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Abstract

A radio labeling is an assignment c : V (G) → N such that every
distinct pair of vertices u, v satisfies the inequality d(u, v) + |c(u) −
c(v)| ≥ diam(G) + 1. The span of a radio labeling is the maximum
value. The radio number of G, rn(G), is the minimum span over all
radio labelings of G. Generalized prism graphs, denoted Zn,s, s ≥ 1,
n ≥ s, have vertex set {(i, j) | i = 1, 2 and j = 1, . . . , n} and edge set

This research was initiated under the auspices of an MAA (SUMMA) Research Ex-
perience for Undergraduates program funded by NSA, NSF, and Moodys, and hosted at
CSU Channel Islands during Summer, 2006. We are grateful to all for the opportunities
provided.



46 P. Martinez, J. Ortiz, M. Tomova and C. Wyels

{((i, j), (i, j ± 1))} ∪ {((1, i), (2, i + σ)) |σ = −
⌊

s−1
2

⌋

. . . , 0, . . . ,
⌊

s
2

⌋

}.
In this paper we determine the radio number of Zn,s for s = 1, 2 and 3.
In the process we develop techniques that are likely to be of use in
determining radio numbers of other families of graphs.
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1. Introduction

Radio labeling is a graph labeling problem, suggested by Chartrand, et al.
[2], that is analogous to assigning frequencies to FM channel stations so as
to avoid signal interference. Radio stations that are close geographically
must have frequencies that are very different, while radio stations with large
geographical separation may have similar frequencies. Radio labeling for a
number of families of graphs has been studied, for example see [5, 6, 7, 8, 9,
10, 11]. A survey of known results about radio labeling can be found in [3].
In this paper we determine the radio number of certain generalized prism
graphs.

All graphs we consider are simple and connected. We denote by V (G)
the vertices of G. We use dG(u, v) for the length of the shortest path in G

between u and v. The diameter of G, diam(G), is the maximum distance
in G. A radio labeling of G is a function cG that assigns to each vertex
u ∈ V (G) a positive integer cG(u) such that any two distinct vertices u and
v of G satisfy the radio condition:

dG(u, v) + |cG(u)− cG(v)| ≥ diam(G) + 1.

The span of a radio labeling is the maximum value of cG. Whenever G is
clear from context, we simply write c(u) and d(u, v). The radio number of
G, rn(G), is the minimum span over all possible radio labelings of G1.

In this paper we determine the radio number of a family of graphs that
consist of two n-cycles together with some edges connecting vertices from
different cycles. The motivating example for this family of graphs is the
prism graph, Zn,1, which is the Cartesian product of P2, the path on 2
vertices, and Cn, the cycle on n vertices. In other words, a prism graph

1We use the convention that N consists of the positive integers. Some authors let N

include 0, with the result that radio numbers using this definition are one less than radio
numbers determined using the positive integers.
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consists of 2 n-cycles with vertices labeled (1, i), i = 1, . . . , n and (2, i),
i = 1, . . . , n respectively together with all edges between pairs of vertices of
the form (1, i) and (2, i). Generalized prism graphs, denoted Zn,s have the
same vertex set as prism graphs but have additional edges. In particular, ver-
tex (1, i) is also adjacent to (2, i+σ) for each σ in {−

⌊

s−1
2

⌋

. . . , 0, . . . ,
⌊

s
2

⌋

},
see Definition 2.1.

Main Theorem. Let Zn,s be a generalized prism graph with 1 ≤ s ≤ 3,
and (n, s) 6= (4, 3). Let n = 4k + r, where k ≥ 1, and r = 0, 1, 2, 3. Then

rn(Zn,s) = (n − 1)φ(n, s) + 2.

where φ(n, s) is given in the following table:

φ(n, s) :

s=1 s=2 s=3

r=0 k + 2 k + 1 k + 2

r=1 k + 2 k + 2 k + 1

r=2 k + 3 k + 2 k + 2

r=3 k + 2 k + 3 k + 2

In addition, rn(Z3,3) = 6 and rn(Z4,3) = 9.

2. Preliminaries

We will use pair notation to identify the vertices of the graphs with the
first coordinate identifying the cycle, 1 or 2, and the second coordinate
identifying the position of the vertex within the cycle, 1, . . . , n. To avoid
complicated notation, identifying a vertex as (i, j) will always imply that the
first coordinate is taken modulo 2 with i ∈ {1, 2} and the second coordinate
is taken modulo n with j ∈ {1, . . . , n}.

Definition 2.1. A generalized prism graph, denoted Zn,s, s ≥ 1, n ≥ s,
has vertex set {(i, j) | i = 1, 2 and j = 1, . . . , n}. Vertex (i, j) is adja-
cent to (i, j ± 1). In addition, (1, i) is adjacent to (2, i + σ) for each σ in
{−

⌊

s−1
2

⌋

. . . , 0, . . . ,
⌊

s
2

⌋

}.

The two n-cycle subgraphs of Zn,s induced by (1) all vertices of the form
(1, j) and (2) all vertices of the form (2, j) are called principal cycles.
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In this notation, the prism graphs Cn�P2 are Zn,1. We note that Zn,2 graphs
are isomorphic to the squares of even cycles, C2

2n, whose radio number is
determined in [8]. The graphs Z8,1, Z8,2, and Z8,3 are illustrated in Figure 1.
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Figure 1. Z8,1, Z8,2, and Z8,3, with standard cycles depicted by thickened edges.

Remark 2.2. Note that diam(Zn,s) = ⌊n+3−s
2 ⌋ for s = 1, 2, 3.

Our general approach to determining the radio number of Zn,s consists of
two steps. We first establish a lower bound for the radio number. Suppose
c is a radio labeling of the vertices of Zn,s. We can rename the vertices of
Zn,s with {αi | i = 1, . . . , 2n}, so that c(αi) < c(αj) whenever i < j. We
determine the minimum label difference between c(αi) and c(αi+2), denoted
φ(n, s), and use it to establish that rn(Zn,s) ≥ 2 + (n − 1)φ(n, s). We then
demonstrate an algorithm that establishes that this lower bound is in fact
the radio number of the graph. We do this by defining a position function

p : V (G) → {αi | i = 1, . . . , 2n} and a labeling function c : {αi} → Z+ that
has span (n−1)φ(n, s)+2. We prove that p is a bijection, i.e., every vertex is
labeled exactly once, and that all pairs of vertices together with the labeling
c ◦ p−1 satisfy the radio condition.

Some small cases of generalized prism graphs with s = 3 do not fol-
low the general pattern, so we discuss these first. First note that Z3,3 has
diameter 1 and thus can be radio-labeled using consecutive integers, i.e.,
rn(Z3,3) = 6. To determine rn(Z4,3), note that the diameter of Z4,3 is 2.
Therefore the radio number of Z4,3 is the same as the L(2, 1)-number of the
graph as defined in [1]. This prism graph is isomorphic to the join of two
copies of K2∪K2 where K2∪K2 is the disconnected graph with two compo-
nents each with 2 vertices and one edge. By [1], it follows that rn(Z4,3) = 9.
(We thank the referee for pointing out this proof.)
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To simplify many of the computations that follow, we make use of the exis-
tence of certain special cycles in the graphs.

Definition 2.3. Suppose a graph G contains a subgraph H isomorphic to
a cycle, and let v ∈ V (H).

• We will call H a v-tight cycle if for every u ∈ V (H), dG(u, v) = dH(u, v).

• We will call H a tight cycle if for every pair of vertices u,w in H,
dG(u,w) = dH(u,w).

We note that H is a tight cycle if and only if H is v-tight for every v ∈ V (H).

Remark 2.4. Each of the two principal n-cycles is tight.

Particular v-tight cycles of maximum length play an important role in our
proofs. Figure 1 uses bold edges to indicate a particular (1, 1)-tight cycle of
maximum length for each of the three types of graphs. The figure illustrates
these cycles in the particular case when n = 8 but it is easy to generalize
the construction to any n. We will call these particular maximum-length
(1, 1)-tight cycles in Zn,s standard. Thus each generalized prism graph with
1 ≤ s ≤ 3 has a standard cycle. For convenience, we will use a second set of
names for the vertices of a standard cycle when focusing on properties of,
or distance within, the standard cycles. The vertices of a standard cycle for
Zn,s will be labeled Xs

i , i = 1, . . . , n + 3− s, where

X1
i =







(1,1), if i = 1,
(1,2), if i = 2,
(2,i− 1), if i ≥ 3

and for k = 2, 3,

Xk
i =

{

(1,1), if i = 1,
(2,i), if i ≥ 2.

These labels are illustrated in Figure 1.

Remark 2.5. The standard cycles depicted in Figure 1 are (1, 1)-tight and
have n + 3 − s vertices. Therefore each standard cycle has diameter equal
to the diameter of its corresponding Zn,s graph.
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3. Lower Bound

Suppose c is a radio labeling of G with minimum span. Intuitively, building
such a labeling requires one to find groups of vertices that are pairwise far
from each other so they may be assigned labels that have small pairwise
differences. The following lemma will be used to determine the maximal
pairwise distance in a group of 3 vertices in Zn,s. This leads to Lemma
3.2, in which we determine the minimum difference between the largest and
smallest label in any group of 3 vertex labels.

Lemma 3.1. Let {u, v, w} be any subset of size 3 of V (Zn,s), 1 ≤ s ≤ 3,
with the exception of {(1, j), (2, j), (i, l)} in V (Zn,3). Then d(u, v)+d(v,w)+
d(u,w) ≤ n+ 3− s.

Proof. Note that if u,v, and w lie on a cycle of length t, then d(u,w) +
d(v, u) + d(w, u) ≤ t. If u,v, and w lie on the same principal n-cycle, the
desired result follows immediately, as all three vertices lie on a cycle of length
n, and 1 ≤ s ≤ 3.

Suppose u, v, and w do not all lie on the same principal n-cycle. Without
loss of generality, assume u = (1, 1), and v and w lie on the second principal
n-cycle. Then for s = 1 or 2, the standard cycle includes (1, 1) and all
vertices (2, i), so v and w lie on the standard cycle. For s = 3, the standard
cycle includes all vertices (2, i), i > 1. As the triple {(1, j), (2, j), (i, l)} in
V (Zn,3) was eliminated in the hypothesis, it follows that for s ≤ 3 all three
vertices lie on the appropriate standard cycle. As the standard cycle in each
case is of length n− s+ 3, the result follows as above.

Lemma 3.2. Let c be a radio labeling of Zn,s, 1 ≤ s ≤ 3 and n = 4k + r,

where k ≥ 1, r = 0, 1, 2, 3, and (n, s) 6= (4, 3). Suppose V (G) = {αi | i =
1, . . . , 2n} and c(αi) < c(αj) whenever i < j. Then we have |c(αi+2) −
c(αi)| ≥ φ(n, s), where the values of φ(n, s) are given in the following table.

φ(n, s) :

s=1 s=2 s=3

r=0 k + 2 k + 1 k + 2

r=1 k + 2 k + 2 k + 1

r=2 k + 3 k + 2 k + 2

r=3 k + 2 k + 3 k + 2
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Proof. First assume {αi, αi+1, αi+2} are any three vertices in any gener-
alized prism graph with 1 ≤ s ≤ 3 except {(1, j), (2, j), (i, l)} in V (Zn,3).
Apply the radio condition to each pair in the vertex set {αi, αi+1, αi+2} and
take the sum of the three inequalities. We obtain

d(αi+1, αi) + d(αi+2, αi+1) + d(αi+2, αi)

+ |c(αi+1)− c(αi)|+ |c(αi+2)− c(αi+1)|+ |c(αi+2)− c(αi)|(1)

≥ 3 diam(Zn,s) + 3.

We drop the absolute value signs because c(αi) < c(αi+1) < c(αi+2), and
use Lemma 3.1 to rewrite the inequality as

c(αi+2)− c(αi) ≥
1

2
(3 + 3diam(Zn,s)− (n+ 3− s)).

The table in the statement of the lemma has been generated by substituting
the appropriate values for diam(Zn,s) from Remark 2.2 and simplifying. As
the computations are straightforward but tedious, they are not included.

It remains to consider the case {αi, αi+1, αi+2} = {(1, j), (2, j), (i, l)} in
V (Zn,3). From the radio condition, it follows that

d ((1, j), (2, j)) + |c(1, j) − c(2, j)| ≥
⌊n

2

⌋

+ 1,

and so
|c(1, j) − c(2, j)| ≥

⌊n

2

⌋

≥ 2k.

Thus we may conclude

|c(αi+2)− c(αi)| ≥ |c(1, j) − c(2, j)| ≥ 2k.

If k ≥ 2, then

|c(αi+2)− c(αi)| ≥ 2k ≥ k + 2 ≥ φ(n, 3).

If k = 1, recall that Z4,3 is excluded in the hypothesis. It is easy to verify
that for n = 5, 6, 7, φ(n, 3) =

⌊

n
2

⌋

.

Remark 3.3. For all values of n and 1 ≤ s ≤ 3, 2φ(n, s) ≥ diam(Zn,s).

Theorem 3.4. For every graph Zn,s with 1 ≤ s ≤ 3,

rn(Zn,s) ≥ (n − 1)φ(n, s) + 2.
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Proof. We may assume c(α1) = 1. By Lemma 3.2, |c(αi+2) − c(αi)| ≥
φ(n, s), so c(α2i−1) = c(α1+2(i−1)) ≥ (i− 1)φ(n, s) + 1. Note that all gener-
alized prism graphs have 2n vertices. As

c(α2n−1) ≥ (n− 1)φ(n, s) + 1,

we have

c(α2n) ≥ c(α2n−1) + 1 = (n− 1)φ(n, s) + 2.

4. Upper Bound

To construct a labeling for Zn,s we will define a position function p :
{αi | i = 1, . . . , 2n} → V (Zn,s) and then a labeling function c : {αi | i =
1, . . . , 2n} → N. The composition c ◦ p−1 gives an algorithm to label Zn,s,
and this labeling has span equal to the lower bound found in Theorem
3.4. The labeling function depends only on the function φ(n, s) defined in
Lemma 3.2.

Definition 4.1. Let {αi | i = 1, . . . , 2n} be the vertices of Zn,s. Define
c : {αi | i = 1, . . . , 2n} → N to be the function

c(α2i−1) = 1 + (i− 1)φ(n, s), and

c(α2i) = 2 + (i− 1)φ(n, s).

Suppose f is any labeling of any graph G. If for some u, v ∈ V (G) the
inequality |f(u)− f(v)| ≥ diam(G) holds, then the radio condition is always
satisfied for u and v. The next lemma uses this property to limit the number
of vertex pairs for which it must be checked that the labeling c of Definition
4.1 satisfies the radio condition.

Lemma 4.2. Let {αi | i = 1, . . . , 2n} be the vertices of Zn,s and c be the

labeling of Definition 4.1. Then whenever |l − k| ≥ 4, d(αl, αk) + |c(αl) −
c(αk)| ≥ diam(Zn,s) + 1.

Proof. Without loss of generality, let l > k. Since c(αk+4) ≤ c(αl), it
follows that

c(αl)− c(αk) ≥ c(αk+4)− c(αk) = 2φ(n, s).



Radio Numbers for Generalized Prism Graphs 53

From Remark 3.3 it follows that

|c(αl)− c(αk)|+ d(αl, αk) ≥ 2φ(n, s) + 1 ≥ diam(Zn,s) + 1.

We will need to consider four different position functions depending on n

and s. Each of these position functions together with the labeling function
in Definition 4.1 gives an algorithm for labeling a particular Zn,s.

Case 1. n = 4k + r, r = 1, 2, 3 and s ≤ 3 except n = 4k + 2 when k is
even and s = 3.

The idea is to find a position function which allows pairs of consecutive
integers to be used as labels as often as possible. To use consecutive integers
we need to find pairs of vertices in Zn,s with distance equal to the diameter.
We will do this by taking advantage of the standard cycles for each value
of s.

Lemma 4.3. For all n ≥ 3 and s ≤ 3, d ((1, y), (2, y +D)) = diam(Zn,s)
where

D =

{

⌊

n+1
2

⌋

, for s = 1 and 3,
⌊

n+2
2

⌋

, for s = 2.

Proof. Without loss of generality we may assume that (1, y) = (1, 1).
Consider the standard cycle in Zn,s. Then (1, 1) = Xs

1 and (2, 1 + D) =
Xs

⌊n+3−s+1

2 ⌋+1
. The result follows by the observation that the standard cycle

in each case is isomorphic to Cn+3−s.

The position function for Case 1 is

p1(α2i−1) = (1, 1 + ω(i− 1)) and

p1(α2i) = (2, 1 +D + ω(i− 1)) ,
(2)

where D is as defined in Lemma 4.3 and

ω =

{

k, if n = 4k + 2 when k is odd, or n = 4k + 1,

k + 1, if n = 4k + 2 when k is even, or n = 4k + 3.

Lemma 4.4. The function p1 : {αj | j = 1, . . . , 2n} → V (Zn,s) is a bijection.
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Proof. Suppose p1(αa) = p1(αb) with a > b. Let i =
⌊

a
2

⌋

and j =
⌊

b
2

⌋

.
As p1(αa) and p1(αb) have the same first coordinate, a and b have the
same parity. Examining the second coordinates we can conclude that iω ≡
jω mod n or (i− j)ω ≡ 0 mod n.

By Euclid’s algorithm, k is co-prime to 4k+1 and k is co-prime to 4k+2
when k is odd. Also, k + 1 is co-prime to 4k + 2 when k is even and k + 1
is co-prime to 4k+3 for all k. Thus in all cases gcd(n, ω) = 1. As n divides
(i − j)ω, it follows that n divides (i − j). But then (i − j) ≥ n and thus
a− b ≥ 2n, so a > 2n, a contradiction.

Lemma 4.4 establishes that the function c ◦ p−1
1 : V (Zn,s) → N assigns each

vertex exactly one label. It remains to show that the labeling satisfies the
radio condition. The following lemma simplifies many of the calculations
needed.

Lemma 4.5. In all cases considered,

• φ(n, s) + ω ≥ diam(Zn,s) + 1 and

• φ(n, s)− ω ≥

{

1, if n− s is even,

2, if n− s is odd.

Proof. First, we give the values of diam(Zn,s) + 1:

diam(Zn,s) + 1 s = 1 s = 2 s = 3

r = 1 2k + 2 2k + 2 2k + 1

r = 2 2k + 3 2k + 2 2k + 2

r = 3 2k + 3 2k + 3 2k + 2

In each case, diam(Zn,s) + 1 ≤ φ(n, s) + ω:

φ(n, s) + ω s = 1 s = 2 s = 3

r = 1 2k + 2 2k + 2 2k + 1

r = 2, k odd 2k + 3 2k + 2 2k + 2

r = 2, k even 2k + 4 2k + 3

r = 3 2k + 3 2k + 4 2k + 3

The last table shows the values of φ(n, s)−ω with the entries corresponding
to n+ s ≡ 0 mod 2 in bold.
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φ(n, s)− ω s = 1 s = 2 s = 3

r = 1 2 2 1

r = 2, k odd 3 2 2

r = 2, k even 2 1

r = 3 1 2 1

Theorem 4.6. The function c ◦ p−1
1 : V (Zn,s) → N defines a radio labeling

on Zn,s for the values of n and s considered in Case 1.

Proof. By Lemma 3.1 it is enough to check that all pairs of vertices in
the set αj, .., αj+3 satisfy the radio condition. As d(αj , αj+a) depends only
on a and on the parity of j, it is enough to check all pairs of the form
(α2i−1, α2i−1+a) and all pairs of the form (α2i, α2i+a) for a ≤ 3 and for some
i. To simplify the computations, we will check these pairs in the case when
i = 1. For the convenience of the reader, we give the coordinates and the
labels of the relevant vertices.

vertex label value

α1 (1, 1) 1
α2 (2, 1 +D) 2
α3 (1, 1 + ω) 1 + φ(n, s)
α4 (2, 1 +D + ω) 2 + φ(n, s)
α5 (1, 1 + 2ω) 1 + 2φ(n, s)

Pair (α1, α2): By Lemma 4.3, d(α1, α2) = diam(Zn,s). Thus d(α1, α2) +
c(α2)− c(α1) = diam(Zn,s) + 1, as required.

Pairs (α1, α3) and (α2, α4): Note that α1 and α3 lie on the same principal
n-cycle and this cycle is tight by Remark 2.4. Thus

d(α1, α3) + c(α3)− c(α1) = ω + φ(n, s) ≥ diam(Zn,s) + 1.

The last inequality follows by Lemma 4.5. The relationship between α2 and
α4 is identical.

Pair (α1, α4): Note that

d(α1, α4) ≥ d(α1, α2)− d(α2, α4) = diam(Zn,s)− ω.
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Thus

d(α1, α4) + c(α4)− c(α1) ≥ diam(Zn,s)− ω + φ(n, s) + 1 ≥ diam(Zn,s) + 2,

where the last inequality follows by Lemma 4.5.

Pair (α2, α3): By subtracting ω from the second coordinate, we see
d(α2, α3) = d ((1, 1), (2, 1 +D − ω)).

When considered in the standard cycle, these vertices correspond to X1
1

and X1
2+D−ω if s = 1 and to Xk

1 and Xs
1+D−ω if s = 2 or 3. As by Remark

2.5 the standard cycle in each case is Xs
1-tight, we have

d(α2, α3) =











D − ω + 1 =
⌊

n+3
2

⌋

− ω, s = 1,

D − ω =
⌊

n+2
2

⌋

− ω, s = 2,

D − ω =
⌊

n+1
2

⌋

− ω, s = 3.

Thus in all cases d(α2, α3) =
⌊

n+3−s+1
2

⌋

− ω, so

d(α2, α3) ≥
⌊

n+3−s+1
2

⌋

− ω

=

{

diam(Zn,s) + 1− ω, n− s even,

diam(Zn,s)− ω, n− s odd.

By Lemma 4.5, φ(n, s)−ω ≥ 1 when n− s is even and φ(n, s)−ω ≥ 2 when
n− s is odd. Thus

d(α2, α3) + c(α3)− c(α2) ≥
⌊

n+3−s+1
2

⌋

− ω + (φ(n, s)− 1)

≥

{

diam(Zn,s) + 1 + 1− 1, n− s even,

diam(Zn,s) + 2− 1, n− s odd.

Pair (α2, α5): As |c(α5) − c(α2)| = 2φ(n, s) − 1 and d(α2, α5) ≥ 1, it
follows that |c(α5) − c(α2)| + d(α2, α5) ≥ 2φ(n, s), and so by Remark 3.3,
|c(α5)− c(α2)|+ d(α2, α5) ≥ diam(Zn,s) + 1.

This establishes that c ◦ p−1
1 is a radio labeling of Zn,s.

Case 2. n = 4k, s = 1 or 3.
In this case the position function is

p2(α2i−1) = (1 + li, 1 + k(i− 1)− li), and

p2(α2i) = (2 + li, 1 + k(i+ 1)− li),
(3)
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where li =
⌊

i−1
4

⌋

.

To simplify notation, we will also denote the value of l associated to a
particular vertex v by l(v). Note that l(α2n) = ln = l4k =

⌊

4k−1
4

⌋

≤ k − 1.

Lemma 4.7. The function p2 : {αj | j = 1, . . . , 2n} → V (Zn,s) is a bijection.

Proof. To show that p2 is a bijection, suppose that p2(αa) = p2(αb) and
let i =

⌊

a
2

⌋

and j =
⌊

b
2

⌋

. Suppose first that a and b are even. Then

1 + k(i− 1)− l(a) ≡ 1 + k(j − 1)− l(b) mod n.

Thus

k(i− j) + l(b) − l(a) ≡ 0 mod 4k,

so l(b) − l(a) ≡ 0 mod k. As l(b) − l(a) ≤ k − 1, this implies that l(b) = l(a).
Then we have that

k(i− j) + l(b) − l(a) = k(i− j) ≡ 0 mod 4k,

and thus (i− j) ≥ 4 or a− b ≥ 8. However, a− b ≥ 8 implies that l(b) 6= l(a),
a contradiction. The argument when a and b are odd is similar.

Suppose then that a is even and b is odd. Then 1+ l(b) ≡ 2+ l(a) mod 2
shows that l(a) and l(b) have different parity and in particular l(a) − l(b) 6=
0. On the other hand, considering the second coordinates of p2(αa) and
p2(αb) mod k, we deduce that 1−l(a) ≡ 1−l(b) mod k or l(a)−l(b) ≡ 0 mod k.
As l(a) − l(b) 6= 0 it follows that |l(a) − l(b)| ≥ k, a contradiction.

Lemma 4.8. The function c ◦ p−1
2 : V (Zn,s) → N defines a radio labeling

on Z4k,1 and Z4k,3.

Proof. The inequality the function must satisfy when applied to Z4k,1 is
d(u, v)+|c(u)−c(v)| ≥ diam(Z4k,1)+1 = 2k+2. For Z4k,3, the corresponding
inequality is d(u, v) + |c(u) − c(v)| ≥ diam(Z4k,3) + 1 = 2k + 1.

For both Z4k,1 and Z4k,3, φ(n, s) = k + 2, thus cZ4k,1
(u) = cZ4k,3

(u).

If u and v are in the same principal cycle, then dZn,3
(u, v) = dZn,1

(u, v),
as principal cycles are always tight. If u and v are on different principal
cycles, it is easy to verify that dZn,3

(u, v) = dZn,1
(u, v) − 1 by comparing

the standard u-tight cycles on the two graphs. Thus we can conclude that
dZn,3

(u, v) ≥ dZn,1
(u, v)−1 and so if the radio condition is satisfied by cZn,1

,
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the corresponding radio condition is satisfied by cZn,3
. We will check the

radio condition assuming that s = 1.

As before, it suffices to check that the radio condition holds for all pairs
of the form (α2i−1, α2i−1+a) and all pairs of the form (α2i, α2i+a) for a ≤ 3.
For the convenience of the reader, the relevant values of p2 and c are provided
below.

vertex label value

α2i−1 (1 + li, 1 + k(i− 1)− li) 1 + (i− 1)(k + 2)
α2i (2 + li, 1 + k(i+ 1)− li) 2 + (i− 1)(k + 2)
α2(i+1)−1 (1 + li+1, 1 + ki− li+1) 1 + i(k + 2)

α2(i+1) (2 + li+1, 1 + k(i+ 2)− li+1) 2 + i(k + 2)

α2(i+2)−1 (1 + li+2, 1 + k(i+ 1)− li+2) 1 + (i+ 1)(k + 2)

Note that l(αr+a)−l(αr) = 0 or 1 whenever a ≤ 3. As s = 1, d((x1, y1)(x2, y2))
= |x2 − x1| + min{|y2 − y1|, 4k − |y2 − y1|}. The following table has been
generated using this equation.

d(u, v) d(u, v)
vertex pair |l(u) − l(u)| = 0 |l(u) − l(v)| = 1 |c(u) − c(v)|

(α2i−1, α2i) 1 + 2k 1

(α2i−1, α2(i+1)−1) 0 + k 1 + (k − 1) k + 2

(α2i−1, α2(i+1)) 1 + k 0 + (k + 1) k + 3

(α2i, α2(i+1)−1) 1 + k 0 + (k + 1) k + 1

(α2i, α2(i+1)) 0 + k 1 + (k − 1) k + 2

(α2i, α2(i+2)−1) 1 + 0 0 + 1 2k + 3

It is straightforward to verify that in each case, d(u, v)+|c(u)−c(v)| ≥ 2k+2.

Case 3. n = 4k, s = 2.

The position function for this case is

p3(α2i−1) = (i, 1 + k(i− 1)− li), and

p3(α2i) = (i, 1 + k(i+ 1)− li),
(4)

where li =
⌊

i−1
2

⌋

. Note that l2n = l4k =
⌊

4k−1
2

⌋

≤ 2k − 1.
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Lemma 4.9. The function p3 : {αj | j = 1, . . . , 2n} → V (Zn,s) is a bijection.

Proof. Suppose that p3(αa) = p3(αb) and let i =
⌊

a
2

⌋

and j =
⌊

b
2

⌋

. First
suppose a and b have the same parity, say even. Then

1 + k(i+ 1)− l(a) ≡ 1 + k(j + 1)− l(b) mod n.

Thus
k(i− j) + l(b) − l(a) ≡ 0 mod 4k,

so l(b) − l(a) ≡ 0 mod k. As |l(a) − l(b)| ≤ 2k − 1, this implies that l(a) = l(b)
or that l(a) = l(b) + k. In the first case it follows that

k(i− j) + l(b) − l(a) = k(i− j) ≡ 0 mod 4k

and thus (i− j) ≥ 4 or a− b ≥ 8. However, a− b ≥ 8 implies that l(b) 6= l(a),
a contradiction.

If l(a) = l(b) + k, it follows that

k(i− j) + l(b) − l(a) = k(i− j − 1) ≡ 0 mod 4k,

and thus 4 divides i − j − 1. We conclude that i − j − 1 is even and thus
i− j is odd. It follows that i and j have different parities. But in this case
p3(αa) and p3(αb) have different first coordinates, so p3(αa) 6= p3(αb). The
argument when a and b are odd is similar.

Suppose then that a is even and b is odd. Considering the second
coordinate of p3(αa) − p3(αb) mod k gives that l(b) − l(a) ≡ 0 mod k. As
|l(a) − l(b)| ≤ 2k − 1, we again conclude that l(a) = l(b) or l(a) = l(b) + k. In
the first case, considering the second coordinate of p3(αa)−p3(αb) mod 2k,
we conclude k(i − j) ≡ 0 mod 2k, so (i − j) ≥ 2. This however implies
that l(b) 6= l(a), a contradiction. If l(a) = l(b) + k, then, should the second
coordinate of p3(αa)− p3(αb) be congruent to 0 mod 4k, we’d have 2k(i −
j − 1) ≡ 0 mod 4k, so (i− j − 1) is even. Again this shows that p3(αa) and
p3(αb) have different first coordinates, so can not be equal.

Lemma 4.10. The function c ◦ p−1
3 : V (Zn,s) → N defines a radio labeling

on Z4k,2.

Proof. As before it suffices to check all pairs of the form (α2i−1, α2i−1+a)
and all pairs of the form (α2i, α2i+a) for a ≤ 3. For the convenience of the
reader, the values of p3 for the pairs of vertices we must check are provided
below.
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vertex label value

α2i−1 (i, 1 + k(i− 1)− li) 1 + (i− 1)(k + 1)
α2i (i, 1 + k(i+ 1)− li) 2 + (i− 1)(k + 1)
α2(i+1)−1 (i+ 1, 1 + ki− li+1) 1 + i(k + 1)

α2(i+1) (i+ 1, 1 + k(i+ 2)− li+1) 2 + i(k + 1)

α2(i+2)−1 (i+ 2, 1 + k(i+ 1)− li+2) = 1 + (i+ 1)(k + 1)

We will have to compute distances in Zn,2. It is easy to see that d((1, j),
(2, j)) = 1 and d((i, j), (i, j′)) = min{|j − j′|, 4k − |j − j′|}. The distance
d ((1, j)(2, j′)), j 6= j′, is somewhat harder to compute. For this purpose
we can use the standard cycle in Z4k,2 after appropriate renaming of the
vertices. In particular, d ((1, j), (2, j′)) = d ((1, j − j + 1), (2, j′ − j + 1)) =
d ((1, 1), (2, j′ − j + 1)). Let r ≡ j′ − j + 1 mod 4k and r ∈ {1, . . . , n}.
Then d ((1, j), (2, j′)) = d ((1, 1), (2, r)) = dCn+1

(X2
1 ,X

2
r ) = min{r − 1, n +

1−(r−1)}. Note that in Zn,2, d ((1, j)(2, j
′)) 6= d ((1, j′)(2, j)) thus d(αs, αt)

depends on the parities of
⌊

s
2

⌋

and
⌊

t
2

⌋

.

The following table shows the distances and label differences of the
relevant pairs computed using the methods described above.

vertex pair d(u, v), i even d(u, v), i odd |c(u)− c(v)|

(α2i−1, α2i) 2k 2k 1
(α2i−1, α2(i+1)−1) d ((1, 1), (2, 3k + 2)) d ((1, 1)(2, k + 1)) k + 1

= k = k

(α2i−1, α2(i+1)) d ((1, 1), (2, k + 2)) d ((1, 1), (2, 3k + 1)) k + 2
= k + 1 = k + 1

(α2i, α2(i+1)−1) d ((1, 1), (2, k + 2)) d ((1, 1), (2, 3k + 1)) k

= k + 1 = k + 1
(α2i, α2(i+1)) d ((1, 1), (2, 3k + 2)) d ((1, 1), (2, k + 1)) k + 1

= k = k

(α2i, α2(i+2)−1) ≥ 1 ≥ 1 2k + 1

Case 4. n = 4k + 2 when k is even and s = 3.

The position function is

p4(α2i−1) = (li, 1 + (i− 1)k), and

p4(α2i) = (li, 2 + (i+ 1)k),
(5)
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where

li =

{

0, i ≤ 2k + 1,

1, 2k + 1 < i ≤ 4k + 2.

Lemma 4.11. The function p4 : {αj | j = 1, . . . , 2n} → V (Zn,s) is a bijec-

tion.

Proof. Suppose p4(αa) = p4(αb). Let i =
⌊

a
2

⌋

and j =
⌊

b
2

⌋

. If a and b have
the same parity, it follows that ki ≡ kj mod (4k+2), i.e., (i−j)k = (4k+2)m
for some integer m. As k is even, k = 2q for some integer q. Substituting and
simplifying, we obtain the equation q(i−j) = m(4q+1). As gcd(q, 4q+1) =
1, it follows that q|m and thus m ≥ q, so (i− j) ≥ 4q + 1 = 2k + 1. But in
this case lj 6= li, so the first coordinates of p4(αa) and p4(αb) are different.

If a is odd and b is even, it follows that 1 + (j + 1)k − (i − 1)k ≡
0 mod 4k+2. So 1+k(j−i+2) ≡ 0 mod 4k+2. As k is even by hypothesis,
1 + k(j − i+ 2) is odd, but 4k + 2 is even, a contradiction.

Lemma 4.12. The function c ◦ p−1
4 : V (Zn,s) → N defines a valid radio

labeling on Z4k+2,3 when k is even.

Proof. Since diam(Z4k+2,3) = 2k+1, we need to show that d(u, v)+ |c(u)−
c(v)| ≥ 2k + 2 for all pairs u, v ∈ Z4k+2,3. Again it suffices to check only
the pairs (α2i−1, α2i−1+a) and the pairs of the form (α2i, α2i+a) for a ≤ 3.
Below are given the positions and the labels of these vertices.

vertex label

α2i−1 (li, 1 + k(i− 1)) 1 + (i− 1)(k + 2)
α2i (li, 2 + k(i+ 1)) 2 + (i− 1)(k + 2)
α2(i+1)−1 (li+1, 1 + ki) 1 + i(k + 2)

α2(i+1) (li+1, 2 + k(i+ 2)) 2 + i(k + 2)

α2(i+2)−1 (li+2, 1 + k(i+ 1)) 1 + (i+ 1)(k + 2)

Note that in Zn,3, d ((x1, y1), (x2, y2)) = min{|y2 − y1|, n− |y1 − y2|} so the
first coordinates of the vertices are irrelevant when computing distances. As
li only appears in the first coordinates, we do not have to consider the cases
of li = li+1 and li 6= li+1 separately. Below are given all the relevant distances
and label differences. It is easy to verify that the condition d(u, v) + |c(u)−
c(v)| ≥ 2k + 2 is satisfied for all pairs.



62 P. Martinez, J. Ortiz, M. Tomova and C. Wyels

vertex pair d(u, v) |c(u) − c(v)|

(α2i−1, α2i) 2k+1 1

(α2i−1, α2(i+1)−1) k k + 2

(α2i−1, α2(i+1)) 1 + k k + 3

(α2i, α2(i+1)−1) k + 1 k + 1

(α2i, α2(i+1)) k k + 2

(α2i, α2(i+2)−1) 1 2k + 3
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