Discussiones Mathematicae Graph Theory 31 (2011) 37–44

DECOMPOSITION TREE AND INDECOMPOSABLE COVERINGS*

ANDREW BREINER

Department of Mathematics and Computer Science Nebraska Wesleyan University 5000 St. Paul Avenue, Lincoln, NE 68504, USA e-mail: abreiner@nebrwesleyan.edu

JITENDER DEOGUN

Department of Computer Science and Engineering University of Nebraska – Lincoln Lincoln, NE 68588–0115, USA

 $\mathbf{e\text{-mail:}}$ deogun@cse.unl.edu

AND

Pierre Ille[†]

C.N.R.S. – UMR 6206 Institut de Mathématiques de Luminy 163, Avenue de Luminy – Case 907 13288 Marseille Cedex 9, France

e-mail: ille@iml.univ-mrs.fr

Abstract

Let G = (V, A) be a directed graph. With any subset X of V is associated the directed subgraph $G[X] = (X, A \cap (X \times X))$ of G induced by X. A subset X of V is an interval of G provided that for $a, b \in X$ and $x \in V \setminus X$, $(a, x) \in A$ if and only if $(b, x) \in A$,

^{*}This work was supported, in part, by an NSF EPSCoR grant EPS-0346476 and by a Nebraska Research Initiative (NRI) grant on high performance wireless networks.

 $^{^\}dagger {\rm This}$ research was done while the third author was visiting the University of Nebraska – Lincoln.

A. Breiner, J. Deogun and P. Ille

and similarly for (x, a) and (x, b). For example \emptyset, V , and $\{x\}$, where $x \in V$, are intervals of G which are the trivial intervals. A directed graph is indecomposable if all its intervals are trivial. Given an integer k > 0, a directed graph G = (V, A) is called an indecomposable k-covering provided that for every subset X of V with $|X| \leq k$, there exists a subset Y of V such that $X \subseteq Y$, G[Y] is indecomposable with $|Y| \geq 3$. In this paper, the indecomposable k-covering directed graphs are characterized for any k > 0.

Keywords: interval, indecomposable, *k*-covering, decomposition tree. 2010 Mathematics Subject Classification: 05C20, 05C75.

1. INTRODUCTION

A directed graph or simply a digraph G consists of a nonempty and finite set V of vertices together with a collection A of ordered pairs of distinct vertices, called the set of arcs of G. Such a digraph is denoted by (V, A). For example, given a nonempty and finite set $V, (V, \emptyset)$ is the empty digraph on V whereas $(V, (V \times V) \setminus \{(x, x); x \in V\})$ is the complete digraph on V. Given a digraph G = (V, A), with each nonempty subset X of V associate the subdigraph $G[X] = (X, A \cap (X \times X))$ of G induced by X. A digraph G = (V, A) is a poset provided that for all $x, y, z \in V$, if $(x, y), (y, z) \in A$, then $(x, z) \in A$. Furthermore, a poset is a linear ordering, or is linear, if for all $x, y \in V$ with $x \neq y$, either $(x, y) \in A$ or $(y, x) \in A$. Finally, a poset G = (V, A), which admits a maximum vertex, is called a tree if for each $x \in V, G[\{y \in V : (x, y) \in A\} \cup \{x\}]$ is linear.

Given a digraph G = (V, A), a subset X of V is an *interval* [6] (or an *autonomous set* [4, 7, 8] or a *clan* [3] or a *homogeneous set* [2, 5] or a *module* [10]) of G provided that for any $a, b \in X$ and $x \in V \setminus X$, $(a, x) \in A$ if and only if $(b, x) \in A$, and $(x, a) \in A$ if and only if $(x, b) \in A$. This generalizes the classic notion of the interval of a linear ordering. As recalled by the following well known proposition, the intervals of a digraph and the usual intervals of a linear ordering share the same properties.

Proposition 1. Let G = (V, A) be a digraph.

- 1. \emptyset , V, and $\{x\}$, where $x \in V$, are intervals of G.
- 2. Given subsets X and W of V, if X is an interval of G, then $X \cap W$ is an interval of G[W].

- 3. Given an interval X of G, an interval of G[X] is an interval of G as well.
- 4. If X and Y are intervals of G, then $X \cap Y$ is an interval of G.
- 5. If X and Y are intervals of G such that $X \cap Y \neq \emptyset$, then $X \cup Y$ is an interval of G.
- 6. If X and Y are intervals of G such that $X \setminus Y \neq \emptyset$, then $Y \setminus X$ is an interval of G.
- 7. Given intervals X and Y of G such that $X \cap Y = \emptyset$, for any $x, x' \in X$ and $y, y' \in Y$, $(x, y) \in A$ if and only if $(x', y') \in A$.

As indicated in the first assertion of the previous result, for every digraph G = (V, A), \emptyset, V , and $\{x\}$, where $x \in V$, are intervals of G which are the *trivial intervals*. A digraph is then said to be *indecomposable* [6, 9] (or *prime* [2] or *primitive* [3]) if all its intervals are trivial; otherwise, it is *decomposable*. Among the simplest instances of decomposable digraphs are the complete, empty or linear digraphs having at least 3 vertices.

Given a digraph G = (V, A), I(G) denotes the family of the subsets S of V such that G[S] is indecomposable with $|S| \ge 3$. We are interested in the subsets of V which are covered by an element of I(G).

Observation 1. A digraph G = (V, A) is indecomposable if and only if for every $X \subseteq V$ such that $|X| \leq 3$, there exists $S \in I(G)$ such that $X \subseteq S$.

Proof. Obviously, if G is indecomposable with $|V| \ge 3$, then $V \in I(G)$ and hence all the subsets of V are covered by an element of I(G). For the converse, consider an interval I of G such that $|I| \ge 2$. We must show that I = V. Let $a \ne b \in I$. For each $x \in V$, there is $S_x \in I(G)$ such that $a, b, x \in S_x$. It follows from the second assertion of Proposition 1 that $I \cap S_x$ is an interval of $G[S_x]$. As $G[S_x]$ is indecomposable and as $a, b \in I \cap S_x$, $I \cap S_x = S_x$ and in particular $x \in I$. Therefore I = V.

To be more precise, we introduce the following. Given an integer k > 0, a digraph G = (V, A) is an *indecomposable k-covering*, or simply is *k-covering*, provided that for every subset X of V with $|X| \le k$, there exists $Y \in I(G)$ such that $X \subseteq Y$. Given $k \ge 3$, it follows from Observation 1 that a digraph is indecomposable if and only if it is *k*-covering. In what follows, we characterize the 1-covering digraphs and the 2-covering digraphs in terms of decomposition tree defined as follows (see [1] for details). We need the following strengthening of the notion of interval. Given a digraph G =

(V, A), a subset X of V is a strong interval [4, 8] of G provided that X is an interval of G and for every interval Y of G, if $X \cap Y \neq \emptyset$, then $X \subseteq Y$ or $Y \subseteq X$. The family of the nonempty strong intervals of a digraph G, ordered by inclusion, constitutes a tree, called the decomposition tree of G and denoted by $\mathbb{D}(G)$.

2. Preliminaries

We use the following property of strong intervals (for instance, see [3, Lemma 4.10]).

Proposition 2. Let X be a strong interval of a digraph G = (V, A). For every $Y \subseteq X$, Y is a strong interval of G[X] if and only if Y is a strong interval of G.

The last assertion of Proposition 1 permits to define the quotient of a digraph by an interval partition. Given a digraph G = (V, A), a partition P of V is an *interval partition* of G if all its elements are intervals of G. For such a partition P, the *quotient* of G by P is the digraph G/P = (P, A/P) defined in the following way. Given $X \neq Y \in P$, $(X, Y) \in A/P$ if there exist $x \in X$ and $y \in Y$ such that $(x, y) \in A$.

In the sequel, for a family \mathcal{F} of sets, $\bigcup \mathcal{F}$ denotes the union of the elements of \mathcal{F} . As shown by the following, the notions of interval and of quotient are compatible (for instance, see [3, Theorem 4.17]).

Proposition 3. Given an interval partition P of a digraph G = (V, A), both assertions below are satisfied.

- 1. If X is an interval of G, then $\{Y \in P : Y \cap X \neq \emptyset\}$ is an interval of G/P.
- 2. If Q is an interval of G/P, then $\bigcup Q$ is an interval of G.

Let P be an interval partition of a digraph G = (V, A). A subset S of V is called *transversal* according to P if for every $X \in P$, $|X \cap S| = 1$. Clearly, for any transversal subset S of V according to P, G[S] and G/P are isomorphic. More generally, let S be a subset of V such that for all $X \in P$, $|X \cap S| \leq 1$. Then, G[S] and (G/P)[Q] are isomorphic, where Q is the family of the elements of P which intersect S. Gallai [4, 8] succeeded in associating in an intrinsic manner a unique quotient with each digraph. Given a digraph G = (V, A) with $|V| \ge 2$, P(G) denotes the family of the maximal strong intervals of G, with respect to inclusion, which are distinct from V. The Gallai decomposition theorem is stated as follows.

Theorem 1 (Gallai [4, 8]). Given a digraph G = (V, A) with $|V| \ge 2$, P(G) realizes an interval partition of G and the corresponding quotient G/P(G) is complete, empty, linear or indecomposable.

To complete the section, we review easily verified properties of the decomposition tree. Given a digraph G = (V, A), $\mathbb{I}(G)$ denotes the family of the elements X of $\mathbb{D}(G)$ satisfying $|P(G[X])| \geq 3$ and G[X]/P(G[X]) is indecomposable. For every nonempty subset S of V, $\mathbb{D}_S(G)$ denotes the family of the elements of $\mathbb{D}(G)$ that contain S. It results from the definition of a strong interval that $\mathbb{D}_S(G)$ is linearly ordered by inclusion. Consequently, it admits a minimum element denoted by \overline{S} . The result below precises the Gallai decomposition of $G[\overline{S}]$ whenever $S \in I(G)$.

Lemma 1. Let G = (V, A) be a digraph. For every subset S of V, if $S \in I(G)$, then $\overline{S} \in I(G)$ and S is included in a transversal subset of \overline{S} according to $P(G[\overline{S}])$.

Proof. Let S be an element of I(G). By the second assertion of Proposition 1, for every $X \in P(G[\overline{S}])$, $X \cap S$ is an interval of G[S]. It follows from the indecomposability of G[S] that $S \subseteq X$ or $|X \cap S| \leq 1$. Since \overline{S} is the minimum element of $\mathbb{D}_S(G)$ under inclusion, $X \notin \mathbb{D}_S(G)$ and hence $|X \cap S| \leq 1$. Consequently, there exists a transversal subset S' of \overline{S} according to $P(G[\overline{S}])$ such that $S \subseteq S'$. As previously mentioned, G[S'] and $G[\overline{S}]/P(G[\overline{S}])$ are isomorphic. By Theorem 1, G[S'] is complete, empty, linear or indecomposable. Since G[S] is indecomposable with $|S| \geq 3$, G[S'] is also and thus $\overline{S} \in \mathbb{I}(G)$.

3. INDECOMPOSABLE 1-COVERINGS AND 2-COVERINGS

We begin with an easy characterization of 1-covering digraphs.

Proposition 4. Given a digraph G = (V, A) with $|V| \ge 2$, G is 1-covering if and only if $\bigcup \mathbb{I}(G) = V$.

Proof. If G is 1-covering, then for every $x \in V$, there is $S \in I(G)$ such that $x \in S$. Consequently, $x \in \overline{S}$ and, by Lemma 1, $\overline{S} \in \mathbb{I}(G)$. The converse is immediate as well. Indeed, given $x \in V$, there is $X \in \mathbb{I}(G)$ such that $x \in X$. It suffices to consider a transversal subset of X according to P(G[X]) which contains x.

Now, we investigate the 2-covering digraphs that bear the main results.

Theorem 2. Given a digraph G = (V, A) with $|V| \ge 2$, G is 2-covering if and only if $\mathbb{I}(G) = \mathbb{D}(G) \setminus \{\{x\}; x \in V\}.$

Proof. Assume that G is 2-covering and consider $X \in \mathbb{D}(G)$ such that $|X| \geq 2$. Let C and D be distinct elements of P(G[X]) and consider $c \in C$ and $d \in D$. Since G is 2-covering, there exists an element S of I(G) which contains c and d. As $X \cap S$ is an interval of G[S] and as $c \neq d \in X \cap S$, $X \cap S = S$. It follows that $\overline{S} = X$ and, by Lemma 1, $X \in \mathbb{I}(G)$.

Conversely, let x and y be distinct vertices of G. By the minimality of $\overline{\{x,y\}}$, x and y do not belong to the same element of $P(G[\overline{\{x,y\}}])$. Thus, there exists a transversal subset S of $\overline{\{x,y\}}$ according to $P(G[\overline{\{x,y\}}])$ which includes $\{x,y\}$. Since G[S] and $G[\overline{\{x,y\}}]/P(G[\overline{\{x,y\}}])$ are isomorphic and since $\overline{\{x,y\}} \in \mathbb{I}(G)$.

Theorem 2 and the next proposition provide a characterization of 2-covering digraphs in terms of intervals.

Proposition 5. Given a digraph G = (V, A) with $|V| \ge 2$, $\mathbb{I}(G) = \mathbb{D}(G) \setminus \{\{x\}; x \in V\}$ if and only if both assertions below are satisfied

1. all the intervals of G are strong intervals of G;

2. for each $X \in \mathbb{D}(G) \setminus \{\{x\}; x \in V\}, |P(G[X])| \ge 3$.

Proof. Assume that $\mathbb{I}(G) = \mathbb{D}(G) \setminus \{\{x\}; x \in V\}$. Consider an interval I of G such that $|I| \geq 2$. Denote by Q the family of the elements of $P(G[\overline{I}])$ which intersect I. For every $X \in Q$, X is a strong interval of $G[\overline{I}]$ and hence X is a strong interval of G by Proposition 2. Therefore $X \subseteq I$ or $I \subseteq X$. Since $P(G[\overline{I}]) \subseteq \mathbb{D}(G)$, it follows from the minimality of \overline{I} that $|Q| \geq 2$. Consequently, for all $X \in Q$, $X \subseteq I$ and thus $I = \bigcup Q$. By Proposition 3, Q is an interval of $G[\overline{I}]/P(G[\overline{I}])$. As $\mathbb{I}(G) = \mathbb{D}(G) \setminus \{\{x\}; x \in V\}, G[\overline{I}]/P(G[\overline{I}])$ is indecomposable. Since $|Q| \geq 2$, $Q = P(G[\overline{I}])$. It follows that $I = \overline{I}$ and I is a strong interval of G. The second assertion is immediate.

Conversely, given $X \in \mathbb{D}(G) \setminus \{\{x\}; x \in V\}$, we want to show that $X \in \mathbb{I}(G)$. By contradiction, assume that $X \notin \mathbb{I}(G)$. By Theorem 1, G[X]/P(G[X])is complete, empty or linear. Since $|P(G[X])| \geq 3$, G[X]/P(G[X]) admits a non-trivial interval Q. By Proposition 3, $\bigcup Q$ is an interval of G[X]. It follows from the maximality of the elements of P(G[X]) that $\bigcup Q$ is not a strong interval of G[X]. Since X is a strong interval of G, it follows from Proposition 2 that $\bigcup Q$ is not a strong interval of G. But $\bigcup Q$ is an interval of G by the third assertion of Proposition 1 because $\bigcup Q$ is an interval of G[X] and X is an interval of G.

Lastly, we study the decomposable and 2-covering digraphs. Given a digraph G = (V, A), we utilize the family $I^*(G)$ of the elements X of I(G) satisfying: for every $Y \in I(G)$, if $|X \cap Y| \ge 2$, then $Y \subseteq X$. In terms of decomposition tree, $I^*(G)$ is expressed as follows.

Proposition 6. For every digraph G = (V, A) with $|V| \ge 2$, $I^*(G) = I(G) \cap \mathbb{D}(G)$.

Proof. Given $X \in I(G) \cap \mathbb{D}(G)$, consider $Y \in I(G)$ such that $|X \cap Y| \geq 2$. Since X is an interval of G, $X \cap Y$ is an interval of G[Y] by the second assertion of Proposition 1. As G[Y] is indecomposable, $X \cap Y = Y$. Therefore $X \in I^*(G)$.

Conversely, let $X \in I^*(G)$. By Lemma 1, $\overline{X} \in \mathbb{I}(G)$ and there exists a transversal subset S of \overline{X} according to $P(G[\overline{X}])$ such that $X \subseteq S$. As shown previously, all the transversal subsets of \overline{X} with respect to $P(G[\overline{X}])$ induce indecomposable subdigraphs of G and hence belong to I(G). In particular, $S \in I(G)$ and, since $|X \cap S| \geq 2$, $S \subseteq X$ and so X = S. For each $x \in \overline{X}$, there is $y \in S$ such that x and y are contained in the same element of $P(G[\overline{X}])$. Clearly, $(S \setminus \{y\}) \cup \{x\}$ is a transversal subset of \overline{X} according to $P(G[\overline{X}])$ with $|X \cap ((S \setminus \{y\}) \cup \{x\})| \geq 2$. Consequently, $(S \setminus \{y\}) \cup \{x\} = X$ for all $x \in \overline{X}$ and thus $X = \overline{X}$ belongs to $\mathbb{D}(G)$.

For decomposable and 2-covering digraphs, we obtain the following.

Theorem 3. Given a 2-covering digraph G = (V, A), G is decomposable if and only if $I^*(G)$ contains a proper subset of V.

Proof. To begin, assume that G is decomposable. Let X be a minimal non-trivial interval of G under inclusion. We prove that $X \in I^*(G)$. By Proposition 6, it suffices to show that $X \in I(G) \cap \mathbb{D}(G)$. Since G is 2-covering, it follows from Theorem 2 and Proposition 5 that $X \in \mathbb{I}(G)$. Furthermore, all the elements of P(G[X]) are intervals of G by the third assertion of Proposition 1. As X is a minimal non-trivial interval of G, we obtain $P(G[X]) = \{\{x\}; x \in X\}$ so that G[X] and G[X]/P(G[X]) are isomorphic. Since $X \in \mathbb{I}(G)$, G[X]/P(G[X]) is indecomposable and hence $X \in I(G)$.

Conversely, consider $X \in I^{\star}(G)$ such that $X \subsetneq V$. By Proposition 6, X is a strong interval of G. As $X \in I(G)$, $|X| \ge 3$. Therefore, X is a non-trivial interval of G.

References

- R. McConnell and F. de Montgolfier, *Linear-time modular decomposition of directed graphs*, Discrete Appl. Math. **145** (2005) 198–209.
- [2] A. Cournier and M. Habib, An efficient algorithm to recognize prime undirected graphs, in: Graph-theoretic Concepts in Computer Science, Lecture Notes in Computer Science 657, E.W. Mayr, (Editor), (Springer, Berlin, 1993) 212–224.
- [3] A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures. I. Clans, basic subclasses, and morphisms, Theoret. Comput. Sci. 70 (1990) 277–303.
- [4] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25–66.
- [5] M. Habib, Substitution des structures combinatoires, théorie et algorithmes, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI, 1981.
- [6] P. Ille, Indecomposable graphs, Discrete Math. 173 (1997) 71–78.
- [7] D. Kelly, Comparability graphs, in: Graphs and Orders, I. Rival, (Editor), Reidel (Drodrecht, 1985) 3–40.
- [8] F. Maffray and M. Preissmann, A translation of Tibor Gallai's paper: transitiv orientierbare Graphen, in: Perfect Graphs, J.J. Ramirez-Alfonsin and B.A. Reed, (Editors) (Wiley, New York, 2001) 25–66.
- [9] J. Schmerl and W. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Math. 113 (1993) 191–205.
- [10] J. Spinrad, P₄-trees and substitution decomposition, Discrete Appl. Math. 39 (1992) 263–291.

Received 11 June 2008 Revised 29 March 2010 Accepted 6 April 2010