DECOMPOSITION TREE AND INDECOMPOSABLE COVERINGS*

Andrew Breiner
Department of Mathematics and Computer Science
Nebraska Wesleyan University
5000 St. Paul Avenue, Lincoln, NE 68504, USA
e-mail: abreiner@nebrwesleyan.edu
Jitender Deogun
Department of Computer Science and Engineering
University of Nebraska - Lincoln
Lincoln, NE 68588-0115, USA
e-mail: deogun@cse.unl.edu

AND
Pierre Ille ${ }^{\dagger}$
C.N.R.S. - UMR 6206

Institut de Mathématiques de Luminy
163, Avenue de Luminy - Case 907
13288 Marseille Cedex 9, France
e-mail: ille@iml.univ-mrs.fr

Abstract

Let $G=(V, A)$ be a directed graph. With any subset X of V is associated the directed subgraph $G[X]=(X, A \cap(X \times X))$ of G induced by X. A subset X of V is an interval of G provided that for $a, b \in X$ and $x \in V \backslash X,(a, x) \in A$ if and only if $(b, x) \in A$,

^[*This work was supported, in part, by an NSF EPSCoR grant EPS-0346476 and by a Nebraska Research Initiative (NRI) grant on high performance wireless networks. ${ }^{\dagger}$ This research was done while the third author was visiting the University of Nebraska - Lincoln.]

and similarly for (x, a) and (x, b). For example \emptyset, V, and $\{x\}$, where $x \in V$, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer $k>0$, a directed graph $G=(V, A)$ is called an indecomposable k covering provided that for every subset X of V with $|X| \leq k$, there exists a subset Y of V such that $X \subseteq Y, G[Y]$ is indecomposable with $|Y| \geq 3$. In this paper, the indecomposable k-covering directed graphs are characterized for any $k>0$.
Keywords: interval, indecomposable, k-covering, decomposition tree.
2010 Mathematics Subject Classification: 05C20, 05C75.

1. Introduction

A directed graph or simply a digraph G consists of a nonempty and finite set V of vertices together with a collection A of ordered pairs of distinct vertices, called the set of arcs of G. Such a digraph is denoted by (V, A). For example, given a nonempty and finite set $V,(V, \emptyset)$ is the empty digraph on V whereas $(V,(V \times V) \backslash\{(x, x) ; x \in V\})$ is the complete digraph on V. Given a digraph $G=(V, A)$, with each nonempty subset X of V associate the subdigraph $G[X]=(X, A \cap(X \times X))$ of G induced by X. A digraph $G=(V, A)$ is a poset provided that for all $x, y, z \in V$, if $(x, y),(y, z) \in A$, then $(x, z) \in A$. Furthermore, a poset is a linear ordering, or is linear, if for all $x, y \in V$ with $x \neq y$, either $(x, y) \in A$ or $(y, x) \in A$. Finally, a poset $G=(V, A)$, which admits a maximum vertex, is called a tree if for each $x \in V, G[\{y \in V:(x, y) \in A\} \cup\{x\}]$ is linear.

Given a digraph $G=(V, A)$, a subset X of V is an interval [6] (or an autonomous set $[4,7,8]$ or a clan [3] or a homogeneous set $[2,5]$ or a module [10]) of G provided that for any $a, b \in X$ and $x \in V \backslash X,(a, x) \in A$ if and only if $(b, x) \in A$, and $(x, a) \in A$ if and only if $(x, b) \in A$. This generalizes the classic notion of the interval of a linear ordering. As recalled by the following well known proposition, the intervals of a digraph and the usual intervals of a linear ordering share the same properties.

Proposition 1. Let $G=(V, A)$ be a digraph.

1. \emptyset, V, and $\{x\}$, where $x \in V$, are intervals of G.
2. Given subsets X and W of V, if X is an interval of G, then $X \cap W$ is an interval of $G[W]$.
3. Given an interval X of G, an interval of $G[X]$ is an interval of G as well.
4. If X and Y are intervals of G, then $X \cap Y$ is an interval of G.
5. If X and Y are intervals of G such that $X \cap Y \neq \emptyset$, then $X \cup Y$ is an interval of G.
6. If X and Y are intervals of G such that $X \backslash Y \neq \emptyset$, then $Y \backslash X$ is an interval of G.
7. Given intervals X and Y of G such that $X \cap Y=\emptyset$, for any $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y,(x, y) \in A$ if and only if $\left(x^{\prime}, y^{\prime}\right) \in A$.

As indicated in the first assertion of the previous result, for every digraph $G=(V, A), \emptyset, V$, and $\{x\}$, where $x \in V$, are intervals of G which are the trivial intervals. A digraph is then said to be indecomposable $[6,9]$ (or prime [2] or primitive [3]) if all its intervals are trivial; otherwise, it is decomposable. Among the simplest instances of decomposable digraphs are the complete, empty or linear digraphs having at least 3 vertices.

Given a digraph $G=(V, A), I(G)$ denotes the family of the subsets S of V such that $G[S]$ is indecomposable with $|S| \geq 3$. We are interested in the subsets of V which are covered by an element of $I(G)$.

Observation 1. A digraph $G=(V, A)$ is indecomposable if and only if for every $X \subseteq V$ such that $|X| \leq 3$, there exists $S \in I(G)$ such that $X \subseteq S$.

Proof. Obviously, if G is indecomposable with $|V| \geq 3$, then $V \in I(G)$ and hence all the subsets of V are covered by an element of $I(G)$. For the converse, consider an interval I of G such that $|I| \geq 2$. We must show that $I=V$. Let $a \neq b \in I$. For each $x \in V$, there is $S_{x} \in I(G)$ such that $a, b, x \in S_{x}$. It follows from the second assertion of Proposition 1 that $I \cap S_{x}$ is an interval of $G\left[S_{x}\right]$. As $G\left[S_{x}\right]$ is indecomposable and as $a, b \in I \cap S_{x}$, $I \cap S_{x}=S_{x}$ and in particular $x \in I$. Therefore $I=V$.
To be more precise, we introduce the following. Given an integer $k>0$, a digraph $G=(V, A)$ is an indecomposable k-covering, or simply is k-covering, provided that for every subset X of V with $|X| \leq k$, there exists $Y \in I(G)$ such that $X \subseteq Y$. Given $k \geq 3$, it follows from Observation 1 that a digraph is indecomposable if and only if it is k-covering. In what follows, we characterize the 1 -covering digraphs and the 2 -covering digraphs in terms of decomposition tree defined as follows (see [1] for details). We need the following strengthening of the notion of interval. Given a digraph $G=$
(V, A), a subset X of V is a strong interval $[4,8]$ of G provided that X is an interval of G and for every interval Y of G, if $X \cap Y \neq \emptyset$, then $X \subseteq Y$ or $Y \subseteq X$. The family of the nonempty strong intervals of a digraph G, ordered by inclusion, constitutes a tree, called the decomposition tree of G and denoted by $\mathbb{D}(G)$.

2. Preliminaries

We use the following property of strong intervals (for instance, see [3, Lemma 4.10]).

Proposition 2. Let X be a strong interval of a digraph $G=(V, A)$. For every $Y \subseteq X, Y$ is a strong interval of $G[X]$ if and only if Y is a strong interval of G.

The last assertion of Proposition 1 permits to define the quotient of a digraph by an interval partition. Given a digraph $G=(V, A)$, a partition P of V is an interval partition of G if all its elements are intervals of G. For such a partition P, the quotient of G by P is the digraph $G / P=(P, A / P)$ defined in the following way. Given $X \neq Y \in P,(X, Y) \in A / P$ if there exist $x \in X$ and $y \in Y$ such that $(x, y) \in A$.

In the sequel, for a family \mathcal{F} of sets, $\bigcup \mathcal{F}$ denotes the union of the elements of \mathcal{F}. As shown by the following, the notions of interval and of quotient are compatible (for instance, see [3, Theorem 4.17]).

Proposition 3. Given an interval partition P of a digraph $G=(V, A)$, both assertions below are satisfied.

1. If X is an interval of G, then $\{Y \in P: Y \cap X \neq \emptyset\}$ is an interval of G / P.
2. If Q is an interval of G / P, then $\bigcup Q$ is an interval of G.

Let P be an interval partition of a digraph $G=(V, A)$. A subset S of V is called transversal according to P if for every $X \in P,|X \cap S|=1$. Clearly, for any transversal subset S of V according to $P, G[S]$ and G / P are isomorphic. More generally, let S be a subset of V such that for all $X \in P,|X \cap S| \leq 1$. Then, $G[S]$ and $(G / P)[Q]$ are isomorphic, where Q is the family of the elements of P which intersect S. Gallai [4, 8] succeeded in associating in an intrinsic manner a unique quotient with each digraph.

Given a digraph $G=(V, A)$ with $|V| \geq 2, P(G)$ denotes the family of the maximal strong intervals of G, with respect to inclusion, which are distinct from V. The Gallai decomposition theorem is stated as follows.

Theorem 1 (Gallai $[4,8]$). Given a digraph $G=(V, A)$ with $|V| \geq 2, P(G)$ realizes an interval partition of G and the corresponding quotient $G / P(G)$ is complete, empty, linear or indecomposable.

To complete the section, we review easily verified properties of the decomposition tree. Given a digraph $G=(V, A), \mathbb{I}(G)$ denotes the family of the elements X of $\mathbb{D}(G)$ satisfying $|P(G[X])| \geq 3$ and $G[X] / P(G[X])$ is indecomposable. For every nonempty subset S of $V, \mathbb{D}_{S}(G)$ denotes the family of the elements of $\mathbb{D}(G)$ that contain S. It results from the definition of a strong interval that $\mathbb{D}_{S}(G)$ is linearly ordered by inclusion. Consequently, it admits a minimum element denoted by \bar{S}. The result below precises the Gallai decomposition of $G[\bar{S}]$ whenever $S \in I(G)$.

Lemma 1. Let $G=(V, A)$ be a digraph. For every subset S of V, if $S \in$ $I(G)$, then $\bar{S} \in \mathbb{I}(G)$ and S is included in a transversal subset of \bar{S} according to $P(G[\bar{S}])$.

Proof. Let S be an element of $I(G)$. By the second assertion of Proposition 1, for every $X \in P(G[\bar{S}]), X \cap S$ is an interval of $G[S]$. It follows from the indecomposability of $G[S]$ that $S \subseteq X$ or $|X \cap S| \leq 1$. Since \bar{S} is the minimum element of $\mathbb{D}_{S}(G)$ under inclusion, $X \notin \mathbb{D}_{S}(G)$ and hence $|X \cap S| \leq 1$. Consequently, there exists a transversal subset S^{\prime} of \bar{S} according to $P(G[\bar{S}])$ such that $S \subseteq S^{\prime}$. As previously mentioned, $G\left[S^{\prime}\right]$ and $G[\bar{S}] / P(G[\bar{S}])$ are isomorphic. By Theorem $1, G\left[S^{\prime}\right]$ is complete, empty, linear or indecomposable. Since $G[S]$ is indecomposable with $|S| \geq 3, G\left[S^{\prime}\right]$ is also and thus $\bar{S} \in \mathbb{I}(G)$.

3. Indecomposable 1-COVERINGS AND 2-COVERINGS

We begin with an easy characterization of 1-covering digraphs.

Proposition 4. Given a digraph $G=(V, A)$ with $|V| \geq 2, G$ is 1-covering if and only if $\bigcup \mathbb{I}(G)=V$.

Proof. If G is 1-covering, then for every $x \in V$, there is $S \in I(G)$ such that $x \in S$. Consequently, $x \in \bar{S}$ and, by Lemma $1, \bar{S} \in \mathbb{I}(G)$. The converse is immediate as well. Indeed, given $x \in V$, there is $X \in \mathbb{I}(G)$ such that $x \in X$. It suffices to consider a transversal subset of X according to $P(G[X])$ which contains x.

Now, we investigate the 2-covering digraphs that bear the main results.
Theorem 2. Given a digraph $G=(V, A)$ with $|V| \geq 2, G$ is 2 -covering if and only if $\mathbb{I}(G)=\mathbb{D}(G) \backslash\{\{x\} ; x \in V\}$.

Proof. Assume that G is 2-covering and consider $X \in \mathbb{D}(G)$ such that $|X| \geq 2$. Let C and D be distinct elements of $P(G[X])$ and consider $c \in C$ and $d \in D$. Since G is 2-covering, there exists an element S of $I(G)$ which contains c and d. As $X \cap S$ is an interval of $G[S]$ and as $c \neq d \in X \cap S$, $X \cap S=S$. It follows that $\bar{S}=X$ and, by Lemma $1, X \in \mathbb{I}(G)$.

Conversely, let x and y be distinct vertices of G. By the minimality of $\overline{\{x, y\}}, x$ and y do not belong to the same element of $P(G[\overline{\{x, y\}}])$. Thus, there exists a transversal subset S of $\overline{\{x, y\}}$ according to $P(G[\overline{\{x, y\}}])$ which includes $\{x, y\}$. Since $G[S]$ and $G[\overline{\{x, y\}}] / P(G[\overline{\{x, y\}}])$ are isomorphic and since $\overline{\{x, y\}} \in \mathbb{I}(G), S \in I(G)$.

Theorem 2 and the next proposition provide a characterization of 2-covering digraphs in terms of intervals.

Proposition 5. Given a digraph $G=(V, A)$ with $|V| \geq 2, \mathbb{I}(G)=\mathbb{D}(G) \backslash$ $\{\{x\} ; x \in V\}$ if and only if both assertions below are satisfied

1. all the intervals of G are strong intervals of G;
2. for each $X \in \mathbb{D}(G) \backslash\{\{x\} ; x \in V\},|P(G[X])| \geq 3$.

Proof. Assume that $\mathbb{I}(G)=\mathbb{D}(G) \backslash\{\{x\} ; x \in V\}$. Consider an interval I of G such that $|I| \geq 2$. Denote by Q the family of the elements of $P(G[\bar{I}])$ which intersect I. For every $X \in Q, X$ is a strong interval of $G[\bar{I}]$ and hence X is a strong interval of G by Proposition 2. Therefore $X \subseteq I$ or $I \subseteq X$. Since $P(G[\bar{I}]) \subseteq \mathbb{D}(G)$, it follows from the minimality of \bar{I} that $|Q| \geq 2$. Consequently, for all $X \in Q, X \subseteq I$ and thus $I=\bigcup Q$. By Proposition $3, Q$ is an interval of $G[\bar{I}] / P(G[\bar{I}])$. As $\mathbb{I}(G)=\mathbb{D}(G) \backslash\{\{x\} ; x \in V\}, G[\bar{I}] / P(G[\bar{I}])$ is indecomposable. Since $|Q| \geq 2, Q=P(G[\bar{I}])$. It follows that $I=\bar{I}$ and I is a strong interval of G. The second assertion is immediate.

Conversely, given $X \in \mathbb{D}(G) \backslash\{\{x\} ; x \in V\}$, we want to show that $X \in \mathbb{I}(G)$. By contradiction, assume that $X \notin \mathbb{I}(G)$. By Theorem 1, $G[X] / P(G[X])$ is complete, empty or linear. Since $|P(G[X])| \geq 3, G[X] / P(G[X])$ admits a non-trivial interval Q. By Proposition $3, \bigcup Q$ is an interval of $G[X]$. It follows from the maximality of the elements of $P(G[X])$ that $\bigcup Q$ is not a strong interval of $G[X]$. Since X is a strong interval of G, it follows from Proposition 2 that $\bigcup Q$ is not a strong interval of G. But $\bigcup Q$ is an interval of G by the third assertion of Proposition 1 because $\bigcup Q$ is an interval of $G[X]$ and X is an interval of G.
Lastly, we study the decomposable and 2-covering digraphs. Given a digraph $G=(V, A)$, we utilize the family $I^{\star}(G)$ of the elements X of $I(G)$ satisfying: for every $Y \in I(G)$, if $|X \cap Y| \geq 2$, then $Y \subseteq X$. In terms of decomposition tree, $I^{\star}(G)$ is expressed as follows.

Proposition 6. For every digraph $G=(V, A)$ with $|V| \geq 2, I^{\star}(G)=I(G) \cap$ $\mathbb{D}(G)$.

Proof. Given $X \in I(G) \cap \mathbb{D}(G)$, consider $Y \in I(G)$ such that $\mid X \cap$ $Y \mid \geq 2$. Since X is an interval of $G, X \cap Y$ is an interval of $G[Y]$ by the second assertion of Proposition 1. As $G[Y]$ is indecomposable, $X \cap Y=Y$. Therefore $X \in I^{\star}(G)$.

Conversely, let $X \in I^{\star}(G)$. By Lemma $1, \bar{X} \in \mathbb{I}(G)$ and there exists a transversal subset S of \bar{X} according to $P(G[\bar{X}])$ such that $X \subseteq S$. As shown previously, all the transversal subsets of \bar{X} with respect to $P(G[\bar{X}])$ induce indecomposable subdigraphs of G and hence belong to $I(G)$. In particular, $S \in I(G)$ and, since $|X \cap S| \geq 2, S \subseteq X$ and so $X=S$. For each $x \in \bar{X}$, there is $y \in S$ such that x and y are contained in the same element of $P(G[\bar{X}])$. Clearly, $(S \backslash\{y\}) \cup\{x\}$ is a transversal subset of \bar{X} according to $P(G[\bar{X}])$ with $|X \cap((S \backslash\{y\}) \cup\{x\})| \geq 2$. Consequently, $(S \backslash\{y\}) \cup\{x\}=X$ for all $x \in \bar{X}$ and thus $X=\bar{X}$ belongs to $\mathbb{D}(G)$.
For decomposable and 2-covering digraphs, we obtain the following.
Theorem 3. Given a 2-covering digraph $G=(V, A), G$ is decomposable if and only if $I^{\star}(G)$ contains a proper subset of V.

Proof. To begin, assume that G is decomposable. Let X be a minimal non-trivial interval of G under inclusion. We prove that $X \in I^{\star}(G)$. By Proposition 6, it suffices to show that $X \in I(G) \cap \mathbb{D}(G)$. Since G is

2-covering, it follows from Theorem 2 and Proposition 5 that $X \in \mathbb{I}(G)$. Furthermore, all the elements of $P(G[X])$ are intervals of G by the third assertion of Proposition 1. As X is a minimal non-trivial interval of G, we obtain $P(G[X])=\{\{x\} ; x \in X\}$ so that $G[X]$ and $G[X] / P(G[X])$ are isomorphic. Since $X \in \mathbb{I}(G), G[X] / P(G[X])$ is indecomposable and hence $X \in I(G)$.

Conversely, consider $X \in I^{\star}(G)$ such that $X \subsetneq V$. By Proposition 6, X is a strong interval of G. As $X \in I(G),|X| \geq 3$. Therefore, X is a non-trivial interval of G.

References

[1] R. McConnell and F. de Montgolfier, Linear-time modular decomposition of directed graphs, Discrete Appl. Math. 145 (2005) 198-209.
[2] A. Cournier and M. Habib, An efficient algorithm to recognize prime undirected graphs, in: Graph-theoretic Concepts in Computer Science, Lecture Notes in Computer Science 657, E.W. Mayr, (Editor), (Springer, Berlin, 1993) 212-224.
[3] A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures. I. Clans, basic subclasses, and morphisms, Theoret. Comput. Sci. 70 (1990) 277-303.
[4] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66.
[5] M. Habib, Substitution des structures combinatoires, théorie et algorithmes, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, 1981.
[6] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71-78.
[7] D. Kelly, Comparability graphs, in: Graphs and Orders, I. Rival, (Editor), Reidel (Drodrecht, 1985) 3-40.
[8] F. Maffray and M. Preissmann, A translation of Tibor Gallai's paper: transitiv orientierbare Graphen, in: Perfect Graphs, J.J. Ramirez-Alfonsin and B.A. Reed, (Editors) (Wiley, New York, 2001) 25-66.
[9] J. Schmerl and W. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191-205.
[10] J. Spinrad, P_{4}-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263-291.

