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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of vertices
and arcs of D, respectively.

A (k, l)-kernel N of D is a k-independent set of vertices (if u, v ∈ N
then d(u, v) ≥ k) and l-absorbent (if u ∈ V (D) − N then there exists
v ∈ N such that d(u, v) ≤ l). A k-kernel is a (k, k − 1)-kernel. A
digraph D is cyclically k-partite if there exists a partition {Vi}

k−1

i=0
of

V (D) such that every arc in D is a ViVi+1-arc (mod k). We give
a characterization for an unilateral digraph to be cyclically k-partite
through the lengths of directed cycles and directed cycles with one
obstruction, in addition we prove that such digraphs always have a
k-kernel. A study of some structural properties of cyclically k-partite
digraphs is made which bring interesting consequences, e.g., sufficient
conditions for a digraph to have k-kernel; a generalization of the well
known and important theorem that states if every cycle of a graph

G has even length, then G is bipartite (cyclically 2-partite), we prove
that if every cycle of a graph G has length ≡ 0 (mod k) then G is
cyclically k-partite; and a generalization of another well known result
about bipartite digraphs, a strong digraph D is bipartite if and only

if every directed cycle has even length, we prove that an unilateral
digraph D is bipartite if and only if every directed cycle with at most
one obstruction has even length.
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1. Introduction

For general concepts and notation we refer the reader to [1, 2] and [5],
particularily we will use the notation of [5] for walks, if C = (x0, x1, . . . , xn)
is a walk and i < j then xiCxj will denote the subwalk of C (xi, xi+1, . . . ,
xj−1, xj), if xi = x0 we will simply write Cxj , analogously if xj = xn. Union
of walks will be denoted by concatenation or with ∪.

Several classes of k-partite graphs and digraphs have been extensively
studied as they are a natural generalization of bipartite graphs and digraphs;
k-partite tournaments (e.g. [1]), which have been studied for hamiltonicity
and pancyclism, and cyclically k-partite digraphs stand out for their multiple
properties. Cyclically k-partite digraphs have received attention for their
connection with matrix theory (e.g. [4]) in the study of the properties of
cyclic matrices and some special cases of diagonal matrices since the digraph
associated with an irreducible matrix with imprimitivity index k is exactly
a k-partite digraph. Our aim is to find structural properties of cyclically k-
partite graphs and digraphs wich are of general interest and that we can use
to state sufficient conditions for the existence of k-kernels in some families
of digraphs.

In [8], M. Kwaśnik introduces the concept of (k, l)-kernel in a digraph
generalizing the concept of kernel of a digraph in the Berge’s sense which is
a (2, 1)-kernel. As a special case of (k, l)-kernels we consider the k-kernels;
we define a k-kernel to be a (k, k − 1)-kernel. Under this definition a kernel
is a 2-kernel.

There are not many of results concerning the existence of k-kernels nor
(k, l)-kernels in large families of digraphs, many of the existing results come
from the study of products of digraphs and how the k-kernels are preserved
(like the work of W loch and W loch, in particular with Szumny in [12, 13])
or the superdigraphs or certain families of digraphs ([7]). We begin with
some of the classical results in Kernel Theory that we will use as platform
for the results we propose.

Since every (directed) cycle of odd length does not has a kernel, sufficient
conditions for the existence of kernels in digraphs have been found imposing
conditions on the cycles of a digraph, e.g., in [14] is proved that

Theorem 1.1. If D is a digraph without directed cycles, then D has a

kernel.
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In [10], Richardson generalizes this result as follows1

Theorem 1.2 (Richardson [10]). If D is a digraph such that the length of

every directed cycle is congruent to 0 (mod 2), then D has a kernel.

This two theorems are examples of results than can be generalized for k-
kernels, our attention is focused in the generalization of the second theorem.

M. Kwaśnik stated the following generalization for k-kernels.

Definition 1.3. A digraph D is strongly connected if and only if for every
pair of vertices u, v ∈ V (D), there exists a uv-directed path in D.

A digraph D is unilaterally connected, or simply unilateral, if and only
if for every pair of vertices u, v ∈ V (D), there exists an uv-directed path or
a vu-directed path in D.

Theorem 1.4 (Kwaśnik [8]). Let D be a strongly connected digraph. If

every directed cycle in D has length congruent to 0 (mod k), then D has a

k-kernel.

It has been noticed that the hypothesis of being strongly connected cannot
be dropped, and, altough diverse counterexamples have been considered
for the non strongly conected case (e.g. [11]), all of these examples are
non unilateral, so the question arises. Can the strong connectedness be
substituted for unilaterality? The answer is no, and the next digraph is a
counterexample, showing that the hypothesis in Theorem 1.4 is sharp.

If the digraph in Figure 1 had a 3-kernel, since vertex 10 has outdegree
0 (and thus can not be absorbed by any other vertex) it should be in the
3-kernel, hence vertices 2, 7, 4, 8, 6 and 9 would be 2-absorbed. The only
vertices that could 2-absorb vertex 1 are 2, 3 and 7, but the distance from
vertex 7 to vertex 10 is one, and distance from vertex 2 to vertex 10 is two, so
they can not be in the 3-kernel and the only remaining possibilities are that
vertex 1 is in the 3-kernel or vertex 3 is in the 3-kernel. We will show that
vertex 3 can not be in the 3-kernel and by symmetry vertex 1 neither can be
in the 3-kernel. Let us assume that 3 is in the 3-kernel. Now, vertex 5 can be
2-absorbed by vertices 1, 6 or 9 but d(1, 3) = 2, d(6, 10) = 2 and d(9, 10) = 1
and hence none of them can be added to the 3-kernel but neither can vertex
5, since vertex 3 is at distance two from vertex 5. Consequently, digraph in

1See [3] for a simpler proof of Theorem 1.2.
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Figure 1 does not have a 3-kernel, its only directed cycle, (1, 2, 3, 4, 5, 6, 1)
has length ≡ 0 (mod 3), and is unilaterally connected.

Figure 1. Counterexample to a version of Theorem 1.4 with weaker hypothesis.

2. Cyclically k-partite Digraphs

We are interested in the different ways the concept of k-kernel can be gener-
alized and the possibility to demonstrate equivalent versions of Theorem 1.4
or any of the classical theorems in kernel theory. Also, in the study of the
structural properties implicated by the hypotesis of Theorem 1.4, we prove a
similar result, relaxing the hypothesis of connectedness to unilaterality but
increasing the length restrictions to more than just the directed cycles. In [6],
Galeana-Sánchez proves Theorem 1.4 showing that any strongly connected
digraph D such that every directed cycle has length ≡ 0 (mod k) is cycli-
cally k-partite i.e., there exists a k-partition of V (D), V0, V1, . . . , Vk−1 such
that every arc of D is a ViVi+1-arc (mod k); and, thanks to the strong con-
nectedness, that every Vi is a k-absorbent set for every i ∈ {0, 1, . . . , k− 1},
i.e., that for every vertex u ∈ V (D) \ Vi, there is a vertex v ∈ Vi such
that d(u, v) ≤ k. We propose new sufficient conditions for a digraph to be
cyclically k-partite and to find a k-absorbing set in this partition.
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Definition 2.1. A closed walk C = (x0, x1, . . . , xn, xn+1 = x0) is directed
with an obstruction at vertex xn if there exists a directed walk C ′ =
(x0, x1, . . . , xn) and an arc (x0, xn) ∈ A(D) \ A(C ′) such that C = C ′ ∪
(x0, xn).

Figure 2 shows a cycle C = (0, 1, 2, 3, 4, 5, 6, 7, 0) with an obstruction at
vertex 7, where C ′ = (0, 1, 2, 3, 4, 5, 6, 7) and C = C ′ ∪ (0, 7). If we reverse
the arc (0, 7), the sequence C will denote a directed cycle.

Figure 2. A cycle with an obstruction at vertex 7.

In Definition 2.1 it is important to notice that (x0, xn) /∈ A(C ′) so its reversal
turns C into a closed directed walk. Figure 3 digraph (i) shows a digraph
with a closed walk C = (0, 1, 2, 0, 3, 4, 2, 3, 0) such that there exist a directed
walk C ′ = (0, 1, 2, 0, 3, 4, 2, 3) and an arc (0, 3) ∈ A(C ′) such that C =
C ′ ∪ (0, 3), but as it can be observed in digraph (ii), the reversal of (x0, xn)
does not turn C into a directed walk.

With this definition we state some lemmas leading to a characterization
of unilateral cyclically k-partite digraphs.

Lemma 2.2. If C is a directed closed walk with one obstruction, then C

contains a cycle with at most one obstruction.
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Figure 3. Digraph (ii) is obtained from digraph (i) by the reversal of the arc (0, 3).

The closed walk (0, 1, 2, 0, 3, 4, 2, 3, 0) is not directed in digraph (i) nor

in digraph (ii).

Proof. Since C is a directed closed walk with an obstruction, then C =
(x0, x1, . . . , xn, xn+1 = x0) where C ′ = (x0, . . . , xn) is a directed walk and
(x0, xn) is an arc not in A(C ′). If D is the directed closed walk obtained
from C by reversing the arc (x0, xn), then it is a well known result2 that
D contains a directed cycle D1. If D1 contains the arc (xn, x0), then C

contains the directed cycle with one obstruction at vertex xn C1, obtained
by the reversing of the arc (xn, x0) in D1; if D1 does not contain the arc
(xn, x0), then C contains the directed cycle D1.

Lemma 2.3. If D is a digraph such that every directed cycle in D has length

≡ 0 (mod k), then every directed closed walk has length ≡ 0 (mod k).

Proof. By induction on ℓ (C ) = n, where C = (x0, x1, . . . , xn = x0) is the
directed closed walk. If n ≤ k, since every directed closed walk contains a
directed cycle and every directed cycle in D has length ≡ 0 (mod k), then
n = k. If n > k, then C contains a directed cycle C1 = xiC (xj = xi),
where j > i. It is clear that if C2 = x0Cxi ∪ xjCxn, then C = C1 ∪ C2

and ℓ (C ) = ℓ (C1) + ℓ (C2). By induction hypothesis ℓ (C2) ≡ 0 (mod k)
and ℓ (C1) ≡ 0 (mod k) because C1 is a directed cycle. Hence, ℓ (C ) ≡ 0
(mod k).

Lemma 2.4. Let D be a digraph. If every directed cycle has length ≡ 0 (mod
k) and every directed cycle with one obstruction has length ≡ r (mod k),
then every directed closed walk C with one obstruction fulfills that ℓ(C ) ≡ r
(mod k).

2This result can be found in [2].
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Proof. By induction on ℓ (C ). If ℓ (C ) ≤ k then C cannot repeat interior
vertices, because it wolud contain a directed closed walk and then a directed
cycle, but every directed cycle has length ≡ 0 (mod k), thus, C is a directed
cycle with one obstruction and by hypothesis has length ≡ r (mod k). If
ℓ (C ) > k and C does not repeat interior vertices, then again C is a directed
cycle with one obstruction. Otherwise, there exist an interior vertex xi such
that xiC (xj = xi) = C1 is a directed closed walk and as in the proof of
Lemma 2.3, C2 = x0Cxi ∪ xjCxn is such that C = C1 ∪ C2 and ℓ (C ) =
ℓ (C1) + ℓ (C2). But, in virtue of Lemma 2.3, ℓ (C1) ≡ 0 (mod k) and by
induction hypothesis ℓ (C2) ≡ r (mod k). Thence, ℓ (C ) ≡ r (mod k).

The next theorem was proved while we were looking for new sufficient con-
ditions for digraphs to have k-kernel.

Lemma 2.5. If D is an unilateral digraph such that every directed cycle

has length ≡ 0 (mod k) and every directed cycle with one obstruction has

length ≡ 2 (mod k), then D is cyclically k-partite.

Proof. First observe that to have a k-partition of D we need at least k
vertices, so we will suppose that |V (D)| ≥ k. Since D is unilateral, there
exists a spanning directed walk C = (v0, v1, . . . , vn) and we can consider the
subsets Vi = {vr|r ≡ i (modk)}, 0 ≤ i ≤ k − 1 of V (D). The set {Vi}

k−1
i=0

is a partition of V (D). To prove that
⋃k−1

i=0 Vi = V (D) and Vi 6= ∅ for
0 ≤ i ≤ k − 1 it suffices to observe that C is a spanning directed walk
and thus has length greater than or equal to k, it follows that vi ∈ Vi for
0 ≤ i ≤ k−1, then Vi 6= ∅. Also, if v ∈ V (D) then v = vr for some 0 ≤ r ≤ n,
but {0, 1, . . . , k − 1} is a complete system of distinct representatives (mod
k) hence r ≡ i (mod k) for some 0 ≤ i ≤ k − 1 and v ∈ Vi. Finally, to
prove that Vj ∩ Vk = ∅, let vr be a vertex in V (D), if vr appears only once
in C then r ≡ i (mod k) for a unique i ∈ {0, 1, . . . , k − 1} and consequently
vr belongs to Vi for a unique i ∈ {0, 1, . . . , k − 1}; if vr appears more than
once in C we can suppose without loss of generality that vr = vs with r < s
and then vrC vs is a directed closed walk which, in virtue of Lemma 2.3, has
length ≡ 0 (mod k) so r ≡ s (mod k) and vr ∈ Vi for a unique i.

Let (x, y) ∈ A(D), then x = vr, y = vs for some r, s ∈ {0, 1, . . . , n}.
If s < r, then yCx ∪ (x, y) is a directed closed walk and it follows from
Lemma 2.3 that ℓ (yCx ∪ (x, y)) ≡ 0 (mod k) and since ℓ(yCx) = r − s,
then r− s+ 1 ≡ 0 and hence s ≡ r + 1 (mod k) therefore (x, y) is a ViVi+1-
arc for some i ∈ {0, 1, . . . , k−1}. If r < s, then s = r+1 when (x, y) ∈ A(D)
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or xC y ∪ (x, y) is a directed closed walk with one obstruction in y and in
virtue of Lemma 2.4 ℓ (xC y ∪ (x, y)) ≡ 2 (mod k), but ℓ(xC y) = s− r, thus
s − r + 1 ≡ 2 (mod k) and s ≡ r + 1 (mod k); in either case (x, y) is a
ViVi+1-arc for some i ∈ {0, 1, . . . , k − 1} and we can conclude that D is a
cyclically k-partite digraph.

As it can be noticed, we just found sufficient conditions for an unilateral
digraph to be cyclically k-partite, so the natural question arose. Are these
sufficient condition also necessary? The answer to this question is yes, not
only for unilateral digraphs, but for every cyclically k-partite digraph as
well.

Lemma 2.6. If D is a cyclically k-partite digraph, then every directed cycle

has length ≡ 0 (mod k) and every directed cycle with one obstruction has

length ≡ 2 (mod k).

Proof. Let D be a cyclically k-partite digraph. Is clear that every directed
cycle has length ≡ 0 (mod k), so let C = (x0, x1, . . . , xn, xn+1 = x0) be
a directed cycle with one obstruction at vertex xn (and hence (x0, xn) ∈
A(D)). Without loss of generality let us assume that {Vi}

k−1
i=0 is the cyclical

k-partition and that x0 ∈ V0, then xn ∈ V1. Since x1 ∈ V1, ℓ (x1 . . . xn) ≡ 0
(mod k), but C = (x0, x1) ∪ x1Cxn ∪ (x0, xn), so ℓ(C ) ≡ 2 (mod k).

The characterization is then obtained.

Theorem 2.7. If D is an unilateral digraph then D is cyclically k-partite if

and only if every directed cycle has length ≡ 0 (mod k) and every directed

cycle with one obstruction has length ≡ 2 (mod k).

Proof. It follows from Lemma 2.5 and Lemma 2.6.

And as an immediate consequence of these theorem, we have the next corol-
lary that generalizes a classical characterization of bipartite digraphs. It is
known that a strongly connected digraph is bipartite if and only if every
directed cycle has even length. We have the following characterization for
unilateral digraphs.

Corollary 2.8. Let D be an unilateral digraph, then D is bipartite if and

only if every directed cycle with at most one obstruction has even length.
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Proof. The sufficiency is trivial as every cycle (directed or not) of the
digraph is of even length. For the necessity set k = 2, then 2 ≡ 0 (mod k)
and the hypothesis of Theorem 2.7 are fullfiled, so D is cyclically 2-partite
and then bipartite.

Figure 4. An illustration for the proof of Lemma 2.6, a directed cycle with

one obstruction in a cyclically k-partite digraph.

Thus, we have characterizations for strongly connected and unilateral cycli-
cally k-partite digraphs, in terms of connectedness the next step would be
connected digraphs, unfortunately the method used in the proof of the exist-
ing characterizations use strongly the existence of a directed spanning walk,
which we do not have in merely connected digraphs. The next theorem gives
a sufficient condition for a graph to have a cyclically k-partite orientation.
This theorem is of great interest on its own because it generalizes a classic
result in Graph Theory, and also, its contrapositive form gives some infor-
mation on the structural properties of non cyclically k-partite digraphs (and
graphs).

Besides, we introduce the bridge graph of a given graph, a new tool that
we found very useful in the proof of the theorem.

Definition 2.9. If G is a graph, the bridge graph of G is the graph Br(G)
with vertex set {H ⊆ G|H is a maximal bridgeless subgraph of G} and such
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that H1H2 ∈ E (Br(G)) if and only if there is a bridge between H1 and H2

in G.

It is clear from the definition that every edge of Br(G) is a bridge, and thus,
Br(G) is a tree. Moreover, there is a bijection between edges in Br(G) and
bridges in G.

Theorem 2.10. Let G be a graph such that every cycle has length ≡ 0 (mod
k), then G admits a cyclically k-partite orientation.

Proof. By induction on n = |V (Br(G)) |. If n = 1, then G is a bridgeless
graph, so it admits a strongly connected orientation O(G). Since every cycle
of G has length ≡ 0 (mod k), then O(G) is strongly connected and every
directed cycle has length ≡ 0 (mod k), thus O(G) is cyclically k-partite.
Assume the result valid for every graph G with |V (Br(G)) | < n and let
G be a graph such that |V (Br(G)) | = n. If H is a leaf in Br(G), then
G − H is a connected graph with |V (Br(G)) | = n − 1, and by induction
hypothesis it is cyclically k-partite with k-partition P = {V0, V1, . . . , Vk−1}.
Since H is bridgless, it is also cyclically k-partite with k-partition Q =
{W0,W1, . . . ,Wk−1} and there is only one edge e ∈ E(G) between H and
G−H. If we orient e so it has tail in H and head in G−H, and we rename
the elements of Q to obtain Q′ such that the arc obtained by the orientation
of e has tail in Wi and head in Vi+1 (mod k), as this is the only arc between
the orientations of H and G−H, R = {V0 ∪W0, V1 ∪W1, . . . , Vk−1 ∪Wk−1}
is a cyclical k-partition of G.

This condition is suficient, but not necessary as the example in Figure 5
shows.

Figure 5. A graph with cycles of length 3, 4 and 5 and a cyclically 3-partite

orientation of the same graph.
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However Theorem 2.10 has interesting consequences.

Theorem 2.11. If G is a graph such that every cycle has length ≡ 0 (mod
k), then G is cyclically k-partite.

Proof. It suffices to consider a cyclically k-partite orientation of G, it
result obvious that G is itself cyclically k-partite.

For k = 2 this is a classical Graph Theory theorem, asserting that if every
cycle of G is even, then G is bipartite. For the k = 2 (bipartite) case the
necessity is also true, but Figure 5 demonstrates that it is not true for every
k, as a matter of fact, for every other k we can find a cyclically k-partite
graph with a 4-cycle as Figure 6 shows. The idea of this construction can be
extended to find cyclically k-partite graphs with cycles of every even length.

Figure 6. Example of a cyclically k-partite digraph with a 4-cycle.

As a final consequence of Theorem 2.10 in this section, we give the following
corollary.

Corollary 2.12. Let G be graph such that every cycle has length ≡ 0 (mod
k) with k = 2n − 1, n ∈ N, then χ(G) ≤ 3.

Proof. Let us recall that for any graph G, χ(G) < 3 if and only if G
has no cycles of odd length, so if we assume that G has at least one cycle,
since k is odd the equality χ(G) = 3 must hold. It follows from Theorem
2.11 that G is cyclically k-partite with partition {V1, V2, . . . , Vk} and the
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elements of the partition form an odd cycle. As every element of the par-
tition is an independent set, it suffices to give a 3-colouring for the k-cycle
(V1, V2, . . . , Vk, V0) and assign the same color as Vi to each vertex in Vi for
every i ∈ {1, 2, . . . , k}.

3. Cyclically k-partite Digraphs and k-kernels

From the proof of definition of a cyclically k-partite digraph we can observe
the following.

Proposition 3.1. If D is a cyclically k-partite digraph with partition

{Vi}
k−1
i=0 , then Vi is k-independent in D for every i ∈ {0, 1, . . . , k − 1}.

Proof. Since every arc of D is a ViVi+1-arc (mod k) for some i ∈ {0, 1, . . . ,
k − 1} then for each i ∈ {0, 1, . . . , k − 1}, every ViVi-walk must pass throug
each Vj , j 6= i before getting back to Vi.

Before proving the main theorem of this section, we need to state a sim-
ple result that generalizes the first theorem in Kernel Theory due to Von
Neumann and Morgenstern.

Theorem 3.2. Every acyclic digraph has a unique k-kernel for every k ≥ 2.

Proof. Let us proceed by induction on |V (D)| with fixed k ≥ 2. If
|V (D)| = 1, the only vertex of D is the desired k-kernel. Supposing the
result valid for every acyclic digraph D such that |V (D)| < n, let D be an
acyclic digraph with |V (D)| = n. Since D is an acyclic digraph, there exists
v ∈ V (D) such that d−(v) = 0. Now, D − v is an acyclic digraph on n − 1
vertices and by induction hypothesis has a unique k-kernel N ′. There are
two cases:

Case 1. If v is k-absorbed by N ′ in D, then N ′ is the k-kernel we have
been looking for.

Case 2. If v is not k-absorbed by N ′ in D, then there are not vN ′-
directed paths of length less or equal than k − 1 and, as v has indegree
0 there are not N ′v-directed paths in D, in particular there are not N ′v-
directed paths of length less or equal than k− 1 and hence N = N ′ ∪ {v} is
k-independent and k − 1-absorbent in D. We have found in N the desired
kernel.
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Finally, observe that in either case N ′ is unique by induction hypothesis. If
M is a k-kernel for D, M \{v} is k-independent in D− v and, as d−D(v) = 0,
v can’t absorb any other vertex, therefore M \ {v} is (k − 1)-absorbent in
D− v and a k-kernel of D− v. It follows than M \ {v} = N \ {v} and hence
M = N , the unique k-kernel of D.

Theorem 3.3. If D is a unilateral digraph such that every directed cycle

has length ≡ 0 (mod k) and every directed cycle with one obstruction has

length ≡ 2 (mod k), then D has a k-kernel.

Proof. If D has less than k vertices, then D cannot contain directed cycles
(since every directed cycle has at least k vertices), using Theorem 3.2 we
can conclude that D has a k-kernel. So, we can suppose without loss of
generality that |V (D)| ≥ k.

In virtue of Theorem 2.5, D is a cyclically k-partite digraph with parti-
tion {Vi}

k−1
i=0 and as a consequence of the unilaterality, there exists a directed

spanning walk C = (v0, v1, . . . , vn) in D. Let be Vj such that vn ∈ Vj . It is
a direct observation that Vj is (k − 1)-absorbent; for every u ∈ V (D) \ Vj ,
u = xr, r ≡ i (mod k) for some 0 ≤ i ≤ k − 1, i 6= j and r 6= n, as u /∈ Vj .
We have two cases:

Case 1. If j < i it suffices to consider the directed walk (xr, xr+1, . . . ,
xr+(k−i+j)). In the virtue that xr ∈ Vi, it is the case that xr+(k−i+j) ∈
Vi+(k−i+j) (mod k), but i+ (k− i+ j) ≡ k+ j ≡ j (mod k), and as j− i < 0
it follows that k− i+ j ≤ k− 1 therefore ℓ(xr, xr+1, . . . , xr+(k−i+j)) ≤ k− 1
and xr results to be (k − 1)-absorbed by Vj.

Case 2. If i < j, then 0 ≤ i < j ≤ k − 1 and thence j − i ≤ k − 1.
Considering the directed walk (xr, xr+1, . . . , xr+(j−i)), analogously to Case
1, xr+(j−i) ∈ Vi+(j−i) (mod k), but i + (j − i) = j so xr+(j−i) ∈ Vj and
ℓ
(

xr, xr+1, . . . , xr+(j−i)

)

= j − i ≤ k − 1, finally xr results (k − 1)-absorbed
by Vj.

Besides, it follows from Proposition 3.1 that Vj is a k-independent set.
Vj is then k-independent and (k − 1)-absorbent and is therefore the desired
k-kernel.

Also from the observation of the proof of Theorem 3.3, we have good pros-
pects for k-kernels in cyclically k-partite digraphs, we just have to find an
absorbing element of the k-partition. It is also clear that unilateral cyclically
k-partite “like” structures have k-kernel.
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Let us make further observations of the proof of Theorem 3.3. The absorp-
tion in the proposed k-kernel, V0 (without loss of generality) is granted due
to the existence of the spanning directed walk, for any vertex it suffices to
“follow” this walk to get eventually k-absorbed. The independence follows
from the disposition of the arcs between the elements of the k-partition, but
this disposition guarantee independence for every element of the partition,
not only the one we did choose as our k-kernel, therefore we can reverse any
number of arcs as long as we do not reverse arcs in the directed spanning
walk (conserving the absorption) and as long as we do not create any V0V0-
paths of length < k. We can also add any number of ViVj-arcs as long as
j < i 6= 1, since these arcs will not affect independence.

Corollary 3.4. Let D be an unilateral cyclically k-partite digraph with par-

tition {Vi}
k−1
i=0 , k-kernel V0 and spanning directed walk C . If D′ is obtained

from D by reversing any number of arcs not in A(C ) nor of the form V0V1

or Vk−1V0, or adding any number of ViVj-arcs with j < i 6= 1, then V0 is a

k-kernel for D′.

Proof. The absorption is a consequence of the existence of C in D′. For
the independence, observe that every arc with tail in V0 has head in V1,
and every arc with head in V0 has tail in Vk−1, thus, every V0V0-walk must
pass through every element of the k-partition of D′, and consequently has
length greater or equal than k. All the added arcs go “backwards” in the
k-partition, so the V0V0 distance cannot be shortened.

But unilateral digraphs are not the only cyclically k-partite digraphs with
kernel, directed trees are also cyclically k-partite and have k-kernel since
they are acyclical. Our next corollary continues analyzing the relation be-
tween k-kernels and cyclically k-partite digraphs. Let us recall a definition
before the corollary.

Definition 3.5. If D is a digraph, N ⊆ V (D) will be called independent by

directed paths if for every u, v ∈ N there are not uv-paths in D. Analogously
N will be called absorbent by directed paths if for every u ∈ V (D) \N there
exists v ∈ N such that d(u, v) ∈ N. If a set is independent by directed paths
and absorbent by directed paths it will be called a kernel by directed paths.

Corollary 3.6. Let D = (V0, V1, . . . , Vk−1) be a cyclically k-partite digraph.

If there exists N ⊂ Vi for some i ∈ {0, 1, . . . , k−1} such that N is absorbent

by directed paths, then D has a k-kernel.
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Proof. Let N ⊆ Vi be the set absorbent by directed paths in D. We
affirm that Vi is the desired k-kernel. Clearly, Vi is independent. For the
absortion we have that for every vertex u ∈ V (D) \ Vi there exists a uVi-
directed path C because N ⊆ Vi. The digraph D [V (C )] induced by the
set of vertices of C is a unilateral cyclically k-partite digraph with spanning
walk C , so, by Theorem 3.3, u is (k − 1)-absorbed by Vi in D [V (C )] and
thence is (k − 1)-absorbed by Vi in D.

Corollary 3.7. Let D = {Di}
n
i=1 be a family of disjoint unilateral cyclically

k-partite digraphs, W = {Wi}
n
i=0 a family of directed walks such that Wi is

a directed spanning walk for Di and vi is the end vertex of Wi for every

i ∈ {0, 1, . . . , k − 1}. If D0 is a cyclically k-partite digraph with partition

{Vi}
k−1
i=0 and k-kernel V0 such that vi ∈ V0 for every i ∈ {1, 2, . . . , n}, then

⋃n
0{Di} has a kernel.

Proof. This is a direct aplication of Corollary 3.6. Just observe that V0 is
a kernel by directed paths for

⋃n
0{Di}.

This last corolary was one of the first generalizations we found for non-
unilateral cyclically k-partite digraphs, it is a star shaped digraph where
each point of the star is a unilateral cyclically k-partite digraph, and all these
digraphs converge at the k-kernel of another cyclically k-partite digraph.
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