamma_r(T) = 2^m(1+2^3+2^6+\cdots+2^{k-1})$, where $k \equiv m \pmod{3}$.

Proof. Let T be a k-level complete binary tree rooted at v. We define a function $f: V(T) \to \{0, 1, 2\}$ as follows

Case (i). $k \equiv 0 \pmod{3}$. For each j such that $3j + 2 < k, j \ge 0, f(\partial N_{3j+2}(v)) = 2, f(v) = 1$ and f(w) = 0, if $w \in V - (\{v\} \cup \partial N_{3j+2}(v))$. Then $|V_2| = 2^{k-1} + 2^{k-4} + \dots + 2^5 + 2^2$, $|V_1| = 1$. Clearly f is a γ_r function and

$$\gamma_r(T) = 2|V_2| + |V_1|$$

= 2(2² + 2⁵ + ... + 2^{k-1}) + 1
= 1 + 2³ + 2⁶ + ... + 2^k
= 2⁰(1 + 2³ + 2⁶ + ... + 2^k).

Hence $\gamma_r(T) = 2^m (1 + 2^3 + 2^6 + \dots + 2^k)$ where m = 0.

Case (ii). $k \equiv 1 \pmod{3}$.

For each j such that $0 \le 3j \le k-1, j \ge 0, f(\partial N_{3j}(v)) = 2$ and f(w) = 0, if $w \in V - \partial N_{3j}(v)$. Then $|V_2| = 1 + |\partial N_3(v)| + |\partial N_6(v)| + \dots + |\partial N_{k-1}(v)| = 1 + 2^3 + 2^6 + \dots + 2^{k-1}$ and $|V_1| = 0$. Clearly f is a γ_r function and

$$\gamma_r(T) = 2|V_2| + |V_1|$$

= 2(1 + 2³ + 2⁶ + ... + 2^{k-1})

Hence $\gamma_r(T) = 2^m (1 + 2^3 + 2^6 + \dots + 2^{k-1})$ where m = 1.

Case (iii). $k \equiv 2 \pmod{3}$.

For each j such that $1 \leq 3j + 1 \leq k - 1$, $j \geq 0$, $f(\partial N_{3j+1}(v)) = 2$ and f(w) = 0, for all $w \in V - \partial N_{3j+1}(v)$. Then $|V_2| = |\partial N_1(v)| + |\partial N_4(v)| + \cdots + |\partial N_{k-1}(v)|$ and $|V_1| = 0$. Clearly f is a γ_r function and

$$\gamma_r(T) = 2|V_2| + |V_1|$$

= 2(2 + 2⁴ + 2⁷ + \dots + 2^{k-1})
= 2²(1 + 2³ + 2⁶ + \dots + 2^{k-2})

Hence $\gamma_r(T) = 2^m (1 + 2^3 + 2^6 + \dots + 2^{k-m})$ where m = 2.

References

- E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 78 (2004) 11–22.
- [2] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Eds), Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Eds), Domination in Graphs; Advanced Topics (Marcel Dekker, Inc. New York, 1998).
- [4] S.T. Hedetniemi and M.A. Henning, Defending the Roman Empire A new strategy, Discrete Math. 266 (2003) 239–251.
- [5] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 325–334.
- [6] M.A. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101–115.
- [7] C.S. ReVelle, Can you protect the Roman Empire?, John Hopkins Magazine(2) (1997) 70.

- [8] C.S. ReVelle and K.E. Rosing, *Defendens Romanum: Imperium problem in military strategy*, American Mathematical Monthly **107** (2000) 585–594.
- [9] R.R. Rubalcaba and P.J. Slater, Roman Dominating Influence Parameters, Discrete Math. 307 (2007) 3194–3200.
- [10] P. Roushini Leely Pushpam and T.N.M. Malini Mai, On Efficient Roman dominatable graphs, J. Combin Math. Combin. Comput. 67 (2008) 49–58.
- [11] P. Roushini Leely Pushpam and T.N.M. Malini Mai, Edge Roman domination in graphs, J. Combin Math. Combin. Comput. 69 (2009) 175–182.
- [12] I. Stewart, Defend the Roman Empire, Scientific American 281 (1999) 136–139.

Received 7 November 2009 Revised 2 April 2010 Accepted 6 April 2010