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Abstract

For two vertices u and v of a connected graph G, the set IG[u, v]
consists of all those vertices lying on u − v geodesics in G. Given a
set S of vertices of G, the union of all sets IG[u, v] for u, v ∈ S is
denoted by IG[S]. A set S ⊆ V (G) is a geodetic set if IG[S] = V (G)
and the minimum cardinality of a geodetic set is its geodetic number
g(G) of G. Bounds for the geodetic number of strong product graphs
are obtainted and for several classes improved bounds and exact values
are obtained.
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1. Introduction

By a graph G = (V (G), E(G)) we mean a finite undirected connected graph
without loops or multiple edges. The order and size of G are denoted by n
and m respectively. The distance dG(u, v) between two vertices u and v in a
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connected graph G is the length of a shortest u−v path in G. An u−v path
of length dG(u, v) is called an u − v geodesic. It is known that the distance
is a metric on the vertex set V (G). The set IG[u, v] consists of all vertices
lying on u − v geodesics of G, while for S ⊆ V (G), IG[S] =

⋃

u,v∈S
IG[u, v].

A set S of vertices of G is called a geodetic set of G if IG[S] = V (G), and
a geodetic set of minimum cardinality is a minimum geodetic set of G. The
cardinality of a minimum geodetic set of G is the geodetic number g(G) of
G. A geodetic set of cardinality g(G) is a g-set of G. The geodetic number
of a graph was introduced in [6] and further studied in [3]. The geodetic
number of Cartesian product graphs was discussed in [1]. These concepts
have many applications in location theory and convexity theory. There are
interesting applications of these concepts to the problem of designing the
route for a shuttle and communication network design. For a vertex v in
G, N(v) denotes the set of all neighbors of v, and N [v] = N(v) ∪ {v}.
A vertex v in G is an extreme vertex if the subgraph induced by N(v)
is complete. The set of all extreme vertices is denoted by Ext(G) and
e(G) = |Ext(G)|. A graph G is an extreme geodesic graph if Ext(G) forms
a geodetic set of G. A set S ⊆ V (G) is an open geodetic set if for each
vertex v, either (1) v is an extreme vertex of G and v ∈ S, or (2) v lies
as an internal vertex of an x − y geodesic for some x, y ∈ S. An open
geodetic set of minimum cardinality is a minimum open geodetic set or og-
set of G and this cardinality is the open geodetic number og(G). The open
geodetic number of a graph was studied in [4]. A set S ⊆ V (G) is a double
dominating set if |N [v] ∩ S| ≥ 2 for all v ∈ V (G). A double dominating
set of minimum cardinality is the double domination number γ×2(G). Any
double dominating set of cardinality γ×2(G) is a γ×2-set of G. The double
domination number of a graph was introduced and studied in [7].

The strong product of graphs G and H, denoted by G�H, has vertex set
V (G) × V (H), where two distinct vertices (x1, y1) and (x2, y2) are adjacent
with respect to the strong product if

(a) x1 = x2 and y1y2 ∈ E(H) or

(b) y1 = y2 and x1x2 ∈ E(G) or

(c) x1x2 ∈ E(G) and y1y2 ∈ E(H).

The mappings πG : (x, y) 7→ x and πH : (x, y) 7→ y from V (G � H) onto G
and H respectively are called projections. For a set S ⊆ V (G � H), we de-
fine the G-projection on G as πG(S) = {x ∈ V (G) : (x, y) ∈ S for some y ∈
V (H)}, and the H-projection πH(S) = {y ∈ V (H) : (x, y) ∈ S for some x ∈
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V (G)}. For a walk P : (x1, y1), (x2, y2), . . . , (xn, yn) in G�H, we define the
G-projection πG(P ) of P as a sequence that is obtained from (x1, x2, . . . , xn)
by changing each constant subsequence with its unique element. For ex-
ample, if P : (x2, y3), (x2, y4), (x2, y5), (x4, y5), (x4, y2), (x3, y2), (x2, y2), then
πG(P ) is (x2, x4, x3, x2) (it is obtained from the sequence (x2, x2, x2, x4, x4,
x3, x2)). The H-projection πH(P ) is defined similarly. It is clear from the
definition of strong product that for any walk P in G � H, both πG(P ) and
πH(P ) are walks in the factor graphs G and H respectively.

In this paper, we characterize graphs G and H for which g(G�H) = 2.
We obtain bounds for the geodetic number of G�H in terms of the geodetic
number of the factor graphs. Improved bounds for the same are obtained
for several classes of strong product graphs and exact values of g(G�H) are
also obtained for some classes of graphs. Further, we characterize graphs
G and H for which g(G � H) = e(G)e(H). We also obtain upper bounds
for the geodetic number for some classes of strong product graphs in terms
of the open geodetic number and double domination number of the factor
graphs and improve the upper bounds for special classes of graphs. For basic
graph theoretic terminology, we refer to [5]. We also refer to [2] for results on
distance in graphs and to [8] for metric structures in strong product graphs.
Throughout the following G denotes a connected graph with at least two
vertices. The following theorems will be used in the sequel.

Theorem 1.1 [8]. Let G and H be connected graphs with (u, v) and (x, y)
arbitrary vertices of the strong product G�H of G and H. Then dG�H((u, v),
(x, y)) = max{dG(u, x), dH (v, y)}.

Theorem 1.2 [2]. Each extreme vertex of a connected graph G belongs to
every geodetic set of G.

Theorem 1.3 [9]. Let G and H be connected graphs. Then Ext(G �H) =
Ext(G) × Ext(H).

2. Bounds for the Geodetic Number

Proposition 2.1. Let G and H be connected graphs and P a (u, v)−(u′, v′)
geodesic in G � H of length n. If dG(u, u′) ≥ dH(v, v′), then πG(P ) is a
u−u′ geodesic in G of length n, and if dG(u, u′) ≤ dH(v, v′), then πH(P ) is
a v − v′ geodesic in H of length n.
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Proof. Let P : (u, v) = (u0, v0), (u1, v1), . . . , (un, vn) = (u′, v′) be a (u, v)−
(u′, v′) geodesic of length n in G�H. If dG(u, u′) ≥ dH(v, v′), then it follows
from Theorem 1.1 that dG(u, u′) = n and so πG(P ) must be a u−u′ geodesic
in G. The other case follows similarly.

Remark 2.2. If P is a geodesic in G � H, then both πG(P ) and πH(P )
need not be geodesics in the factor graphs G and H respectively. For
the graph G = K2,2 with partite sets X = {x1, x2}, Y = {y1, y2} and
H = P4 with V (H) = {v1, v2, v3, v4}, it is clear from Theorem 1.1 that
P : (x1, v1), (y1, v2), (x2, v3), (y2, v4) is a (x1, v1)− (y2, v4) geodesic in G�H.
However, πG(P ) : x1, y1, x2, y2 is a x1−y2 path in G, which is not a geodesic
and πH(P ) : v1, v2, v3, v4 is a geodesic in H.

Theorem 2.3. Let G and H be nontrivial connected graphs. Then
g(G � H) ≥ 4.

Proof. Suppose that there is a geodetic set of G � H of cardinality 3, say
W = {(x1, y1), (x2, y2), (x3, y3)}. We consider three cases.

Case 1. x1 = x2 = x3 = x (say). Then y1, y2 and y3 are distinct. Let
x′ ∈ V (G) be such that x′ 6= x. Then it follows from Proposition 2.1 that
(x′, y1) ∈ IG�H [(x, y2), (x, y3)] and so y1 ∈ IH [y2, y3]. Similarly, we have
y2 ∈ IH [y1, y3] and y3 ∈ IH [y1, y2]. Thus we get a contradiction.

Case 2. x1 = x2 6= x3. Then y1 6= y2. Hence y3 6= y1 or y3 6= y2.
Assume that y3 6= y1. Hence it follows from Proposition 2.1 that (x3, y1) ∈
IG�H [(x1, y2), (x3, y3)] and so y1 ∈ IH [y2, y3]. Thus y2 6= y3. Hence it
follows similarly from Proposition 2.1 that (x1, y3) ∈ IG�H [(x1, y1), (x1, y2)]
and (x3, y2) ∈ IG�H [(x1, y1), (x3, y3)]. Again Proposition 2.1 shows that
y3 ∈ IH [y1, y2] and y2 ∈ IH [y1, y3], which is a contradiction.

Case 3. x1 6= x2 6= x3. We consider only the case y1 6= y2 6= y3, since
the other cases are similar to the above cases. As in the previous case, we
have (x2, y1) ∈ IG�H [(x1, y1), (x3, y3)] or (x2, y1) ∈ IG�H [(x2, y2), (x3, y3)].

Subcase 3.1. Assume that (x2, y1) ∈ IG�H [(x1, y1), (x3, y3)]. Then, by
Proposition 2.1, dG(x1, x3) > dH(y1, y3) and x2 ∈ IG[x1, x3]. Again, it
follows from Proposition 2.1 that (x1, y2) ∈ IG�H [(x2, y2), (x3, y3)]. Hence
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dG(x2, x3) > dH(y2, y3) and x1 ∈ IG[x2, x3]. Now, it is clear from Proposi-
tion 2.1 that (x3, y1) ∈ IG�H [(x1, y1), (x2, y2)] and x3 ∈ IG[x1, x2], which is
a contradiction.

Subcase 3.2. This is similar to Subcase 3.1. Thus the proof is complete.

Theorem 2.4. Let G and H be connected graphs and S a geodetic set of
G � H. Then, πG(S) is a geodetic set of G or πH(S) is a geodetic set of H.

Proof. Suppose that both πG(S) and πH(S) are not geodetic sets of G
and H respectively. Then there exist vertices x in G and y in H such that
x /∈ IG[πG(S)] and y /∈ IH [πH(S)]. Since S is a geodetic set of G � H, there
exist (g, h), (g′ , h′) ∈ S such that (x, y) lies on a (g, h) − (g ′, h′) geodesic
P in G � H. Now, it follows from Proposition 2.1 that x ∈ IG[πG(S)] or
y ∈ IH [πH(S)], which is a contradiction. Hence πG(S) is a geodetic set of
G or πH(S) is a geodetic set of H.

Corollary 2.5. Let G and H be connected graphs. Then min{g(G), g(H)} ≤
g(G � H).

The following theorem is useful in giving an improved lower bound of
g(G � H) for a class of graphs.

Theorem 2.6. Let G and H be connected graphs and S a geodetic set of
G � H. If Ext(G) 6= ∅, then πH(S) is a geodetic set of H.

Proof. Let S1 = πH(S). We show that S1 is a geodetic set of of H. Let
x ∈ Ext(G) and y ∈ V (H). Since S is a g-set of G�H, the vertex (x, y) lies
on a geodesic P : (g0, h0), (g1, h1), . . . , (gi, hi) = (x, y), . . . , (gn, hn) of length
n with (g0, h0), (gn, hn) ∈ S. First, suppose that dG(g0, gn) ≤ dH(h0, hn).
Then it follows from Proposition 2.1 that πH(P ) is a h0 − hn geodesic in H
containing the vertex y, with h0, hn ∈ S1. Next, suppose that dG(g0, gn) >
dH(h0, hn). Then, as above, by Proposition 2.1, πG(P ) is a g0 − gn geodesic
in G containing the vertex x. Now, since the vertex x is extreme, either
x = g0 or x = gn and it follows that either y = h0 or y = hn. Hence S1 is a
geodetic set of H.

Corollary 2.7. Let G and H be connected graphs such that Ext(G) 6= ∅.
Then g(H) ≤ g(G � H).
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Corollary 2.8. Let G and H be connected graphs such that Ext(G) 6= ∅
and Ext(H) 6= ∅. Then max{g(G), g(H)} ≤ g(G � H).

Corollary 2.9. Let G be a connected graph and m ≥ 2 an integer. Then

(i) g(G) ≤ g(G � Km).

(ii) g(G) ≤ g(G � K1,m).

The following lemma is useful in proving an upper bound for the geodetic
number of G � H.

Lemma 2.10. Let G and H be connected graphs. If g ∈ IG[g′, g′′] and
h ∈ IH [h′, h′′], then (g, h) ∈ IG�H [S], where S = {g′, g′′} × {h′, h′′}.

Proof. Let g be a vertex of the geodesic P : g ′ = g0, g1, . . . , gi = g, . . . , gn =
g′′ in G and h a vertex of the geodesic Q : h′ = h0, h1, . . . , hj = h, . . . , hm =
h′′ in H. Then dG(g0, gi) = i and dG(gi, gn) = n − i for all 0 ≤ i ≤ n.
Similarly, dH(h0, hj) = j and dH(hj , hm) = m − j for all 0 ≤ j ≤ m.
Without loss of generality, we may assume that m ≤ n. Suppose that
(g, h) /∈ IG�H [S]. We consider two cases.

Case 1. j ≤ i. First we show that m − j > n− i. Assume the contrary.
Let P1 be a (g0, h0)−(gi, hj) geodesic and P2 a (gi, hj)−(gn, hm) geodesic in
G � H. Then it follows from Theorem 1.1 that l(P1) = i and l(P2) = n − i.
Now, P3 = P1∪P2 is a (g0, h0)−(gn, hm) walk in G�H, which contains (g, h).
Since l(P3) = n, it follows from Theorem 1.1 that P3 is a (g0, h0)− (gn, hm)
geodesic in G � H containing the vertex (g, h), which is a contradiction to
our assumption that (g, h) /∈ IG�H [S]. Hence m − j > n − i. Similarly, we
can show that j > n − i.

Now, let P ′ be a (gn, h0)− (gi, hj) geodesic and P ′′ a (gi, hj)− (gn, hm)
geodesic in G � H. Since m − j > n − i and j > n − i, it follows from
Theorem 1.1 that l(P ′) = j and l(P ′′) = m− j. Now, P ′∪P ′′ is a (gn, h0)−
(gn, hm) walk in G � H, which contains (g, h). Since l(P ′ ∪ P ′′) = m, it
follows from Theorem 1.1 that P ′ ∪ P ′′ is a (gn, h0) − (gn, hm) geodesic,
which contains (g, h). Thus (g, h) ∈ IG�H [S], which is a contradiction.

Case 2. i < j. As in Case 1, we can prove that n − i > m − j and
i > m−j. Let Q′ be a (g0, hm)−(gi, hj) geodesic and Q′′ a (gi, hj)−(gn, hm)
geodesic in G � H. Then, as in Case 1, we can show that Q′ ∪ Q′′ is a
(g0, hm) − (gn, hm) geodesic, which contains (g, h). Thus (g, h) ∈ IG�H [S],
which is a contradiction. Hence the result follows.
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Theorem 2.11. Let G and H be connected graphs. If S and T are geodetic
sets of G and H respectively, then S × T is a geodetic set of G � H.

Proof. Let U = S × T . Let (g, h) ∈ V (G � H). Since S and T are
geodetic sets of G and H respectively, there exist g ′, g′′ ∈ S and h′, h′′ ∈ T
such that g ∈ IG[g′, g′′] and h ∈ IH [h′, h′′]. Then, by Lemma 2.10, (g, h) ∈
IG�H [W ] ⊆ IG�H [U ], where W = {g′, g′′} × {h′, h′′}. Hence U is a geodetic
set of G � H.

Corollary 2.12. Let G and H be connected graphs. Then g(G � H) ≤
g(G)g(H).

Theorem 2.13. Let G and H be connected graphs. Then min{g(G), g(H)}
≤ g(G � H) ≤ g(G)g(H).

Proof. This follows from Corollaries 2.5 and 2.12.

Now, we proceed to characterize graphs G and H for which g(G � H) =
e(G)e(H).

Theorem 2.14. Let G and H be connected graphs. Then G and H are
extreme geodesic graphs if and only if G � H is an extreme geodesic graph.

Proof. Let G and H be extreme geodesic graphs. Then Ext(G) and
Ext(H) are geodetic sets of G and H respectively. Then it follows from
Theorems 1.3 and 2.11 that Ext(G � H) = Ext(G) × Ext(H) is a geodetic
set of G � H. Hence G � H is an extreme geodesic graph.

Conversely, let G�H be an extreme geodesic graph. Then Ext(G�H)
is a geodetic set of G � H. Then it follows from Theorems 1.3 and 2.6 that
Ext(G) and Ext(H) are geodetic sets of G and H respectively. Thus G and
H are extreme geodesic graphs.

Corollary 2.15. Let G and H be connected graphs. Then G and H are
extreme geodesic graphs if and only if g(G � H) = e(G)e(H).

Proof. This follows from Theorems 1.3 and 2.14.

A vertex x in a set S of vertices of G is a geodetic interior vertex of S if
x ∈ IG[S−{x}]. The set of all geodetic interior vertices of S is denoted by S o.
For a geodetic set S, we have (i) So ⊆ S−Ext(G) and (ii) So = S−Ext(G)
if and only if S is an open geodetic set of G.
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Theorem 2.16. Let G and H be connected graphs such that H has a full
degree vertex v0. Then
g(G � H) ≤ min{|S||T | − (|T | − 1)|So| : S and T are geodetic sets of G and
H respectively }. Moreover, if H is an extreme geodesic graph, then

g(G � H) = min{e(H)|S| − (e(H) − 1)|So| : S is a geodetic set of G}.

Proof. Let S and T be geodetic sets of G and H respectively and let W =
((S−So)×T )∪(So×{v0}). Then |W | = |S||T |−(|T |−1)|So |. We show that
W is a geodetic set of G � H. Let (x, y) ∈ V (G � H). Since T is a geodetic
set of H, y lies on a h − h′ geodesic P : h = h0, h1, . . . , hj = y, . . . , hm = h′

in H with h, h′ ∈ T . Now, we consider the following two cases.

Case 1. x ∈ S−So. Then, it follows from Theorem 1.1 that P ′ : (x, h) =
(x, h0), (x, h1), . . . , (x, hj) = (x, y), . . . , (x, hm) = (x, h′) is a geodesic in
G�H with (x, h), (x, h′) ∈ (S−So)×T . Hence (x, y) ∈ IG�H [(S−So)×T ] ⊆
IG�H [W ].

Case 2. x /∈ S − So. Then x lies on a g − g′ geodesic Q : g = g0, g1, . . . ,
gi = x, gi+1, . . . , gn = g′, where 1 ≤ i ≤ n− 1 and g, g′ ∈ S. We consider the
following three subcases.

Subcase 2.1. Both g, g′ ∈ S − So. Let X = {g, g′} × {h, h′}. Then, by
Lemma 2.10, (x, y) ∈ IG�H [X] ⊆ IG�H [(S − So) × T ] ⊆ IG�H [W ].

Subcase 2.2. Both g, g′ /∈ S − So. Then g, g′ ∈ So. Since v0 is a full
degree vertex of H, it follows from Theorem 1.1 that Q1 : (g, v0) = (g0, v0),
(g1, v0), . . . , (gi−1, v0), (gi, y) = (x, y), (gi+1, v0), . . . , (gn, v0) = (g′, v0) is a
(g, v0)−(g′, v0) geodesic that contains the vertex (x, y), where (g, v0), (g′, v0)
∈ So × {v0} ⊆ W .

Subcase 2.3. g ∈ S−So and g′ /∈ S−So. Then (g, h), (g, h′), (g′, v0) ∈ W .
Let y 6= h, h′. Since diam(H) ≤ 2 and y lies on the h − h′ geodesic P , it
follows that y is adjacent to both h, h′. Now, it is clear from Theorem 1.1
that Q2 : (g, h) = (g0, h), (g1, y), . . . , (gi, y) = (x, y), . . . , (gn−1, y), (gn, v0) =
(g′, v0) is a (g, h)− (g′, v0) geodesic in G�H containing the vertex (x, y). If
y = h or h′, say y = h, then as above (x, y) lies on a (g, h)− (g ′, v0) geodesic
Q3 : (g, h) = (g0, h), (g1, h), . . . , (gi, h) = (x, y), . . . , (gn−1, h), (gn, v0) =
(g′, v0). Thus W is a geodetic set of G�H and the first part of the theorem
follows.
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Now, assume that H is an extreme geodesic graph. Then T = Ext(H) is a
geodetic set of H. Let W1 be a g-set of G � H. Then g(G � H) = |W1|.
By Theorem 2.6, S1 = πG(W1) is a geodetic set of G. We first claim that
(S1−So

1)×T ⊆ W1. Let (x, y) ∈ (S1−So
1)×T . Then x /∈ So

1 . If (x, y) /∈ W1,
then there exists (u, v), (u′, v′) ∈ W1 such that (x, y) lies on a (u, v)− (u′, v′)
geodesic P : (u, v) = (u0, v0), (u1, v1), . . . , (ui, vi) = (x, y), . . . , (um, vm) =
(u′, v′) with 1 ≤ i ≤ m−1. Since y is an extreme vertex of H, it follows from
Proposition 2.1 that πG(P ) : u = u0, u1, . . . , ui = x, . . . , um = u′ is a u − u′

geodesic in G with x 6= u, u′. Thus x ∈ IG(u, u′) with u, u′ ∈ S1 and so x ∈
So

1 , which is a contradiction. Hence (x, y) ∈ W1 and so ((S1−So
1)×T ) ⊆ W1.

Let X = W1−((S1−So
1)×T ). Now, we claim that So

1 ⊆ πG(X). Let x ∈ So
1 .

Then x ∈ S1. Since S1 = πG(W1), there exists y such that (x, y) ∈ W1. Since
x /∈ S1−So

1 , we have (x, y) ∈ X and so x ∈ πG(X). Thus So
1 ⊆ πG(X) and so

|So
1 | ≤ |πG(X)| ≤ |X|. If |So

1 | < |X|, let W2 = ((S1 −So
1)×T )∪ (So

1 ×{v0}).
Then, as in the first part of the proof of this theorem, W2 is a geodetic set
of G�H. Now, |W2| = |(S1−So

1)×T |+ |So
1| < |(S1−So

1)×T |+ |X| = |W1|,
which is a contradiction to the fact that W is a minimum geodetic set of
G � H. Hence we have |X| = |So

1 | and so |W1| = |(S1 − So
1) × T | + |X| =

|(S1 − So
1) × T | + |So

1 | = |S1||T | − (|T | − 1)|So
1 |. This completes the second

part of the theorem.

Corollary 2.17. Let G be a connected graph. Then

(i) g(G � Kn) = min{n|S| − (n − 1)|So| : S is a geodetic set of G},

(ii) g(G � K1,n) = min{n|S| − (n − 1)|So| : S is a geodetic set of G}.

Corollary 2.18. Let G and H be connected graphs such that H is an ex-
treme geodesic graph with a full degree vertex. Then
e(G)(g(H) − 1) + g(G) ≤ g(G � H) ≤ e(G)(g(H) − 1) + og(G).

Proof. Suppose that g(G�H) < e(G)(g(H)−1)+g(G). Then, by Theorem
2.16, there exists a geodetic set S of G such that e(H)|S|− (e(H)−1)|S o| <
e(G)(g(H) − 1) + g(G). Thus, e(H)|S| < e(G)(g(H) − 1) + g(G) + (e(H) −
1)|So|. Since So ⊆ S − Ext(G) and e(H) = g(H), we have g(H)|S| =
e(H)|S| < e(G)(g(H)−1)+g(G)+(e(H)−1)(|S|−e(G)) = g(G)+(g(H)−
1)|S|. Hence |S| < g(G), which is a contradiction. Thus e(G)(g(H) − 1) +
g(G) ≤ g(G�H). For the other inequality, let S be a minimum open geodetic
set of G. Then og(G) = |S| and So = S−Ext(G). By Theorem 2.16, we have
g(G � H) ≤ e(H)|S| − (e(H)− 1)|So| = e(H)|S| − (e(H)− 1)(|S| − e(G)) =
e(G)(e(H) − 1) + og(G).
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Theorem 2.19. Let G be a connected graph and H an extreme geodesic
graph with a full degree vertex. Then g(G � H) = e(G)(g(H) − 1) + g(G) if
and only if g(G) = og(G).

Proof. Suppose that og(G) = g(G). Then the result follows from Corollary
2.18. Conversely, assume that g(G�H) = e(G)(g(H)−1)+g(G). Let W be
a g-set of G�H. Then |W | = e(G)(g(H)−1)+g(G) = e(G)(e(H)−1)+g(G).
By Theorem 1.2 and 1.3, W = (Ext(G)×Ext(H))∪D, where D ⊆ V (G�H)
with (Ext(G)×Ext(H))∩D = ∅. Hence |D| = g(G)−e(G) and so |πG(W )| ≤
e(G)+ |πG(D)| ≤ e(G)+ |D| = g(G). By Theorem 2.6, πG(W ) is a geodetic
set of G and so it follows that |πG(W )| = g(G). Now, we show that πG(W )
is an open geodetic set of G. Let x ∈ V (G) be such that x /∈ Ext(G). If
x /∈ πG(W ), then, since πG(W ) is a geodetic set of G, x lies as an internal
vertex of a g − g′ geodesic in G with g, g′ ∈ πG(W ). Now, assume that
x ∈ πG(W ). First we prove that {x} × Ext(H) * W . Otherwise, we have
{x}×Ext(H) ⊆ W . Then, since Ext(G)×Ext(H) ⊆ W and πG(W ) contains
g(G) − e(G) − 1 non-extreme vertices other than x, it follows that |W | ≥
e(H)+e(G)e(H)+(g(G)−e(G)−1) = e(G)(e(H)−1)+g(G)+(e(H)−1) >
e(G)(e(H) − 1) + g(G), which is a contradiction. Thus {x}×Ext(H) * W .
Hence there exists a y ∈ Ext(H) such that (x, y) /∈ W . Since W is a
geodetic set of G�H, it is clear that (x, y) lies on a (g, h)− (g ′, h′) geodesic
P in G � H with (g, h), (g′ , h′) ∈ W and (x, y) 6= (g, h), (g′ , h′). Now, if
dH(h, h′) ≥ dG(g, g′), then it follows from Proposition 2.1 that πH(P ) is a
h − h′ geodesic in H of length that of P so that y lies as an internal vertex
of πH(P ), which is a contradiction to y an extreme vertex of H. Hence, by
Proposition 2.1, πG(P ) is a geodesic in G that contains the vertex x with
x 6= g, g′. Thus πG(W ) is an open geodetic set of G and |πG(W )| = g(G).
Hence og(G) = g(G).

Theorem 2.20. For integers 2 ≤ r ≤ s and n ≥ 2, g(Kr,s � Kn) = 4.

Proof. If r ≥ 4, then it is easily seen that g(Kr,s) = og(Kr,s) = 4 and
so by Theorem 2.19, g(Kr,s � Kn) = 4. If r = 3, then g(Kr,s) = 3 and
og(Kr,s) = 4. Hence it follows from Corollary 2.18 and Theorem 2.19 that
g(Kr,s �Kn) = 4. Now, let r = 2. Let (X,Y ) be the partite sets of K2,s with
|X| = 2. Now, X and Y are geodetic sets of K2,s. Let S be any geodetic set
of K2,s. If S = X or Y , then So = ∅ and so n|S| − (n − 1)|So| = n|S| ≥ 4.
Assume that S 6= X,Y . Then |S| ≥ 3. If |S| = 3, then |So| = 1 and so
n|S| − (n − 1)|So| = 2n + 1 ≥ 5. If |S| ≥ 4, then So = S or |So| = 1.
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If |So| = 1, then n|S| − (n − 1)|So| ≥ 3n + 1 ≥ 7. If So = S, then n|S| −
(n − 1)|So| = |S|. Now, let S = {x1, x2, y1, y2}, where x1, x2 ∈ X and
y1, y2 ∈ Y . Then S is a geodetic set of K2,s with So = S. Hence it follows
from Corollary 2.17 that g(K2,s � Kn) = 4.

3. Geodetic Number and Double Domination

In this section, we obtain an upper bound for the geodetic number of some
strong product graphs in terms of the open geodetic number and double
domination number of the factor graphs. This upper bound is also improved
for certain classes of graphs.

Theorem 3.1. Let G and H be connected graphs such that G has no extreme
vertices. Then g(G � H) ≤ og(G)γ×2(H) − min{og(G), γ×2(H)}.

Proof. Let S = {g1, g2, . . . , gp} be an og-set of G and T = {h1, h2, . . . , hq}
a γ×2-set of H. Let r = min{p, q} and U = S × T −

⋃r
i=1{(gi, hi)}. Then

|U | = pq − r. We show that U is a geodetic set of G � H. Let (g, h) ∈
V (G � H). Since S is an og-set of G and G has no extreme vertices, g lies
on a gi − gj geodesic P : gi = u0, u1, . . . , us = g, us+1 . . . , ut = gj for some
1 ≤ s ≤ t− 1 with gi, gj ∈ S. Also, since T is a γ×2-set of H, it follows that
h lies on a hk −hl path Q : hk, h, hl of length at most 2 with 1 ≤ k 6= l ≤ m.
Note that if l(Q) = 1, then either h = hk or h = hl.

Case 1. i = k. Then i 6= l and j 6= k. Hence (gi, hl), (gj , hk) ∈ U . It
follows from Theorem 1.1 that P ′ : (gi, hl) = (u0, hl), (u1, hl), . . . , (us−1, hl),
(us, h) = (g, h), (us+1, hk), . . . , (ut, hk) = (gj , hk) is a geodesic in G�H that
contains the vertex (g, h). Hence U is a geodetic set of G � H.

Case 2. i 6= k. We consider the following two subcases.

Subcase 2.1. j = l. Then i 6= l and j 6= k. Then as in Case 1, U is a
geodetic set of G � H.

Subcase 2.2. j 6= l. Then (gi, hk), (gj , hl) ∈ U and it follows from
Theorem 1.1 that P ′′ : (gi, hk) = (u0, hk), (u1, hk), . . . , (us−1, hk), (us, h) =
(g, h), (us+1, hl), . . . , (ut, hl) = (gj , hl) is a geodesic in G � H that contains
the vertex (g, h). Hence U is a geodetic set of G � H.
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Definition 3.2. Let G be a connected graph. A double dominating set
S = {g1, g2, . . . , gp} of G is linear if for each g ∈ V (G), there exists an index
i with 1 ≤ i < n such that gi, gi+1 ∈ N [g].

For the graph G in Figure 3.1, the set S = {v1, v2, v3} is a linear minimum
double dominating set.
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v2

v6

v3

v5v4

Figure 3.1. G

Any double dominating set consisting of exactly two elements is always
linear. For the graph G = Kr,s (r = 1 and s ≥ 3), the set of all vertices of
G is the unique double dominating set, which is not linear. For the graph
G = Kr,s (r, s ≥ 3), let S be a set of four vertices obtained by selecting
the first two vertices from one partite set and the last two vertices from the
other. Then S is a linear minimum double dominating set of G. The graph
Kr,s (r = 2, s ≥ 2) does not admit a linear minimum double dominating set.

Definition 3.3. Let G be a connected graph. An open geodetic set S =
{g1, g2, . . . , gp} of G is linear if for each g /∈ Ext(G), there exists an index
i with 1 ≤ i < n such that g lies as an internal vertex of a gi-gi+1 geodesic
in G.

For the graph G in Figure 3.2, the set S = {v1, v2, v3, v4, v5, v6} is a linear
minimum open geodetic set of G.
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Figure 3.2. G



The Geodetic Number of Strong Product Graphs 699

For the graph G = Kr,s (r, s ≥ 2), let S be a set of four vertices obtained by
selecting the first two vertices from one partite set and the last two vertices
from the other. Then S is a linear minimum open geodetic set of G.

The following theorem gives an improved upper bound of Theorem 3.1.

Theorem 3.4. Let G and H be connected graphs such that G has no extreme
vertices. If G has a linear og-set and H has a linear γ×2-set, then

g(G � H) ≤
⌊

og(G).γ×2(H)
2

⌋

.

Proof. Let S = {g1, g2, . . . , gp} be a linear og-set of G and T = {h1, h2,
. . . , hq} a linear γ×2 of H. Let U = S × T −

⋃

i+j even{(gi, hj)}. Then |U | =
⌊

pq
2

⌋

. We prove that U is a geodetic set of G � H. Let (g, h) ∈ V (G � H).
Since G has no extreme vertices and S is a linear og-set of G, it follows that
g lies on a gi-gi+1 geodesic P : u0, u1, . . . , us = g, us+1, . . . , ut = gi+1 with
1 ≤ s ≤ t − 1 for some 1 ≤ i < p. Also, since T is a linear γ×2-set of H, h
lies on a hj-hj+1 path Q : hj , h, hj+1 of length at most 2 with 1 ≤ j < q.

Suppose that i + j is odd. Then (i + 1) + (j + 1) is odd and so
(gi, hj), (gi+1, hj+1) ∈ U . Now, it follows from Theorem 1.1 that P ′ :
(gi, hj) = (u0, hj), (u1, hj), . . . , (us−1, hj), (us, h) = (g, h), (us+1, hj+1), . . . ,
(ut, hj+1) = (gi+1, hj+1) is a geodesic in G � H that contains (g, h). Hence
U is a geodetic set of G � H.

Next, suppose that i + j is even. Then i + (j + 1) and (i + 1) + j are
odd and so (gi, hj+1), (gi+1, hj) ∈ U . Now, it follows from Theorem 1.1
that P ′′ : (gi, hj+1) = (u0, hj+1), (u1, hj+1), . . . , (us−1, hj+1), (us, h) = (g, h),
(us+1, hj), . . . , (ut, hj) = (gi+1, hj) is a geodesic in G�H that contains (g, h).
Hence U is a geodetic set of G � H.

Corollary 3.5. Let G be a connected graph such that G has no extreme
vertices and G has a linear og-set. Then, for integers r, s ≥ 3, g(G � Kr,s)
≤ 2 og(G). Moreover, g(Kr1,s1

� Kr2,s2
) ≤ 8 for ri, si ≥ 3, i = 1, 2.

Proof. For the graph Kr,s (r, s ≥ 3), let S be a set of four vertices
obtained by selecting the first two vertices from one partite set and the last
two vertices from the other. Then S is both a linear og-set as well as a linear
γ×2-set of Kr,s. Hence the corollary follows from Theorem 3.4.

Remark 3.6. Let ri, si ≥ 3 for i = 1, 2. It follows from Corollary 2.12
that g(Kr1,s1

� Kr2,s2
) ≤ 9 if one of ri or si is equal to 3 for i = 1, 2 and
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g(Kr1 ,s1
� Kr2,s2

) ≤ 16 for all ri, si ≥ 4 for i = 1, 2. However, Corollary 3.5
gives a better bound for g(Kr1,s1

� Kr2,s2
).
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