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Abstract

Given a graph G, an automorphic edge(vertex)-coloring of G is a
proper edge(vertex)-coloring such that each automorphism of the graph
preserves the coloring. The automorphic chromatic index (number) is
the least integer k for which G admits an automorphic edge(vertex)-
coloring with k colors. We show that it is NP-complete to determine
the automorphic chromatic index and the automorphic chromatic num-
ber of an arbitrary graph.
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1. Introduction

We assume the reader to be familiar with the terminology and results of
NP-completeness as presented in Garey and Johnson [2]. The automorphic
edge-colorings of a graph have been defined in [1] as proper edge-colorings
preserved by each automorphism of the graph. Thereby the automorphic
chromatic index is the minimum number of colors requires for the existence
of an automorphic edge-coloring. Similarly, we can define an automorphic
vertex-coloring and the automorphic chromatic number of a graph.

It is natural to ask about the computational complexity of determin-
ing these automorphic chromatic parameters. More precisely, consider the
following problems:
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INSTANCE: Graph G = (V,E), automorphism group of G, positive integer
k ≤ |E|,(|V |).

QUESTION: Does G admit an automorphic edge(vertex)-coloring with k

colors?

Preliminarly we remark that both problems are NP-problems: it is clear that
one can check whether a coloring is proper in polynomial time. The residual
task is to verify if the coloring is preserved by the automorphism group of
the graph. That can be done in polynomial time just by a brute-force check
over all generators of the automorphism group, and a result of Jerrum [4]
ensures that the number of these generators is at most equal to the number
of vertices. Our aim is to prove that the problems are NP-complete and
then it is NP-complete to determine the automorphic chromatic index and
the automorphic chromatic number of an arbitrary graph.

It is well known that the corresponding problems of determining the
classical chromatic parameters of a graph are NP-complete (see [3] and [5]).
Furthermore, it is a trivial consideration that automorphic parameters coin-
cide with the classical ones for each rigid graph, that is a graph admitting no
non-trivial automorphism. One is willing to believe that the edge-coloring
and vertex-coloring problems, which are NP-complete, remain such when
restricted to the subclass of rigid graphs: our strategy will consist precisely
in furnishing a rigorous proof of this circumstance.

2. Automorphic Edge-Coloring

We will make use of the standard operation on cubic graphs known as Y -
reduction and of its inverse, Y -extension, defined as in Figure 1.

Y−reduction

Y−extension

Figure 1. Y -operations.

It is straightforward that the chromatic index is invariant under Y -reduction
and Y -extension (see for instance [7]).
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By Theorem 6 in [6], the problem to decide whether a 3-connected cubic
graph with girth at least 6 has a 3-edge-coloring is NP-complete. For our
aim it is sufficient to limit our attention on the class of 3-connected cubic
graphs of girth at least 4. We now show a polynomial reduction from this
problem to the same problem restricted to the subclass of rigid graphs.

Lemma 1. Graph 3-edge-colorability is NP-complete even when restricted
to rigid 3-connected cubic graphs of girth at least 4.

Proof. Let G be an arbitrary 3-connected cubic graph of girth at least 4
and let V (G) = {v1, v2, . . . , vn} be the vertex-set of G. Construct a new
graph G obtained by G in the following way: we substitute each vertex vi

with a graph Hi formed by a 3-cycle, namely Ti, and i − 1 4-cycles, namely
Qk

i for k = 1, . . . , i − 1, see Figure 2.

iH

iQi-1

iT

z
i

x
i y

i

vi

iQ1

Figure 2. Step of the polynomial reduction.

Note that each of this substitution can be realized by repeated application
of i Y -extensions, then the reduction to G is polynomial and the chromatic
index of G is equal to the chromatic index of G.

To conclude the proof we have to prove that G is rigid. The graph G

is 3-connected of girth greater than 3, then Ti are the unique 3-cycles in G

and Qk
i are the unique 4-cycles in G. Let σ be an automorphism of G. Let

σ(Ti) = Tj , this implies σ(Q1

i ) = Q1

j and more in general σ(Qk
i ) = Qk

j for
each k, thus i = j that is Ti = Tj. This proves that each subgraph Hi is
fixed by σ. The three vertices xi, yi, zi in Hi are pointwise fixed by σ due to
the fact that each Hi is fixed by σ. In particular, since xi and yi are fixed
by σ then also the vertices of Hi adjecent to them are fixed. By iteration
on all vertices of Hi we conclude that each vertex of Hi is fixed by σ. This
proves that G is rigid.
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The following theorem easily follows by Lemma 1 and by the coincidence of
automorphic chromatic index and chromatic index for rigid graphs.

Theorem 1. It is NP-complete to determine the automorphic chromatic
index of an arbitrary graph.

3. Automorphic Vertex-Coloring

In what follows the terminology “appending a path of length t to the vertex
v” means adding t new vertices {w1, . . . , wt} and t new edges [v, w1], [w1, w2],
[w2, w3], . . . , [wt−1, wt] to a graph. The operation of appending paths will
have the same role of the Y -reduction in the previous section: we use it to
obtain a rigid graph having the same chromatic number of G. The following
polynomial reduction proves that graph k-vertex-colorability, with k > 2, is
NP-complete in the class of rigid graphs.

Lemma 2. Graph k-vertex-colorability, with k > 2, is NP-complete even
when restricted to rigid graphs.

Proof. Graph k-vertex colorability, with k > 2, is NP-complete by a result
of Karp [5]. Let G be an arbitrary graph and let V (G) = {v1, v2, . . . , vn} be
the vertex-set of G. Without loss of generality suppose G to have at least
a vertex of degree greater than 2 and to be 2-edge-connected, otherwise
either the problem is trivially polynomial or we can delete pendant vertices
without modifications of the chromatic number of G. Construct a new graph
G obtained by G appending a path of length i to the vertex vi. We denote
by w

j
i , for j = 1, . . . , i, the vertices in the path appended to vi. Note

that vertices wi
i are the unique vertices of G of degree 1, by the 2-edge-

connectivity of G. Moreover, if the chromatic number of G is at least 2 then
it is equal to the chromatic number of G: it is sufficient to color each path
appended to vi alternating the color of vi and another color. Let σ be an
automorphism of G. Each vertex wi

i is fixed by σ since its the unique vertex
of degree 1 at distance i to a vertex of degree greater than 2. Since wi

i are

fixed then all the vertices w
j
i are fixed. Each vertex w1

i has at most (exactly
for i > 1) two neighbors: the vertex vi and the vertex w2

i (for i > 1). Since
we have proved that w2

i is fixed by σ then vi is also fixed by σ. Hence the
vertex-set of G is pointwise fixed by σ. This proves that G is rigid.
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As already remarked automorphic chromatic number is equal to chromatic
number into the class of rigid graphs. Hence we can state the following
theorem:

Theorem 2. It is NP-complete to determine the automorphic chromatic
number of an arbitrary graph.

4. Final Remarks

In this note we have proved that the problem of determining automorphic
parameters is NP-complete for an arbitrary graph. As the matter of fact the
proofs are achieved within the “trivial” subclass of rigid graphs. One can ask
what happens in more symmetric classes of graphs, for which automorphic
parameters could be indeed different from the classical ones. For instance:
is the problem still NP-hard for vertex-transitive or edge-transitive graphs?
In alternative is it conceivable that a careful use of the automorphism group
may yield a proper coloring in polynomial time?

A well-known conjecture of Lovász (1970) states that every finite con-
nected vertex-transitive graph contains a Hamiltonian cycle except five known
examples. If this conjecture is true, the problem to establish if a vertex-
transitive 3-regular graph is 3-edge-colorable is trivial. Is it also possible to
deduce that determining the automorphic chromatic index in the class of
vertex-transitive 3-regular graphs is trivial?
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