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Abstract

Let G = (V,A) be a directed graph. With any subset X of V
is associated the directed subgraph G[X ] = (X,A ∩ (X × X)) of G
induced by X . A subset X of V is an interval of G provided that
for a, b ∈ X and x ∈ V \ X , (a, x) ∈ A if and only if (b, x) ∈ A,
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and similarly for (x, a) and (x, b). For example ∅, V, and {x}, where
x ∈ V , are intervals of G which are the trivial intervals. A directed
graph is indecomposable if all its intervals are trivial. Given an integer
k > 0, a directed graph G = (V,A) is called an indecomposable k-
covering provided that for every subset X of V with |X | ≤ k, there
exists a subset Y of V such that X ⊆ Y , G[Y ] is indecomposable with
|Y | ≥ 3. In this paper, the indecomposable k-covering directed graphs
are characterized for any k > 0.
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1. Introduction

A directed graph or simply a digraph G consists of a nonempty and finite
set V of vertices together with a collection A of ordered pairs of distinct
vertices, called the set of arcs of G. Such a digraph is denoted by (V,A).
For example, given a nonempty and finite set V, (V, ∅) is the empty digraph
on V whereas (V, (V × V ) \ {(x, x);x ∈ V }) is the complete digraph on V .
Given a digraph G = (V,A), with each nonempty subset X of V associate
the subdigraph G[X] = (X,A ∩ (X × X)) of G induced by X. A digraph
G = (V,A) is a poset provided that for all x, y, z ∈ V , if (x, y), (y, z) ∈ A,
then (x, z) ∈ A. Furthermore, a poset is a linear ordering, or is linear, if for
all x, y ∈ V with x 6= y, either (x, y) ∈ A or (y, x) ∈ A. Finally, a poset
G = (V,A), which admits a maximum vertex, is called a tree if for each
x ∈ V , G[{y ∈ V : (x, y) ∈ A} ∪ {x}] is linear.

Given a digraph G = (V,A), a subset X of V is an interval [6] (or an
autonomous set [4, 7, 8] or a clan [3] or a homogeneous set [2, 5] or a module

[10]) of G provided that for any a, b ∈ X and x ∈ V \X, (a, x) ∈ A if and
only if (b, x) ∈ A, and (x, a) ∈ A if and only if (x, b) ∈ A. This generalizes
the classic notion of the interval of a linear ordering. As recalled by the
following well known proposition, the intervals of a digraph and the usual
intervals of a linear ordering share the same properties.

Proposition 1. Let G = (V,A) be a digraph.

1. ∅, V, and {x}, where x ∈ V , are intervals of G.

2. Given subsets X and W of V , if X is an interval of G, then X ∩W is

an interval of G[W ].



Decomposition Tree and Indecomposable Coverings 39

3. Given an interval X of G, an interval of G[X] is an interval of G as

well.

4. If X and Y are intervals of G, then X ∩ Y is an interval of G.

5. If X and Y are intervals of G such that X ∩ Y 6= ∅, then X ∪ Y is an

interval of G.

6. If X and Y are intervals of G such that X \ Y 6= ∅, then Y \ X is an

interval of G.

7. Given intervals X and Y of G such that X ∩ Y = ∅, for any x, x′ ∈ X
and y, y′ ∈ Y , (x, y) ∈ A if and only if (x′, y′) ∈ A.

As indicated in the first assertion of the previous result, for every digraph
G = (V,A), ∅, V, and {x}, where x ∈ V , are intervals of G which are the
trivial intervals. A digraph is then said to be indecomposable [6, 9] (or prime

[2] or primitive [3]) if all its intervals are trivial; otherwise, it is decomposable.
Among the simplest instances of decomposable digraphs are the complete,
empty or linear digraphs having at least 3 vertices.

Given a digraph G = (V,A), I(G) denotes the family of the subsets S
of V such that G[S] is indecomposable with |S| ≥ 3. We are interested in
the subsets of V which are covered by an element of I(G).

Observation 1. A digraph G = (V,A) is indecomposable if and only if for

every X ⊆ V such that |X| ≤ 3, there exists S ∈ I(G) such that X ⊆ S.

Proof. Obviously, if G is indecomposable with |V | ≥ 3, then V ∈ I(G)
and hence all the subsets of V are covered by an element of I(G). For the
converse, consider an interval I of G such that |I| ≥ 2. We must show that
I = V . Let a 6= b ∈ I. For each x ∈ V , there is Sx ∈ I(G) such that
a, b, x ∈ Sx. It follows from the second assertion of Proposition 1 that I ∩Sx

is an interval of G[Sx]. As G[Sx] is indecomposable and as a, b ∈ I ∩ Sx,
I ∩ Sx = Sx and in particular x ∈ I. Therefore I = V .

To be more precise, we introduce the following. Given an integer k > 0, a
digraph G = (V,A) is an indecomposable k-covering, or simply is k-covering,
provided that for every subset X of V with |X| ≤ k, there exists Y ∈ I(G)
such that X ⊆ Y . Given k ≥ 3, it follows from Observation 1 that a
digraph is indecomposable if and only if it is k-covering. In what follows, we
characterize the 1-covering digraphs and the 2-covering digraphs in terms
of decomposition tree defined as follows (see [1] for details). We need the
following strengthening of the notion of interval. Given a digraph G =
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(V,A), a subset X of V is a strong interval [4, 8] of G provided that X is
an interval of G and for every interval Y of G, if X ∩ Y 6= ∅, then X ⊆ Y
or Y ⊆ X. The family of the nonempty strong intervals of a digraph G,
ordered by inclusion, constitutes a tree, called the decomposition tree of G
and denoted by D(G).

2. Preliminaries

We use the following property of strong intervals (for instance, see [3,
Lemma 4.10]).

Proposition 2. Let X be a strong interval of a digraph G = (V,A). For

every Y ⊆ X, Y is a strong interval of G[X] if and only if Y is a strong

interval of G.

The last assertion of Proposition 1 permits to define the quotient of a digraph
by an interval partition. Given a digraph G = (V,A), a partition P of V is
an interval partition of G if all its elements are intervals of G. For such a
partition P , the quotient of G by P is the digraph G/P = (P,A/P ) defined
in the following way. Given X 6= Y ∈ P , (X,Y ) ∈ A/P if there exist x ∈ X
and y ∈ Y such that (x, y) ∈ A.

In the sequel, for a family F of sets,
⋃

F denotes the union of the
elements of F . As shown by the following, the notions of interval and of
quotient are compatible (for instance, see [3, Theorem 4.17]).

Proposition 3. Given an interval partition P of a digraph G = (V,A), both
assertions below are satisfied.

1. If X is an interval of G, then {Y ∈ P : Y ∩ X 6= ∅} is an interval of

G/P .

2. If Q is an interval of G/P , then
⋃

Q is an interval of G.

Let P be an interval partition of a digraph G = (V,A). A subset S of
V is called transversal according to P if for every X ∈ P , |X ∩ S| = 1.
Clearly, for any transversal subset S of V according to P , G[S] and G/P
are isomorphic. More generally, let S be a subset of V such that for all
X ∈ P , |X ∩ S| ≤ 1. Then, G[S] and (G/P )[Q] are isomorphic, where Q is
the family of the elements of P which intersect S. Gallai [4, 8] succeeded
in associating in an intrinsic manner a unique quotient with each digraph.
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Given a digraph G = (V,A) with |V | ≥ 2, P (G) denotes the family of the
maximal strong intervals of G, with respect to inclusion, which are distinct
from V . The Gallai decomposition theorem is stated as follows.

Theorem 1 (Gallai [4, 8]). Given a digraph G = (V,A) with |V | ≥ 2, P (G)
realizes an interval partition of G and the corresponding quotient G/P (G)
is complete, empty, linear or indecomposable.

To complete the section, we review easily verified properties of the decom-
position tree. Given a digraph G = (V,A), I(G) denotes the family of the
elements X of D(G) satisfying |P (G[X])| ≥ 3 and G[X]/P (G[X]) is inde-
composable. For every nonempty subset S of V , DS(G) denotes the family
of the elements of D(G) that contain S. It results from the definition of a
strong interval that DS(G) is linearly ordered by inclusion. Consequently,
it admits a minimum element denoted by S. The result below precises the
Gallai decomposition of G[S] whenever S ∈ I(G).

Lemma 1. Let G = (V,A) be a digraph. For every subset S of V , if S ∈
I(G), then S ∈ I(G) and S is included in a transversal subset of S according

to P (G[S]).

Proof. Let S be an element of I(G). By the second assertion of Propo-
sition 1, for every X ∈ P (G[S]), X ∩ S is an interval of G[S]. It follows
from the indecomposability of G[S] that S ⊆ X or |X ∩ S| ≤ 1. Since S
is the minimum element of DS(G) under inclusion, X 6∈ DS(G) and hence
|X ∩ S| ≤ 1. Consequently, there exists a transversal subset S′ of S ac-
cording to P (G[S]) such that S ⊆ S′. As previously mentioned, G[S′] and
G[S]/P (G[S]) are isomorphic. By Theorem 1, G[S′] is complete, empty,
linear or indecomposable. Since G[S] is indecomposable with |S| ≥ 3, G[S′]
is also and thus S ∈ I(G).

3. Indecomposable 1-coverings and 2-coverings

We begin with an easy characterization of 1-covering digraphs.

Proposition 4. Given a digraph G = (V,A) with |V | ≥ 2, G is 1-covering
if and only if

⋃
I(G) = V .
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Proof. If G is 1-covering, then for every x ∈ V , there is S ∈ I(G) such that
x ∈ S. Consequently, x ∈ S and, by Lemma 1, S ∈ I(G). The converse is
immediate as well. Indeed, given x ∈ V , there is X ∈ I(G) such that x ∈ X.
It suffices to consider a transversal subset of X according to P (G[X]) which
contains x.

Now, we investigate the 2-covering digraphs that bear the main results.

Theorem 2. Given a digraph G = (V,A) with |V | ≥ 2, G is 2-covering if

and only if I(G) = D(G) \ {{x};x ∈ V }.

Proof. Assume that G is 2-covering and consider X ∈ D(G) such that
|X| ≥ 2. Let C and D be distinct elements of P (G[X]) and consider c ∈ C
and d ∈ D. Since G is 2-covering, there exists an element S of I(G) which
contains c and d. As X ∩ S is an interval of G[S] and as c 6= d ∈ X ∩ S,
X ∩ S = S. It follows that S = X and, by Lemma 1, X ∈ I(G).

Conversely, let x and y be distinct vertices of G. By the minimality of
{x, y}, x and y do not belong to the same element of P (G[{x, y}]). Thus,
there exists a transversal subset S of {x, y} according to P (G[{x, y}]) which
includes {x, y}. Since G[S] and G[{x, y}]/P (G[{x, y}]) are isomorphic and
since {x, y} ∈ I(G), S ∈ I(G).

Theorem 2 and the next proposition provide a characterization of 2-covering
digraphs in terms of intervals.

Proposition 5. Given a digraph G = (V,A) with |V | ≥ 2, I(G) = D(G) \
{{x};x ∈ V } if and only if both assertions below are satisfied

1. all the intervals of G are strong intervals of G;

2. for each X ∈ D(G) \ {{x};x ∈ V }, |P (G[X])| ≥ 3.

Proof. Assume that I(G) = D(G) \ {{x};x ∈ V }. Consider an interval I
of G such that |I| ≥ 2. Denote by Q the family of the elements of P (G[I ])
which intersect I. For every X ∈ Q, X is a strong interval of G[I] and hence
X is a strong interval of G by Proposition 2. Therefore X ⊆ I or I ⊆ X.
Since P (G[I ]) ⊆ D(G), it follows from the minimality of I that |Q| ≥ 2.
Consequently, for all X ∈ Q, X ⊆ I and thus I =

⋃
Q. By Proposition 3, Q

is an interval of G[I]/P (G[I ]). As I(G) = D(G)\{{x};x ∈ V }, G[I ]/P (G[I ])
is indecomposable. Since |Q| ≥ 2, Q = P (G[I ]). It follows that I = I and I
is a strong interval of G. The second assertion is immediate.
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Conversely, given X ∈ D(G)\{{x};x ∈ V }, we want to show that X ∈ I(G).
By contradiction, assume that X 6∈ I(G). By Theorem 1, G[X]/P (G[X])
is complete, empty or linear. Since |P (G[X])| ≥ 3, G[X]/P (G[X]) admits
a non-trivial interval Q. By Proposition 3,

⋃
Q is an interval of G[X]. It

follows from the maximality of the elements of P (G[X]) that
⋃

Q is not a
strong interval of G[X]. Since X is a strong interval of G, it follows from
Proposition 2 that

⋃
Q is not a strong interval of G. But

⋃
Q is an interval

of G by the third assertion of Proposition 1 because
⋃

Q is an interval of
G[X] and X is an interval of G.

Lastly, we study the decomposable and 2-covering digraphs. Given a digraph
G = (V,A), we utilize the family I⋆(G) of the elements X of I(G) satisfying:
for every Y ∈ I(G), if |X ∩ Y | ≥ 2, then Y ⊆ X. In terms of decomposition
tree, I⋆(G) is expressed as follows.

Proposition 6. For every digraph G = (V,A) with |V | ≥ 2, I⋆(G) = I(G)∩
D(G).

Proof. Given X ∈ I(G) ∩ D(G), consider Y ∈ I(G) such that |X ∩
Y | ≥ 2. Since X is an interval of G, X ∩ Y is an interval of G[Y ] by the
second assertion of Proposition 1. As G[Y ] is indecomposable, X ∩ Y = Y .
Therefore X ∈ I⋆(G).

Conversely, let X ∈ I⋆(G). By Lemma 1, X ∈ I(G) and there exists a
transversal subset S of X according to P (G[X ]) such that X ⊆ S. As shown
previously, all the transversal subsets of X with respect to P (G[X ]) induce
indecomposable subdigraphs of G and hence belong to I(G). In particular,
S ∈ I(G) and, since |X ∩ S| ≥ 2, S ⊆ X and so X = S. For each x ∈ X,
there is y ∈ S such that x and y are contained in the same element of
P (G[X ]). Clearly, (S \ {y}) ∪ {x} is a transversal subset of X according to
P (G[X ]) with |X∩((S \{y})∪{x})| ≥ 2. Consequently, (S \{y})∪{x} = X
for all x ∈ X and thus X = X belongs to D(G).

For decomposable and 2-covering digraphs, we obtain the following.

Theorem 3. Given a 2-covering digraph G = (V,A), G is decomposable if

and only if I⋆(G) contains a proper subset of V .

Proof. To begin, assume that G is decomposable. Let X be a mini-
mal non-trivial interval of G under inclusion. We prove that X ∈ I⋆(G).
By Proposition 6, it suffices to show that X ∈ I(G) ∩ D(G). Since G is



44 A. Breiner, J. Deogun and P. Ille

2-covering, it follows from Theorem 2 and Proposition 5 that X ∈ I(G).
Furthermore, all the elements of P (G[X]) are intervals of G by the third
assertion of Proposition 1. As X is a minimal non-trivial interval of G,
we obtain P (G[X]) = {{x};x ∈ X} so that G[X] and G[X]/P (G[X]) are
isomorphic. Since X ∈ I(G), G[X]/P (G[X]) is indecomposable and hence
X ∈ I(G).

Conversely, consider X ∈ I⋆(G) such that X ( V . By Proposition 6,
X is a strong interval of G. As X ∈ I(G), |X| ≥ 3. Therefore, X is a
non-trivial interval of G.
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