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Abstract

In this paper, a complete characterization of the (super) edge-magic
linear forests with two components is provided. In the process of es-
tablishing this characterization, the super edge-magic, harmonious, se-
quential and felicitous properties of certain 2-regular graphs are investi-
gated, and several results on super edge-magic and felicitous labelings
of unions of cycles and paths are presented. These labelings resolve
one conjecture on harmonious graphs as a corollary, and make head-
way towards the resolution of others. They also provide the basis for
some new conjectures (and a weaker form of an old one) on labelings
of 2-regular graphs.

Keywords: edge-magic labelling, edge-magic total labelling, felicitous
labelling, harmonious labelling, sequential labelling.

2010 Mathematics Subject Classification: 05C78.

1. Introduction

For most of the graph theory terminology and notation utilized throughout
this paper, we will follow Chartrand and Lesniak [2]. In particular, we will
consider finite and simple graphs, that is, there are no loops and multiple
edges.

The thrust of this paper is towards giving a complete characterization
of the (super) edge-magic linear forest with two components: Pm∪Pn. How-
ever, as the authors assembled the necessary results for this characterization,
they were pleased to realize that a conjecture on harmonious labelings was
settled and progress towards the resolution of other labeling conjectures was
made.

As a road map to this paper, we now delineate a general strategy of
attack.

(1) Find super edge-magic labelings of Cm∪Cn for certain values of m and
n;

(2) Find super edge-magic labelings of Cm∪Pn for certain values of m and
n;

(3) Obtain super edge-magic labelings of Pm ∪ Pn for certain values of m
and n from the labelings found in steps 1 and 2 by removing edges;

(4) For each of those cases not handled by step 3, either find a labeling or
show none is possible.
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To do these things, we next introduce the necessary definitions and some
fundamental results.

In 1970, Kotzig and Rosa [18] initiated the study of magic valuations.
These labelings are currently referred to as either edge-magic labelings or
edge-magic total labelings; these terms were coined by Ringel and Lladó
[23], and Wallis [25], respectively. In this paper, we will use the former for
the sake of brevity. A graph G of order p and size q is called edge-magic if
there exists a bijective function f : V (G) ∪ E(G) → {1, 2, . . . , p + q} such
that f(u)+ f(v)+ f(uv) is a constant (called the valence or magic number)
for any edge uv ∈ E(G). Such a function is called an edge-magic labeling. In
1998, Enomoto et al. [3] defined an edge-magic labeling f to be a super edge-

magic labeling if it has the additional property that f(V (G)) = {1, 2, . . . , p}
(an alternative term exists for this kind of labeling, namely, strongly edge-
magic labeling; see Wallis [25]). Thus, a super edge-magic graph is a graph
that admits a super edge-magic labeling.

The following result found in [4] allows us to exhibit only the vertex
labels of a super edge-magic labeling of a graph as it explains how the edge
labels will be induced by them.

Lemma 1. A graph G of order p and size q is super edge-magic if and only

if there exists a bijective function f : V (G) → {1, 2, . . . , p} such that the set

S = {f(u) + f(v)|uv ∈ E(G)} consists of q consecutive integers. In such a

case, f extends to a super edge-magic labeling of G with valence k = p+q+s,
where s = min(S) and

S = {f(u) + f(v) |uv ∈ E(G)}

= {k − (p + 1), k − (p+ 2), . . . , k − (p+ q)} .

In [4], Figueroa-Centeno et al. established the following necessary condition
for an r-regular graph to be super edge-magic.

Lemma 2. If G is a super edge-magic r-regular graph of order p and size q,
where r ≥ 1, then q is odd and the valence of any super edge-magic labeling

of G is (4p + q + 3)/2.

It is worthwhile to mention that Kotzig and Rosa [18] proved that a 1-regular
graph, that is, the linear forest nP2 is super edge-magic if and only if n is
odd. Moreover, it was shown in [4] that an r-regular graph is super edge-
magic only when 0 ≤ r ≤ 3. Therefore, as super edge-magic 0 and 1-regular
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graphs are completely characterized, the study of super edge-magic 2 and
3-regular graphs is of interest. In this paper, we significantly add to what is
known about super edge-magic 2-regular graphs.

In [3], Enomoto et al. showed that all cycles of odd length are super
edge-magic. Subsequently, Figueroa-Centeno et al. extended in [5] their
result as follows.

Theorem 1.1. The 2-regular graph mCn is super edge-magic if and only if

m and n are odd.

We now consider some kinds of graph labelings that are somehow related to
super edge-magic labelings.

In 1980, Graham and Sloane [14] introduced the notion of harmonious
labelings. A graph G of order p and size q with q ≥ p is called harmonious if
there exists an injective function f : V (G) → Zq such that each uv ∈ E(G) is
labeled f(u)+f(v) (mod q) and the resulting edge labels are distinct. Such
a function is called a harmonious labeling. If G is a tree (so that q = p− 1)
exactly two vertices are labeled the same; otherwise, the definition is the
same.

The definition of sequential labelings was introduced by Grace [13], who
was inspired by the above definition of harmonious labelings. For a graph
G of size q, a sequential labeling is defined to be the injective function f :
V (G) → {0, 1, . . . , q − 1} (with the label q allowed if G is a tree) such that
each uv ∈ E(G) is labeled f(u) + f(v) and the resulting edge labels are
{m,m+1, . . . ,m+ q−1} for some positive integer m. Moreover, G is called
sequential if such a labeling exists.

In [21], Shee defined the notion of felicitous labelings as a generalization
of harmonious labelings. A graph G of size q is felicitous if there exists an
injective function f : V (G) → Zq+1 such that each uv ∈ E(G) is labeled
f(u) + f(v) (mod q) and the resulting edge labels are distinct. Such a
function is called a felicitous labeling.

The following result established in [4] shows the relationship between a
super edge-magic graph and a graph admitting a harmonious labeling.

Lemma 3. If G is a super edge-magic graph of order p and size q, then G
is harmonious and sequential whenever it is a tree or satisfies q ≥ p.

Lemma 3 together with the fact that every harmonious graph of order p and
size q with q ≥ p is felicitous yields that if G is a super edge-magic graph of
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order p and size q with q ≥ p, then G is felicitous. This result extends easily
to graphs of order p and size q with q ≥ p− 1; hence, we state the following
lemma.

Lemma 4. If G is a super edge-magic graph of order p and size q with

q ≥ p− 1, then G is felicitous.

In [24], Rosa introduced the notion of β-valuations, which were subsequently
named graceful labelings by Golomb [12]. A graph G of size q is called
graceful if there exists an injective function f : V (G) → {0, 1, . . . , q} such
that each uv ∈ E (G) is labeled |f(u)− f(v)| and the resulting edge labels
are distinct. Such a function is called a graceful labeling. In [24], Rosa
also defined an α-valuation of a graph G as a graceful labeling f with the
additional property that there exists an integer λ so that min {f(u), f(v)} ≤
λ < max {f(u), f(v)} for each uv ∈ E (G).

In [6], Figueroa-Centeno et al. recently introduced a particular type of
felicitous labelings, namely, strongly felicitous labelings. A felicitous label-
ing f of a graph G of size q is strongly felicitous if there exists an integer
λ so that min {f(u), f(v)} ≤ λ < max {f(u), f(v)} for each uv ∈ E(G).
Thus, a strongly felicitous graph is a graph that admits a strongly felicitous
labeling.

The following result found in [6] shows the relationship between a strongly
felicitous graph and a graph admitting an α-valuation.

Lemma 5. A graph G of order p and size q with q ≥ p − 1 is strongly

felicitous if and only if G admits an α-valuation.

2. Results on 2-Regular Graphs with two Components

In this section, we study the super edge-magic properties of 2-regular graphs
with two components. These are interesting, since Kotzig and Rosa [18]
showed that every cycle is edge-magic and then posed a problem, which is
still open: characterize the 2-regular graphs, which are edge-magic. The
interested reader is directed to [4, 5, 7, 9] for some recent advances towards
the resolution of this problem.

Now, notice that Gray and MacDougall proved in [15] that C3 ∪ C2n

and C4 ∪ C2n−1 (n > 2) admit strong vertex-magic total labelings, and that
it can be shown that all such graphs are also super edge-magic. Thus,
Theorems 2.1 and 2.2 below are corollaries to their results; however, notice
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that our proofs will not only establish these theorems, but also they provide
constructions that will allow us to prove Theorems 3.1 and 3.2.

We start with the following result.

Theorem 2.1. The 2-regular graph G ∼= C3∪Cn is super edge-magic if and

only if n ≥ 6 and n is even.

Proof. In [20], it was shown that the 2-regular graph C3 ∪ C4 is not
harmonious; hence, by Lemma 3, it is not super edge-magic either. Thus,
by Lemma 2, if the 2-regular graph G ∼= C3 ∪ Cn is super edge-magic, then
n ≥ 6 and n is even.

For the converse, assume that n ≥ 6 and n is even, and let

V (G) = {u1, u2, u3} ∪ {vi|1 ≤ i ≤ n}
and

E(G) = {u1u2, u2u3, u1u3} ∪ {v1vn} ∪ {vivi+1|1 ≤ i ≤ n− 1} .

Then consider the following cases for the vertex labeling f : V (G) →
{1, 2, . . . , n+ 3}.

Case 1. For n = 8k − 2, where k is a positive integer, let f(u1) = 1;
f(u2) = 4k + 2; f(u3) = 4k + 3;

f(vl) =







































i+ 1, if l = 2i− 1 and 1 ≤ i ≤ 2k;
4k + i+ 3, if l = 2i and 1 ≤ i ≤ 2k;
2k + 3, if l = 4k + 1;
2k + 2i, if l = 4k + 4i− 2 and 1 ≤ i ≤ k;
6k + 2i+ 3, if l = 4k + 4i− 1 and 1 ≤ i ≤ k − 1;
2k + 2i+ 3, if l = 4k + 4i and 1 ≤ i ≤ k − 1;
6k + 2i+ 2, if l = 4k + 4i+ 1 and 1 ≤ i ≤ k − 1.

Case 2. For n = 8k + 2, where k is a positive integer, let f(u1) = 1;
f(u2) = 4k + 4; f(u3) = 4k + 5;

f(vl) =































i+ 1, if l = 2i− 1 and 1 ≤ i ≤ 2k + 1;
4k + i+ 5, if l = 2i and 1 ≤ i ≤ 2k + 2;
2k + 2i+ 2, if l = 4k + 4i+ 2 and 1 ≤ i ≤ k;
6k + 2i+ 7, if l = 4k + 4i+ 3 and 1 ≤ i ≤ k − 1;
2k + 2i+ 5, if l = 4k + 4i+ 4 and 1 ≤ i ≤ k − 1;
6k + 2i+ 6, if l = 4k + 4i+ 5 and 1 ≤ i ≤ k − 1;

f(v4k+3) = 2k + 5; f(v4k+5) = 2k + 3.



A Magical Approach to Some Labeling Conjectures 85

Case 3. For n = 12k − 4, where k is a positive integer, let f(u1) = 3k;
f(u2) = 9k − 1; f(u3) = 9k;

f(vl) =















































6k + i− 1, if l = 2i− 1 and 1 ≤ i ≤ 3k − 1;
i, if l = 2i and 1 ≤ i ≤ 3k − 1;
3k + 3i− 2, if l = 6k + 6i− 6 and 1 ≤ i ≤ k − 1;
9k + 3i− 2, if l = 6k + 6i− 5 and 1 ≤ i ≤ k;
3k + 3i, if l = 6k + 6i− 4 and 1 ≤ i ≤ k − 1;
9k + 3i, if l = 6k + 6i− 3 and 1 ≤ i ≤ k − 1;
3k + 3i− 1, if l = 6k + 6i− 2 and 1 ≤ i ≤ k − 1;
9k + 3i+ 2, if l = 6k + 6i− 1 and 1 ≤ i ≤ k − 1;

f(v6k−1) = 9k + 2; f(v12k−6) = 6k − 1; f(v12k−4) = 6k − 2.

Case 4. For n = 12k, where k is a positive integer, let f(u1) = 3k + 1;
f(u2) = 9k + 2; f(u3) = 9k + 3;

f(vl) =















































6k + i+ 1, if l = 2i− 1 and 1 ≤ i ≤ 3k;
i, if l = 2i and 1 ≤ i ≤ 3k;
9k + 3i+ 2, if l = 6k + 6i− 5 and 1 ≤ i ≤ k;
3k + 3i− 1, if l = 6k + 6i− 4 and 1 ≤ i ≤ k;
9k + 3i+ 1, if l = 6k + 6i− 3 and 1 ≤ i ≤ k;
3k + 3i+ 1, if l = 6k + 6i− 2 and 1 ≤ i ≤ k;
9k + 3i+ 3, if l = 6k + 6i− 1 and 1 ≤ i ≤ k;
3k + 3i, if l = 6k + 6i and 1 ≤ i ≤ k.

Case 5. For n = 12k+4, where k is a positive integer, let f(u1) = 3k+2;
f(u2) = 9k + 5; f(u3) = 9k + 6;

f(vl) =















































6k + i+ 3, if l = 2i− 1 and 1 ≤ i ≤ 3k + 1;
i, if l = 2i and 1 ≤ i ≤ 3k + 1;
9k + 3i+ 5, if l = 6k + 6i− 3 and 1 ≤ i ≤ k;
3k + 3i, if l = 6k + 6i− 2 and 1 ≤ i ≤ k − 1;
9k + 3i+ 4, if l = 6k + 6i− 1 and 1 ≤ i ≤ k;
3k + 3i+ 2, if l = 6k + 6i and 1 ≤ i ≤ k − 1;
9k + 3i+ 6, if l = 6k + 6i+ 1 and 1 ≤ i ≤ k − 1;
3k + 3i+ 1, if l = 6k + 6i+ 2 and 1 ≤ i ≤ k − 1;

f(v12k−2) = 6k + 1; f(v12k) = 6k; f(v12k+1) = 12k + 7; f(v12k+2) = 6k + 3;
f(v12k+3) = 12k + 6; f(v12k+4) = 6k + 2.
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Therefore, by Lemma 1, f extends to a super edge-magic labeling of G with
valence 5n/2 + 9 in all five cases.

As a consequence of Lemma 3 and Theorem 2.1, we have the following result,
which was a conjecture posed by Seoud et al. [20].

Corollary 2.1. The 2-regular graph C3 ∪ Cn is harmonious if and only if

n ≥ 6 and n is even.

Now, another result on the super edge-magicness of 2-regular graphs is pre-
sented.

Theorem 2.2. The 2-regular graph G ∼= C4∪Cn is super edge-magic if and

only if n ≥ 5 and n is odd.

Proof. First, assume that n ≥ 5 and n is odd, and let

V (G) = {u1, u2, u3, u4} ∪ {vi|1 ≤ i ≤ n}
and

E(G) = {u1u2, u2u3, u3u4, u1u4} ∪ {v1vn} ∪ {vivi+1|1 ≤ i ≤ n− 1} .

Then consider two cases for the vertex labeling f : V (G) → {1, 2, . . . , n+ 4}.

Case 1. For n = 4k + 1, where k is a positive integer, let f(u1) = 1;
f(u2) = 2k + 3; f(u3) = 2; f(u4) = 2k + 5;

f(vl) =















2k + 2i+ 2, if l = 4i− 3 and 1 ≤ i ≤ k + 1;
2i+ 2, if l = 4i− 2 and 1 ≤ i ≤ k;
2k + 2i+ 5, if l = 4i− 1 and 1 ≤ i ≤ k;
2i+ 1, if l = 4i and 1 ≤ i ≤ k.

Case 2. For n = 4k + 3, where k is a positive integer, let f(u1) = 1;
f(u2) = 2k + 4; f(u3) = 2; f(u4) = 2k + 6;

f(vl) =















4i− 1, if l = 4i and 1 ≤ i ≤ k;
2k + 2i+ 7, if l = 4i+ 1 and 1 ≤ i ≤ k;
2k + 2i+ 6, if l = 4i+ 3 and 1 ≤ i ≤ k;
2i+ 4, if l = 4i+ 6 and 1 ≤ i ≤ k − 1;

f(v1) = 2k + 5; f(v2) = 4; f(v3) = 2k + 7; f(v6) = 5.

Therefore, by Lemma 1, f extends to a super edge-magic labeling of G with
valence (5n + 23)/2.
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Finally, the converse follows from Lemma 2 and the fact mentioned in the
proof of Theorem 2.1 that C3 ∪ C4 is not super edge-magic.

We next present the following result.

Theorem 2.3. The 2-regular graph G ∼= C5∪Cn is super edge-magic if and

only if n ≥ 4 and n is even.

Proof. Assume that n ≥ 4 and n is even, and let

V (G) = {u1, u2, u3, u4, u5} ∪ {vi|1 ≤ i ≤ n}
and

E(G) = {u1u2, u2u3, u3u4, u4u5, u1u5} ∪ {v1vn} ∪ {vivi+1|1 ≤ i ≤ n− 1} .

First, suppose the 2-regular graph C5 ∪ C10. Then label the vertices of C5

with 4− 13− 5− 15− 6− 4, and the ones of C10 with 1− 10− 2− 11− 3−
12 − 7 − 9 − 14 − 8 − 1 to obtain a super edge-magic labeling of C5 ∪ C10

with valence 39.
Next, consider the following cases for the vertex labeling f : V (G) →

{1, 2, . . . , n+ 5}.

Case 1. For n = 8k − 2, where k is a positive integer, let f(u1) = 1;
f(u2) = 4k + 2; f(u3) = 2; f(u4) = 4k + 5; f(u5) = 4k + 4;

f(vl) =































i+ 2, if l = 2i− 1 and 1 ≤ i ≤ 2k + 1;
4k + i+ 5, if l = 2i and 1 ≤ i ≤ 2k;
2k + 2i+ 3, if l = 4k + 4i− 2 and 1 ≤ i ≤ k;
8k + 2i+ 1, if l = 4k + 4i− 1 and 1 ≤ i ≤ k − 1;
2k + 2i+ 2, if l = 4k + 4i and 1 ≤ i ≤ k − 1;
8k + 2i, if l = 4k + 4i+ 1 and 1 ≤ i ≤ k − 1.

Case 2. For n = 8k+2, where k is an integer with k ≥ 2, let f(u1) = 1;
f(u2) = 4k + 4; f(u3) = 2; f(u4) = 4k + 7; f(u5) = 4k + 6;

f(vl) =































i+ 2, if l = 2i− 1 and 1 ≤ i ≤ 2k + 2;
4k + i+ 7, if l = 2i and 1 ≤ i ≤ 2k + 1;
2k + 2i+ 3, if l = 4k + 4i+ 2 and 1 ≤ i ≤ k − 1;
6k + 2i+ 9, if l = 4k + 4i+ 3 and 1 ≤ i ≤ k − 1;
2k + 2i+ 6, if l = 4k + 4i+ 4 and 1 ≤ i ≤ k − 2;
6k + 2i+ 8, if l = 4k + 4i+ 5 and 1 ≤ i ≤ k − 1;
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f(v4k+4) = 2k + 6; f(v4k+5) = 6k + 9; f(v8k) = 4k + 3; f(v8k+2) = 4k + 5.

Case 3. For n = 12k−8, where k is a positive integer, let f(u1) = 9k−1;
f(u2) = 3k; f(u3) = 9k; f(u4) = 3k + 1; f(u5) = 9k − 3;

f(vl) =















































i, if l = 2i− 1 and 1 ≤ i ≤ 3k − 2;
6k + i− 2, if l = 2i and 1 ≤ i ≤ 3k − 2;
3k + 3i− 4, if l = 6k + 6i− 9 and 1 ≤ i ≤ k;
9k + 3i− 5, if l = 6k + 6i− 8 and 1 ≤ i ≤ k;
3k + 3i+ 1, if l = 6k + 6i− 7 and 1 ≤ i ≤ k − 1;
9k + 3i, if l = 6k + 6i− 6 and 1 ≤ i ≤ k − 1;
3k + 3i, if l = 6k + 6i− 5 and 1 ≤ i ≤ k − 1;
9k + 3i− 1, if l = 6k + 6i− 4 and 1 ≤ i ≤ k − 1.

Case 4. For n = 12k − 4, where k is a positive integer, let f(u1) = 3k;
f(u2) = 9k + 1; f(u3) = 3k + 1; f(u4) = 9k + 3; f(u5) = 3k + 2;

f(vl) =















































i, if l = 2i− 1 and 1 ≤ i ≤ 3k − 1;
6k + i+ 1, if l = 2i and 1 ≤ i ≤ 3k − 1;
3k + 3i, if l = 6k + 6i− 7 and 1 ≤ i ≤ k;
9k + 3i+ 3, if l = 6k + 6i− 6 and 1 ≤ i ≤ k − 1;
3k + 3i+ 2, if l = 6k + 6i− 5 and 1 ≤ i ≤ k − 1;
9k + 3i− 1, if l = 6k + 6i− 4 and 1 ≤ i ≤ k − 1;
3k + 3i+ 1, if l = 6k + 6i− 3 and 1 ≤ i ≤ k − 1;
9k + 3i+ 1, if l = 6k + 6i− 2 and 1 ≤ i ≤ k − 1;

f(v12k−6) = 12k + 1; f(v12k−5) = 6k + 1; f(v12k−4) = 12k − 1.

Case 5. For n = 12k, where k is a positive integer, let f(u1) = 3k + 1;
f(u2) = 9k + 4; f(u3) = 3k + 2; f(u4) = 9k + 5; f(u5) = 3k + 3;

f(vl) =















































i, if l = 2i− 1 and 1 ≤ i ≤ 3k;
6k + i+ 3, if l = 2i and 1 ≤ i ≤ 3k;
3k + 3i+ 3, if l = 6k + 6i− 5 and 1 ≤ i ≤ k;
9k + 3i+ 5, if l = 6k + 6i− 4 and 1 ≤ i ≤ k;
3k + 3i+ 2, if l = 6k + 6i− 3 and 1 ≤ i ≤ k;
9k + 3i+ 4, if l = 6k + 6i− 2 and 1 ≤ i ≤ k;
3k + 3i+ 1, if l = 6k + 6i− 1 and 1 ≤ i ≤ k;
9k + 3i+ 3, if l = 6k + 6i and 1 ≤ i ≤ k.
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Therefore, by Lemma 1, f extends to a super edge-magic labeling of G with
valence 5n/2 + 15 in all five cases.

Finally, the converse is an immediate consequence of Lemma 2.

The following result is a partial generalization of Theorem 2.2.

Theorem 2.4. If m is even with m ≥ 4 and n is odd with n ≥ m/2 + 2,
then the 2-regular graph G ∼= Cm ∪ Cn is super edge-magic.

Proof. In light of Theorem 2.2, assume that m is even with m ≥ 6 and
n is odd with n ≥ m/2 + 2. Then define the 2-regular graph G ∼= Cm ∪ Cn

with

V (G) = {ui|1 ≤ i ≤ m} ∪ {vi|1 ≤ i ≤ n}
and

E(G) = {u1um, v1vn} ∪ {uiui+1|1 ≤ i ≤ m− 1} ∪ {vivi+1|1 ≤ i ≤ n− 1} .

Now, consider the following cases for the vertex labeling f : V (G) →
{1, 2, . . . ,m+ n}.

Case 1. For m = 4k+2 and n = 2k+6l− 3, where k and l are positive
integers, let

f(uj) =















6k + 6l − 3i+ 2, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 6, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 1, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 4, if j = 2i and k + 1 ≤ i ≤ 2k + 1;

f(vj) =















































6k + 6l − 3i+ 1, if j = 2i− 1 and 1 ≤ i ≤ k;
3k + 3l − 3i, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 1, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i− 1, if j = 2k + 6i− 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i− 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i and 1 ≤ i ≤ l − 1.

Case 2. For m = 4k+2 and n = 2k+6l− 1, where k and l are positive
integers, there are two subcases to pursue.
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Subcase 2.1. For k ≥ 1 and l = 1, let

f(uj) =















6k − 3i+ 10, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3i+ 2, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k − 3i+ 6, if j = 2i and 1 ≤ i ≤ k;
3i− 3k + 1, if j = 2i and k + 1 ≤ i ≤ 2k + 1;

f(vj) =















3k − 3i+ 5, if j = 2i− 1 and 1 ≤ i ≤ k;
6k − 3i+ 9, if j = 2i and 1 ≤ i ≤ k;
i, if j = 2k + 2i− 1 and 1 ≤ i ≤ 3;
3k + i+ 4, if j = 2k + 2i and 1 ≤ i ≤ 2.

Subcase 2.2. For k ≥ 1 and l ≥ 2, let

f(uj) =















6k + 6l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 3, if j = 2i and k + 1 ≤ i ≤ 2k + 1;

f(vj) =















































6k + 6l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k;
3k + 3l − 3i+ 1, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3i+ 2, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3k + 6l − 3i, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 1, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3l − 3i− 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i− 1, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l − 2;

f(v2k+1) = 3k + 3l − 1; f(v2k+3) = 3k + 3l; f(v2k+6l−3) = 3k + 3l + 1;
f(v2k+6l−1) = 3k + 3l + 2.

Case 3. For m = 4k+2 and n = 2k+6l+1, where k and l are positive
integers, let

f(uj) =















6k + 6l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 1, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 1, if j = 2i and k + 1 ≤ i ≤ 2k + 1;
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f(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k;
6k + 6l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 3, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 5, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3l − 3i+ 4, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 4, if j = 2k + 6i and 1 ≤ i ≤ l;

f(v2k+6l−1) = 1; f(v2k+6l+1) = 2.

Case 4. For m = 4k+4 and n = 2k+6l− 1, where k and l are positive
integers, let

f(uj) =















6k + 6l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i and k + 2 ≤ i ≤ 2k + 2;

f(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6k + 6l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 3, if j = 2k + 6i− 4 and 1 ≤ i ≤ l − 1;
3l − 3i+ 2, if j = 2k + 6i− 3 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 4, if j = 2k + 6i− 2 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 2, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3l − 3i+ 1, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;

f(v2k+6l−4) = 3k + 3l + 3; f(v2k+6l−3) = 1; f(v2k+6l−2) = 3k + 3l + 4;
f(v2k+6l−1) = 2.

Case 5. For m = 4k+4 and n = 2k+6l+1, where k and l are positive
integers, let

f(uj) =















6k + 6l − 3i+ 8, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 3, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i and k + 2 ≤ i ≤ 2k + 2;
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f(vj) =















































6k + 6l − 3i+ 7, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 2, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 5, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i+ 3, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l.

Case 6. For m = 4k+4 and n = 2k+6l+3, where k and l are positive
integers, let

f(uj) =















6k + 6l − 3i+ 10, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 1, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 5, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 3, if j = 2i and k + 2 ≤ i ≤ 2k + 2;

f(vj) =















































6k + 6l − 3i+ 9, if j = 2i− 1 and 1 ≤ i ≤ k + 2;
3k + 3l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 7, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l;
3k + 6l − 3i+ 5, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3l − 3i+ 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i+ 4 and 1 ≤ i ≤ l − 1;

f(v2k+2) = 3l; f(v2k+4) = 3l + 1; f(v2k+6l+1) = 3k + 3l + 4; f(v2k+6l+3) =
3k + 3l + 5.

Therefore, by Lemma1, f extends to a super edge-magic labeling of G with
valence 5(m+ n− 1)/2 + 4.

In light of Lemma 2 and Theorems 2.1, 2.3 and 2.4, we now obtain the
following result.

Corollary 2.2. For m = 6, 8 or 10, the 2-regular graph Cm ∪ Cn is super

edge-magic if and only if n ≥ 3 and n is odd.

The preceding results lead us to the following conjecture.

Conjecture 1. The 2-regular graph Cm ∪ Cn is super edge-magic if and
only if m+ n ≥ 9 and m+ n is odd.
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Notice that Holden et al. conjectured in [16] that with the exception of
C3 ∪ C4, 3C3 ∪ C4 and 2C3 ∪ C5, all odd order 2-regular graphs possess
strong vertex-magic total labelings, which is a stronger conjecture than Con-
jecture 1.

The remainder of this section exhibits the felicitous properties of some
2-regular graphs. These provide us some affirmative answers to an open
problem posed by Lee et al. [19], namely, which are the pairs of integers m
and n such that the 2-regular graph mCn is felicitous?

Before presenting our next result, we first note that the cycle Cn is
felicitous if and only if n ≡ 0, 1 or 3 (mod 4), and the 2-regular graph
mCn is not felicitous when mn ≡ 2 (mod 4)(see [19]).

We are now able to present the following result.

Theorem 2.5. The 2-regular graph G ∼= 2Cn is strongly felicitous if and

only if n ≥ 4 and n is even.

Proof. In [17], Kotzig proved that the 2-regular graph G ∼= 2Cn admits
an α-valuation when n ≥ 4 and n is even. Thus, by Lemma 5, G is strongly
felicitous.

The converse has already been demonstrated by Lee et al. [19].

As a consequence of Theorem 1.1 and Lemma 4, we have the following result.

Corollary 2.3. If m and n are odd with m ≥ 1 and n ≥ 3, then the 2-
regular graph mCn is felicitous.

With the aid of Corollary 2.3, we now obtain the following result.

Corollary 2.4. The 2-regular graph G ∼= 3Cn is felicitous if and only if

n 6≡ 2 (mod 4).

Proof. First, consider the following felicitous labeling of 3C4: 0− 7− 2−
8 − 0, 3 − 10 − 4 − 12 − 3, and 1 − 5 − 6 − 11 − 1. Moreover, notice that
Kotzig [17] showed that the 2-regular graph G ∼= 3Cn admits an α-valuation
for n ≥ 8 and n ≡ 0 (mod 4). Thus, G is felicitous for n ≡ 0 (mod 4).
Now, as an immediate consequence of Lemma 5 and Corollary 2.3, we have
that G is also felicitous for n ≡ 1 or 3 (mod 4).

The converse has already been proved in [19].

Theorem 2.5 and Corollaries 2.3 and 2.4 motivate us to conjecture the fol-
lowing.
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Conjecture 2. The 2-regular graph mCn is felicitous if and only if mn 6≡ 2
(mod 4).

It is now worthwhile to mention that Abrham and Kotzig [1] proved that
the 2-regular graph Cm ∪ Cn admits an α-valuation if and only if m and n
are even and m + n ≡ 0 (mod 4). Thus, by Lemma 5 and the results in
the section above, we suspect the following conjecture to be true.

Conjecture 3. The 2-regular graph Cm ∪ Cn is felicitous if and only if
m+ n 6≡ 2 (mod 4).

3. Results on Unions of Cycles and Paths

With the knowledge in the previous section in hand, we present several
results on super edge-magic labelings of the unions of cycles and paths,
which in light of Lemma 4 advance the conjecture of Shee [21] that the
graph Cm ∪ Pn is felicitous for every two integers m ≥ 3 and n ≥ 2. This
conjecture is only known to be true when m = 3 and n is any positive
integer, and m is odd and n = 2 or 3 (see [22] and [19], respectively).

With the aid of Theorem 2.1, we now present the following result.

Theorem 3.1. For every integer n with n ≥ 6, the 2-regular graph H ∼=
C3 ∪ Pn is super edge-magic.

Proof. Let n be an integer with n ≥ 6, and define the 2-regular graph
G ∼= C3 ∪ Cn as in Theorem 2.1. Also, consider the super edge-magic
labeling f of G provided in the proof of the same theorem. Then proceed
with four cases.

Case 1. For n ≡ 2 or 6 (mod 8), remove the edge v1vn from G to
obtain a super edge-magic labeling of H.

Case 2. For n ≡ 0 or 4 (mod 8), remove the edge v1v2 from G to
obtain a super edge-magic labeling of H.

Case 3. For n ≡ 1, 5 or 9 (mod 12), consider the graph H obtained
from G as follows: let V (H) = V (G) ∪ {v} and E(H) = (E(G) − {v1v2}) ∪
{uv1}. Now, define the vertex labeling g : V (H) → {1, 2, . . . , n + 4} to be
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such that g(u) = n+ 4 and g(v) = f(v) for each v ∈ V (G). Then g extends
to a super edge-magic labeling of H.

Case 4. For n ≡ 3, 7 or 11 (mod 12), remove the vertex v2 from
G, and define the vertex labeling g : V ((G − v2)) → {1, 2, . . . , n+ 3} such
that g(x) = f(x) − 1 for each x ∈ V (G − v2). Then g extends to a super
edge-magic labeling of H.

Therefore, by Lemma 1, we obtain super edge-magic labelings of H with
valence 5n/2 + 9 for 1, 5 or 9 (mod 12) and 5n/2 + 8; otherwise.

Now, with the aid of Theorem 2.2, we have the following result.

Theorem 3.2. The graph H ∼= C4 ∪ Pn is super edge-magic if and only if

n 6= 3.

Proof. By Table 1, it suffices to show that the graph H ∼= C4∪Pn is super
edge-magic for every integer n ≥ 4.

Now, let n be odd with n ≥ 5, and define the 2-regular graph G ∼=
C4 ∪Cn as in Theorem 2.2, and consider the super edge-magic labeling of G
given in the proof of the same result. Then remove the edge v1vn from G to
obtain a super edge-magic labeling of H with valence (5n+21)/2 for n ≡ 1
(mod 4) and (5n + 23)/2 for n ≡ 3 (mod 4).

Next, let n be even with n ≥ 4, and define the graph H ∼= C4 ∪Pn with
V (H) = V (G) and E(H) = E(G)−{v1vn}. Now, consider two cases for the
vertex labeling g : V (H) → {1, 2, . . . , n+ 4}.

Case 1. Let n = 4k, where k is a positive integer, and let g(u1) = 1;
g(u2) = 2k + 3; g(u3) = 2; g(u4) = 2k + 5;

g(vl) =























2k + 2i+ 2, if l = 4i− 3 and 1 ≤ i ≤ k;
2i+ 2, if l = 4i− 2 and 1 ≤ i ≤ k;
2k + 2i+ 5, if l = 4i− 1 and 1 ≤ i ≤ k − 1;
2i+ 1, if l = 4i and 1 ≤ i ≤ k;
4k + 4, if l = 4k − 1.

Case 2. Let n = 4k + 2, where k is a positive integer. For k = 1, the
result follows from Table 1; hence, without loss of generality, assume that
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k ≥ 2, and let g(u1) = 1; g(u2) = 2k + 4; g(u3) = 2; g(u4) = 2k + 6;

g(vl) =















































2k + 2i+ 3, if l = 2i− 1 and 1 ≤ i ≤ 2;
i+ 3, if l = 4i− 2 and 1 ≤ i ≤ 2;
3, if l = 4;
2k + 2i+ 7, if l = 4i+ 1 and 1 ≤ i ≤ k − 1;
2k + 2i+ 6, if l = 4i+ 3 and 1 ≤ i ≤ k − 1;
2i+ 5, if l = 4i+ 4 and 1 ≤ i ≤ k − 1;
2i+ 4, if l = 4i+ 6 and 1 ≤ i ≤ k − 1;
4k + 6, if l = 4k + 1.

Therefore, by Lemma 1, g extends to a super edge-magic labeling of H with
valence 5n/2 + 11. For the converse, note that by exhaustive computer
search, one can verify that C4 ∪ P3 is not super edge-magic.

Table 1. Super Edge-Magic Labelings of Cm ∪ Pn for small m and n.

m n Cm Pn k
4 1 (1, 3, 2, 5, 1) (4) 13

2 (2, 3, 5, 4, 2) (1, 6) 16
6 (2, 5, 9, 6, 2) (1, 8, 4, 7, 3, 10) 26

5 4 (6, 4, 9, 3, 8, 6) (1, 7, 2, 5) 24
6 (2, 5, 11, 4, 10, 2) (9, 1, 7, 6, 3, 8) 28
7 (1, 8, 2, 6, 12, 1) (4, 7, 10, 5, 11, 3, 9) 31
10 (4, 13, 5, 15, 6, 4) (1, 10, 2, 11, 3, 12, 7, 9, 14, 8) 39
11 (1, 10, 2, 8, 16, 1) (5, 13, 3, 11, 4, 9, 14, 6, 15, 7, 12) 41

6 2 (1, 5, 2, 8, 4, 7, 1) (3, 6) 21
3 (1, 6, 7, 4, 2, 8, 1) (5, 3, 9) 23
4 (1, 7, 3, 10, 4, 8, 1) (5, 2, 9, 6) 26

8 1 (1, 5, 2, 6, 3, 8, 4, 9, 1) (7) 23
2 (1, 6, 2, 7, 5, 10, 4, 9, 1) (3, 8) 26
3 (1, 7, 2, 8, 6, 11, 5, 10, 1) (3, 9, 4) 29
4 (1, 7, 2, 8, 5, 12, 6, 10, 1) (9, 3, 11, 4) 31
5 (1, 8, 2, 9, 6, 13, 7, 11, 1) (3, 10, 4, 12, 5) 34

10 2 (1, 10, 8, 6, 2, 7, 3, 12, 5, 11, 1) (4, 9) 31
3 (1, 7, 2, 8, 4, 13, 6, 12, 3, 10, 1) (9, 5, 11) 33
4 (1, 8, 3, 11, 6, 14, 7, 12, 4, 9, 1) (2, 10, 5, 13) 36
5 (1, 8, 3, 12, 4, 14, 7, 15, 5, 9, 1) (10, 2, 11, 6, 13) 38
6 (1, 9, 4, 15, 7, 16, 8, 13, 2, 10, 1) (3, 11, 5, 12, 6, 14) 41
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With the aid of Theorem 2.3, we now present the following result.

Theorem 3.3. For every integer n ≥ 4, the graph H ∼= C5 ∪ Pn is super

edge-magic.

Proof. First, assume that n ≥ 4 and n is even, and define the 2-regular
graph G ∼= C5 ∪ Cn as in Theorem 2.3. Moreover, consider the super edge-
magic labeling of G given in the proof of the same result. Then, by Table 1,
the result is true for n = 4, 6 and 10. Now, consider next three cases in
which each of the labelings has valence 5n/2 + 14.

Case 1. For n ≡ 2 or 6 (mod 8), where n ≥ 14, remove the edge
vn−1vn from G to obtain a super edge-magic labeling of H.

Case 2. For n ≡ 0 or 4 (mod 12), where n ≥ 12, remove the edge
vn−5vn−4 from G to obtain a super edge-magic labeling of H.

Case 3. For n ≡ 8 (mod 12), remove the edge vn−2vn−1 from G to
obtain a super edge-magic labeling of H.

Next, assume that n ≥ 5 and n is odd, and define the graphH ∼= C5∪Pn

with V (H) = V (G) and E(H) = E(G) − {v1vn}. Then consider four cases
for the vertex labeling g : V (H) → {1, 2, . . . , n+ 5}.

Case 4. For n = 8k − 3, where k is a positive integer, let g(u1) = 1;
g(u2) = 4k + 3; g(u3) = 2; g(u4) = 4k + 1; g(u5) = 8k + 2;

g(vl) =







































6k + i+ 1, if l = 4i− 3 and 1 ≤ i ≤ k;
2k + 2i+ 2, if l = 4i− 2 and 1 ≤ i ≤ 2k − 1;
6k + 2i+ 3, if l = 4i− 1 and 1 ≤ i ≤ k − 1;
2k + 2i+ 1, if l = 4i and 1 ≤ i ≤ k − 1;
2i+ 2, if l = 4k + 4i− 5 and 1 ≤ i ≤ k;
4k + 2i+ 3, if l = 4k + 4i− 4 and 1 ≤ i ≤ k;
2i+ 1, if l = 4k + 4i− 3 and 1 ≤ i ≤ k.

Case 5. For n = 8k − 1, where k is a positive integer, by Table 1, the
result is true for k = 1. Hence, assume that k ≥ 2, and let g(u1) = 1;
g(u2) = 4k + 4; g(u3) = 2; g(u4) = 4k + 2; g(u5) = 8k + 4;
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g(vl) =















































2k + 2i+ 1, if l = 4i− 3 and 1 ≤ i ≤ k + 1;
6k + 2i+ 3, if l = 4i− 2 and 1 ≤ i ≤ k;
2k + 2i, if l = 4i− 1 and 1 ≤ i ≤ k;
6k + 2i+ 2, if l = 4i and 1 ≤ i ≤ k;
4k + 2i+ 5, if l = 4k + 4i+ 1 and 1 ≤ i ≤ k − 1;
2i+ 5, if l = 4k + 4i+ 4 and 1 ≤ i ≤ k − 2;
2i+ 4, if l = 4k + 4i+ 6 and 1 ≤ i ≤ k − 2;
4k + 2i+ 6, if l = 4k + 4i+ 7 and 1 ≤ i ≤ k − 2;

g(v4k+2) = 4; g(v4k+3) = 4k + 5; g(v4k+4) = 3; g(v4k+6) = 5; g(v4k+7) =
4k + 6.

Case 6. For n = 8k + 1, where k is a positive integer, let g(u1) = 1;
g(u2) = 4k + 5; g(u3) = 2; g(u4) = 4k + 3; g(u5) = 8k + 6;

g(vl) =







































6k + 2i+ 3, if l = 4i− 3 and 1 ≤ i ≤ k + 1;
2k + 2i− 1, if l = 4i− 2 and 1 ≤ i ≤ k + 1;
6k + 2i+ 2, if l = 4i− 1 and 1 ≤ i ≤ k + 1;
2k + 2i+ 2, if l = 4i and 1 ≤ i ≤ 2k;
2i+ 2, if l = 4k + 4i+ 1 and 1 ≤ i ≤ k;
4k + 2i+ 5, if l = 4k + 4i+ 2 and 1 ≤ i ≤ k − 1;
2i+ 1, if l = 4k + 4i+ 3 and 1 ≤ i ≤ k − 1.

Case 7. For n = 8k + 3, where k is a positive integer, by Table 1,
the result is true for k = 1; so assume that k ≥ 2, and let g(u1) = 1;
g(u2) = 4k + 6; g(u3) = 2; g(u4) = 4k + 4; g(u5) = 8k + 8;

g(vl) =















































2k + 2i, if l = 4i− 3 and 1 ≤ i ≤ k + 1;
6k + 2i+ 4, if l = 4i− 2 and 1 ≤ i ≤ k + 1;
2k + 2i+ 3, if l = 4i− 1 and 1 ≤ i ≤ k + 1;
6k + 2i+ 7, if l = 4i and 1 ≤ i ≤ k;
4k + 2i+ 7, if l = 4k + 4i+ 3 and 1 ≤ i ≤ k;
4k + 2i+ 6, if l = 4k + 4i+ 5 and 1 ≤ i ≤ k − 1;
2i+ 5, if l = 4k + 4i+ 6 and 1 ≤ i ≤ k − 1;
2i+ 4, if l = 4k + 4i+ 8 and 1 ≤ i ≤ k − 2;

g(v4k+4) = 4; g(v4k+5) = 4k + 7; g(v4k+6) = 3; g(v4k+8) = 5.

Therefore, by Lemma 1, g extends to a super edge-magic labeling of H with
valence (5n + 27)/2.
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If we label the vertices of C5 with 0−2−4−1−3−0, and label the vertex of
P1 with 5, we obtain a felicitous labeling of C5∪P1. Also, note that C5∪Pn

is felicitous for n = 2 and 3, since Lee et al. [19] showed that the graph
C2m+1 ∪ Pn is felicitous for every positive integer m and n = 2 or 3. Thus,
by Theorem 3.3 and Lemma 4, we have the following corollary.

Corollary 3.1. For every positive integer n, the graph C5∪Pn is felicitous.

The following results make inroads towards solving the conjecture by Frucht
and Salinas [10] that the graph Cm ∪ Pn is graceful for m + n ≥ 7, since
most of the bipartite graphs in this section can be shown to admit an α-
valuation (see [4] for the relationship between certain super edge-magic bi-
partite graphs and ones admitting α-valuations).

Theorem 3.4. If m is even with m ≥ 4 and n ≥ m/2 + 2, then the graph

H ∼= Cm ∪ Pn is super edge-magic.

Proof. In light of Theorem 3.2, assume that m is even with m ≥ 6 and n
is odd with n ≥ m/2 + 2. Then define the 2-regular graph G ∼= Cm ∪Cn as
in Theorem 2.4 with the super edge-magic labeling of G given in the proof
of the same result. Now, consider the following cases in which each of the
labelings has valence 5(m+ n+ 1)/2 + 4.

Case 1. For m = 4k + 2 and n = 2k + 6l − 3, where k ≥ 1 and l ≥ 1,
remove the edge vn−2vn−1 from G to obtain a super edge-magic labeling
of H.

Case 2. For m = 4k+2 and n = 2k+6l−1, where k ≥ 1 and l ≥ 1, there
are two possibilities. If k ≥ 1 and l = 1, remove the edge vn−4vn−3 from G
to obtain a super edge-magic labeling of H, and if k ≥ 1 and l ≥ 2, remove
the edge vn−3vn−2 from G to obtain a super edge-magic labeling of H.

Case 3. For m = 4k + 2 and n = 2k + 6l + 1, where k ≥ 1 and l ≥ 1,
remove the edge vn−3vn−2 from G to obtain a super edge-magic labeling
of H.

Case 4. For m = 4k + 4 and n = 2k + 6l − 1, where k ≥ 1 and l ≥ 1,
remove the edge v1vn from G to obtain a super edge-magic labeling of H.

Case 5. For m = 4k + 4 and n = 2k + 6l + 1, where k ≥ 1 and l ≥ 1,
remove the edge vn−2vn−1 from G to obtain a super edge-magic labeling
of H.
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Case 6. For m = 4k + 4 and n = 2k + 6l + 3, where k ≥ 1 and l ≥ 1,
remove the edge vn−3vn−2 from G to obtain a super edge-magic labeling
of H.

Next, assume that m ≥ 6 and n is even with n ≥ m/2 + 2. Then
define the graph H ∼= Cm ∪ Pn with V (H) = V (G) and E(H) = E(G) −
{v1vn}. Now, consider the following cases for the vertex labeling g : V (H) →
{1, 2, . . . ,m+ n}.

Case 7. For m = 4k+2 and n = 2k+6l− 2, where k ≥ 1 and l ≥ 1, let

g(uj) =















6k + 6l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 5, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 3, if j = 2i and k + 1 ≤ i ≤ 2k + 1;

g(vj) =















































6k + 6l − 3i+ 2, if j = 2i− 1 and 1 ≤ i ≤ k;
3k + 3l − 3i+ 1, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 1, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i− 4 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 2, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i, if j = 2k + 6i− 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3k + 6l + 1, if j = 2k + 6i and 1 ≤ i ≤ l − 1;

g(v2k+6l−4) = 1; g(v2k+6l−2) = 2.

Case 8. For m = 4k + 2 and n = 2k + 6l, where k ≥ 1 and l ≥ 1, let

g(uj) =















6k + 6l − 3i+ 5, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 2, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 2, if j = 2i and k + 1 ≤ i ≤ 2k + 1;

g(vj) =















































3k + 3l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k;
6k + 6l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 2, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3l − 3i+ 3, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 2, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i and 1 ≤ i ≤ l.
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Case 9. For m = 4k+2 and n = 2k+6l+2, where k ≥ 1 and l ≥ 1, let

g(uj) =















6k + 6l − 3i+ 7, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 1, if j = 2i and k + 1 ≤ i ≤ 2k + 1;

g(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k;
6k + 6l − 3i+ 5, if j = 2i and 1 ≤ i ≤ k + 1;
3k + 6l − 3i+ 6, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l;
3l − 3i, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l;

g(v2k+1) = 3l; g(v2k+3) = 3l + 1; g(v2k+6l) = 3k + 3l + 3; g(v2k+6l+2) =
3k + 3l + 4.

Case 10. For m = 4k + 4 and n = 2k + 6l − 2, where k ≥ 1 and l ≥ 1,
let

g(uj) =















6k + 6l − 3i+ 5, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 5, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 5, if j = 2i and k + 2 ≤ i ≤ 2k + 2;

g(vj) =















































3k + 3l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6k + 6l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 2, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i− 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1.

Case 11. For m = 4k + 4 and n = 2k + 6l, where k ≥ 1 and l ≥ 1, let

g(uj) =















3i− 2, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6k − 3i+ 9, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l + 3i+ 2, if j = 2i and 1 ≤ i ≤ k + 1;
9k + 3l − 3i+ 10, if j = 2i and k + 2 ≤ i ≤ 2k + 2;
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g(vj) =























































3k + 3l + 2, if j = 1;
3k + 3l + 3i, if j = 2i− 1 and 2 ≤ i ≤ k + 1;
3i− 1, if j = 2i and 1 ≤ i ≤ k + 1;
6k + 3l + 3i+ 4, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3k + 3i+ 1, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
6k + 3l + 3i+ 3, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 3i+ 3, if j = 2k + 6i and 1 ≤ i ≤ l;
6k + 3l + 3i+ 5, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3k + 3i+ 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l − 1.

Case 12. For m = 4k + 4 and n = 2k + 6l + 2, where k ≥ 1 and l ≥ 1,
let

g(uj) =















6k + 6l − 3i+ 9, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 2, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 5, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 3, if j = 2i and k + 2 ≤ i ≤ 2k + 2;

g(vj) =















































6k + 6l − 3i+ 8, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3k + 3l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 3, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 6, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i+ 4, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 5, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l;

g(v2k+6l) = 1; g(v2k+6l+2) = 2.

Therefore, by Lemma 1, g extends to a super edge-magic labeling of H with
valence 5(m+ n)/2 + 1.

As we mentioned in the proof of Theorem 3.2, C4 ∪ P3 is not super edge-
magic. Also, note that in [8], the graph C4n+2 ∪ nK1 has shown to be not
super edge-magic for any positive integer n, which implies that C6 ∪P1 and
C10 ∪ P1 is not super edge-magic. Next, note that the graph Cm ∪ Pn is
super edge-magic for m ∈ {4, 6, 8, 10} and the small values of n shown in
Table 1.

Thus, by Table 1 and Theorems 3.2, 2.3 and 3.4, we obtain the following
result.
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Corollary 3.2. For every positive integer n, the graph Cm ∪ Pn is super

edge-magic when m = 4, 5, 6, 8 or 10, unless (m,n) = (4, 3), (6, 1), (10, 1).

Theorem 3.4 and Lemma 4 imply the following result.

Corollary 3.3. If m is even with m ≥ 4 and n ≥ m/2 + 2, then the graph

Cm ∪ Pn is felicitous.

By Lemma 4 and Corollary 3.2, we obtain the following result.

Corollary 3.4. For every positive integer n, the graph Cm∪Pn is felicitous

when m = 4, 5, 6, 8 or 10, unless (m,n) = (4, 3), (6, 1), (10, 1).

4. Results on Linear Forests with two Components

In this section, we completely characterize the classes of (super) edge-magic
linear forests with two components. These extend the following result shown
in [5].

Theorem 4.1. For every integer n ≥ 3, the linear forest P2 ∪ Pn is super

edge-magic.

In [7], the forest K1,m ∪ Pn is shown to be super edge-magic for every two
integers m ≥ 1 and n ≥ 4. Hence, we have the following result.

Theorem 4.2. For every integer n ≥ 4, the linear forest P3 ∪ Pn is super

edge-magic.

We are now able to present the following result.

Theorem 4.3. The linear forest F ∼= Pm ∪ Pn is super edge-magic if and

only if (m,n) 6= (2, 2) or (3, 3).

Proof. First, note that Kotzig and Rosa [18] proved that the linear forest
nP2 is (super) edge-magic if and only if n is odd and thus 2P2 is not super
edge-magic. Also, one can verify by an exhaustive computer search that 2P3

is not super edge-magic either.
For the converse, assume that (m,n) 6= (2, 2) or (3, 3). Observe then

that P1 ∪ Pn is super edge-magic as it was shown in [23] that all paths are
super edge-magic. Now, by Theorems 4.1 and 4.2, it is sufficient to show
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that the linear forest Pm ∪ Pn is super edge-magic for every pair of integers
m and n with n ≥ m ≥ 4. Thus, consider the following cases.

Case 1. Ifm = 4 and n ≥ 4, then consider the super edge-magic labeling
of H ∼= C4 ∪ Pn found in Theorem 3.2. Now, remove the edge u1u4 from H
to obtain a super edge-magic labeling of P4 ∪Pn with valence 5n/2+10 if n
is even, (5n + 19)/2 if n ≡ 1 (mod 4) and (5n + 21)/2 if n ≡ 3 (mod 4).

Case 2. If m is even with m ≥ 6 and n is odd with n ≥ 7, then
consider the super edge-magic labeling ofG ∼= Cm∪Cn found in Theorem 3.4,
and remove the edges u1um and v1vn from G to obtain a super edge-magic
labeling of F with valence 5(m+ n− 1)/2 + 2.

Case 3. If m and n are even with m ≥ 6 and n ≥ 6, then there are two
subcases to pursue; so consider the super edge-magic labeling ofH ∼= Cm∪Pn

found in Theorem 2.4.

Subcase 3.1. For m = 4k + 2 and n = 2k + 6l+ t, where t = −2, 0 or 2,
k ≥ 1 and l ≥ ⌈(2k − t+ 2)/6⌉, or m = 4k + 4 and n = 2k + 6l + t, where
t = −2 or 2, k ≥ 1 and l ≥ ⌈(2k − t+ 4)/6⌉, remove the edge u1um from G
to obtain a super edge-magic labeling of F .

Subcase 3.1. For m = 4k + 4 and n = 2k + 6l, where k ≥ 1 and
l ≥ ⌈(k + 2)/3⌉, define the linear forest F with V (F ) = V (G) and E(F ) =
E(G) − {u1um, v1vn}. Now, let h : V (F ) → {1, 2, . . . , 6k + 6l + 4} be the
vertex labeling such that

h(uj) =















6k + 6l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i and k + 2 ≤ i ≤ 2k + 2;

h(vj) =























































6k + 6l − 3i+ 7, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3k + 3l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k + 1;
3k + 6l − 3i+ 3, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i− 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 4, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 2, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3l − 3i+ 1, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l − 1;
i, if j = 2k + 6l + 2i− 4 and 1 ≤ i ≤ 2.
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Thus, by Lemma 1, h extends to a super edge-magic labeling of F with
valence 5(m+ n)/2.

Case 4. If m and n are odd with m ≥ 5 and n ≥ 5, then there are
six subcases to pursue; so define the linear forest F ∼= Pm ∪ Pn as given in
Subcase 3.2.

Subcase 4.1. For m = 4k + 1 and n = 2k + 6l − 3, where k ≥ 1 and
l ≥ ⌈(k + 2)/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l − 2} be the vertex labeling
such that

h(uj) =















3k + 3l − 3i+ 2, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 5, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
6k + 6l − 3i, if j = 2i and 1 ≤ i ≤ k;
6l + 3i− 4, if j = 2i and k + 1 ≤ i ≤ 2k;

h(vj) =















































6k + 6l − 3i+ 1, if j = 2i− 1 and 1 ≤ i ≤ k;
3k + 3l − 3i, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 1, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i− 1, if j = 2k + 6i− 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i− 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i and 1 ≤ i ≤ l − 1.

Subcase 4.2. For m = 4k + 1 and n = 2k + 6l − 1, where k ≥ 1 and
l ≥ ⌈(k + 1)/3⌉, consider the following possibilities for the pair of integers k
and l.

For (k, l) = (1, 1), label the vertices of P5 with 6 − 2− 8 − 1 − 12, and
label the ones of P7 with 4 − 7 − 10 − 5 − 11 − 3 − 9 to obtain a super
edge-magic labeling of P5 ∪ P7 with valence 30.

For (k, l) = (2, 1), F ∼= 2P9, which is super edge-magic, since it was
shown in [7] that the linear forest 2Pn is super edge-magic if and only if
n 6= 2 or 3.

For (k, l) 6= (1, 1) or (2, 1), let h : V (F ) → {1, 2, . . . , 6k + 6l} be the
vertex labeling such that

h(uj) =















3k + 3l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
6k + 6l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k;
6l + 3i− 2, if j = 2i and k + 1 ≤ i ≤ 2k;
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h(vj) =















































6k + 6l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k;
3k + 3l − 3i+ 1, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3i+ 2, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3k + 6l − 3i, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 1, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3l − 3i− 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i− 1, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l − 2;

h(v2k+1) = 3k + 6l − 1; h(v2k+3) = 3k + 6l; h(v2k+6l−3) = 3k + 3l + 1;
h(v2k+6l−1) = 3k + 3l + 2.

Subcase 4.3. For m = 4k + 1 and n = 2k + 6l + 1, where k ≥ 1 and
l ≥ ⌈k/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l + 2} be the vertex labeling such
that

h(uj) =















6k + 6l − 3i+ 5, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 2, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 1, if j = 2i and k + 1 ≤ i ≤ 2k;

h(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k;
6k + 6l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 3, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3l − 3i+ 4, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 2, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 3, if j = 2k + 6i and 1 ≤ i ≤ l;

h(v2k+6l−1) = 1; h(v2k+6l+1) = 2.

Subcase 4.4. For m = 4k + 3 and n = 2k + 6l − 1, where k ≥ 1 and
l ≥ ⌈(k + 2)/3⌉, let h : V (F ) → {1, 2, . . . , 6k+6l+2} be the vertex labeling
such that

h(uj) =















6k + 6l − 3i+ 5, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 5, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i and k + 2 ≤ i ≤ 2k + 1;
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h(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6k + 6l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 2, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i− 3 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 3, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3l − 3i+ 1, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;

h(v2k+6l−3) = 1; h(v2k+6l−1) = 2.

Subcase 4.5. For m = 4k + 3 and n = 2k + 6l + 1, where k ≥ 1 and
l ≥ ⌈(k + 1)/3⌉, let h : V (F ) → {1, 2, . . . , 6k+6l+4} be the vertex labeling
such that

h(uj) =















3k + 3l − 3i+ 5, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 5, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
6k + 6l − 3i+ 6, if j = 2i and 1 ≤ i ≤ k + 1;
6l + 3i− 1, if j = 2i and k + 2 ≤ i ≤ 2k + 1;

h(vj) =















































6k + 6l − 3i+ 7, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 2, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 5, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i+ 3, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l.

Subcase 4.6. For m = 4k + 3 and n = 2k + 6l + 3, where k ≥ 1 and
l ≥ ⌈k/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l + 6} be the vertex labeling such
that

h(uj) =















3k + 3l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
6k + 6l − 3i+ 8, if j = 2i and 1 ≤ i ≤ k + 1;
6l + 3i+ 1, if j = 2i and k + 2 ≤ i ≤ 2k + 1;
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h(vj) =















































6k + 6l − 3i+ 9, if j = 2i− 1 and 1 ≤ i ≤ k + 2;
3k + 3l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 7, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l;
3k + 6l − 3i+ 5, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3l − 3i+ 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i+ 4 and 1 ≤ i ≤ l − 1;

h(v2k+2) = 3l; h(v2k+4) = 3l + 1; h(v2k+6l+1) = 3k + 3l + 4; h(v2k+6l+3) =
3k + 3l + 5.

Thus, by Lemma 1, h extends to a super edge-magic labeling of F with
valence 5(m+ n)/2.

Case 5. If m is odd with m ≥ 5 and n is even with n ≥ 6, then there
are six subcases to pursue; so define the linear forest F ∼= Pm ∪ Pn as given
in Subcase 3.2.

Subcase 5.1. For m = 4k + 1 and n = 2k + 6l − 2, where k ≥ 1 and
l ≥ ⌈(k + 2)/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l − 1} be the vertex labeling
such that

h(uj) =















3k + 3l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
6k + 6l − 3i+ 1, if j = 2i and 1 ≤ i ≤ k;
6l + 3i− 3, if j = 2i and k + 1 ≤ i ≤ 2k;

h(vj) =















































6k + 6l − 3i+ 2, if j = 2i− 1 and 1 ≤ i ≤ k;
3k + 3l − 3i+ 1, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 1, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i− 4 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 2, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i, if j = 2k + 6i− 2 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i, if j = 2k + 6i− 1 and 1 ≤ i ≤ l − 1;
3l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l − 1;

h(v2k+6l−4) = 1; h(v2k+6l−2) = 2.

Subcase 5.2. For m = 4k + 1 and n = 2k + 6l, where k ≥ 1 and
l ≥ ⌈(k + 1)/3⌉, let h : V (F ) → {1, 2, . . . , 6k+6l+1} be the vertex labeling
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such that

h(uj) =















6k + 6l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 3, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 2, if j = 2i and k + 1 ≤ i ≤ 2k;

h(vj) =















































3k + 3l − 3i+ 3, if j = 2i− 1 and 1 ≤ i ≤ k;
6k + 6l − 3i+ 2, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 2, if j = 2k + 6i− 5 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3l − 3i+ 3, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 1, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 2, if j = 2k + 6i and 1 ≤ i ≤ l.

Subcase 5.3. For m = 4k + 1 and n = 2k + 6l + 2, where k ≥ 1 and
l ≥ ⌈k/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l + 3} be the vertex labeling such
that

h(uj) =















6k + 6l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 1, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 1;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k;
3l − 3k + 3i− 1, if j = 2i and k + 1 ≤ i ≤ 2k;

h(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k;
6k + 6l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k + 1;
3k + 6l − 3i+ 5, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3l − 3i+ 1, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 3, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3l − 3i+ 2, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 1, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l − 1;

h(v2k+1) = 3l; h(v2k+3) = 3l + 1; h(v2k+6l) = 3k + 3l + 2; h(v2k+6l+2) =
3k + 3l + 3.

Subcase 5.4. For m = 4k + 3 and n = 2k + 6l, where k ≥ 1 and
l ≥ ⌈(k + 2)/3⌉, consider the following possibilities for the integers k and l.
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For (k, l) = (1, 1), label the vertices of P7 with 13− 6− 10− 4− 11− 7− 14,
and label the ones of P8 with 15 − 5 − 12 − 1 − 8 − 2 − 9 − 3 to obtain a
super edge-magic labeling of P7 ∪ P8 with valence 37.

For (k, l) 6= (1, 1), let h : V (F ) → {1, 2, . . . , 6k + 6l + 3} be the vertex
labeling such that

h(uj) =















6k + 6l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 3, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i and k + 2 ≤ i ≤ 2k + 1;

h(vj) =















































3k + 3l − 3i+ 4, if j = 2i− 1 and 1 ≤ i ≤ k + 2;
6k + 6l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 2, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 1, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3l − 3i, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 2, if j = 2k + 6i+ 2 and 1 ≤ i ≤ l − 1;
3l − 3i− 2, if j = 2k + 6i+ 3 and 1 ≤ i ≤ l − 1;
3k + 6l − 3i, if j = 2k + 6i+ 4 and 1 ≤ i ≤ l − 2;

h(v2k+2) = 3k + 6l; h(v2k+4) = 3k + 6l + 1; h(v2k+6l−2) = 3k + 3l + 2;
h(v2k+6l) = 3k + 3l + 3.

Subcase 5.5. For m = 4k + 3 and n = 2k + 6l + 2, where k ≥ 1 and
l ≥ ⌈(k + 1)/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l + 5} be the vertex labeling
such that

h(uj) =















3k + 3l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 4, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
6k + 6l − 3i+ 7, if j = 2i and 1 ≤ i ≤ k + 1;
6l + 3i, if j = 2i and k + 2 ≤ i ≤ 2k + 1;

h(vj) =















































6k + 6l − 3i+ 8, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
3k + 3l − 3i+ 4, if j = 2i and 1 ≤ i ≤ k;
3l − 3i+ 3, if j = 2k + 6i− 4 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 6, if j = 2k + 6i− 3 and 1 ≤ i ≤ l;
3l − 3i+ 4, if j = 2k + 6i− 2 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 4, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3l − 3i+ 2, if j = 2k + 6i and 1 ≤ i ≤ l − 1;
3k + 6l − 3i+ 5, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l;



A Magical Approach to Some Labeling Conjectures 111

h(v2k+6l) = 1; h(v2k+6l+2) = 2.

Subcase 5.6. For m = 4k + 3 and n = 2k + 6l + 4, where k ≥ 1 and
l ≥ ⌈k/3⌉, let h : V (F ) → {1, 2, . . . , 6k + 6l + 7} be the vertex labeling such
that

h(uj) =















6k + 6l − 3i+ 10, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6l + 3i, if j = 2i− 1 and k + 2 ≤ i ≤ 2k + 2;
3k + 3l − 3i+ 5, if j = 2i and 1 ≤ i ≤ k + 1;
3l − 3k + 3i− 2, if j = 2i and k + 2 ≤ i ≤ 2k + 1;

h(vj) =















































3k + 3l − 3i+ 6, if j = 2i− 1 and 1 ≤ i ≤ k + 1;
6k + 6l − 3i+ 8, if j = 2i and 1 ≤ i ≤ k;
3k + 6l − 3i+ 7, if j = 2k + 6i− 4 and 1 ≤ i ≤ l + 1;
3l − 3i+ 4, if j = 2k + 6i− 3 and 1 ≤ i ≤ l + 1;
3k + 6l − 3i+ 8, if j = 2k + 6i− 2 and 1 ≤ i ≤ l + 1;
3l − 3i+ 2, if j = 2k + 6i− 1 and 1 ≤ i ≤ l;
3k + 6l − 3i+ 6, if j = 2k + 6i and 1 ≤ i ≤ l;
3l − 3i+ 3, if j = 2k + 6i+ 1 and 1 ≤ i ≤ l.

Thus, by Lemma 1, h extends to a super edge-magic labeling of F with
valence 5(m+n−1)/2+2 for m+n ≡ 1 or 3 (mod 6) and 5(m+n+1)/2−2
for m+ n ≡ 5 (mod 6).

Therefore, having exhausted all the possible cases, we obtain the desired
result.

The linear forest 2P3 is not super edge-magic as we have shown in the
previous theorem, but it is edge-magic (label the vertices of one P3 with
1− 9− 2, and the ones of the other P3 with 3− 4− 5 and let valence be 17).
Therefore, the following edge-magic analogue to Theorem 4.3 is obtained.

Theorem 4.4. The linear forest Pm∪Pn is edge-magic if and only if (m,n)
6= (2, 2).

5. Conclusions

The authors wish to reiterate that the super edge-magic 2-regular graphs,
which are studied in this paper are, by virtue of Lemmas 3 and 4, also
harmonious, sequential and felicitous. Additionally, as mentioned above, the
study of the super edge-magic properties of bipartite graphs can provide a



112 R.M. Figueroa-Centeno, R. Ichishima, ...

means by which they may be shown to be graceful if they meet one additional
condition (see [4]).
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