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Abstract

A graph G is called (H;k)-vertex stable if G contains a subgraph
isomorphic to H ever after removing any of its k vertices. Q(H;k)
denotes the minimum size among the sizes of all (H; k)-vertex stable
graphs. In this paper we complete the characterization of (K, n;1)-
vertex stable graphs with minimum size. Namely, we prove that for
m>2andn>m+2, Q(Kmn;l) =mn+m-+nand K, , *x K7 as
well as Ky41.n41 — € are the only (K, ,; 1)-vertex stable graphs with
minimum size, confirming the conjecture of Dudek and Zwonek.
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1. INTRODUCTION

We deal with simple graphs without loops and multiple edges. We use
the standard notation of graph theory, cf. [1]. The following notion was
introduced in [2]. Let H be any graph and k a non-negative integer. A graph
G is called (H; k)-vertex stable if G contains a subgraph isomorphic to H ever
after removing any of its k vertices. Then Q(H;k) denotes minimum size
among the sizes of all (H;k)-vertex stable graphs. Note that if H does not
have isolated vertices then after adding to or removing from a (H; k)-vertex
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stable graph any number of isolated vertices we still have a (H;k)-vertex
stable graph with the same size. Therefore, in the sequel we assume that no
graph in question has isolated vertices.

There are two trivial examples of (H, k)-vertex stable graphs, namely
(k +1)H (a disjoint union of (k 4 1) copies of H) and H x K, (a graph
obtained from H U K} by joining all the vertices of H to all the vertices of
Kj}). Therefore,

Proposition 1. Q(H;k) < min {(k + 1)|E(H)|, |E(H)| + k|V(H)| + (5)}.
On the other hand, the following is easily seen.

Proposition 2. Suppose that H contains k vertices which cover q edges.
Then Q(H: k) > |E(H)| + q.

Recall also the following

Proposition 3 ([2]). Let 0y be a minimal degree of a graph H. Then in
any (H;k)-vertex stable graph G with minimum size, degsv > g for each
vertex v € G.

The exact values of Q(H;k) are known in the following cases: Q(C;;k) =
i(k+1),i=3,4, Q(K4; k) =5(k+1), Q(Kp; k) = (";rk) for n large enough,
and Q(Kl,m; k) =m(k+1), Q(Kn,n; 1) = n’® + 2n, Q(Kn,nJrl; )=+ 1)27
n > 2, see 2, 3]. In this paper we complete the characterization of (K, ;1)
vertex stable graphs with minimum size. Namely, we prove the following
theorem and hence confirm Conjecture 1 formulated in [3].

Theorem 1. Let m,n be positive integers such that m > 2 and n > m + 2.
Then Q(Kmn;1l) = mn+m+n and Ky, x K1 as well as Kp1n41 — €,
where e € E(Kpt1n+1), are the only (K, n;1)-vertex stable graphs with
minimum size.

2. PROOF OF THE MAIN RESULT

Proof of Theorem 1. Let m > 2 and n > m+2 be positive integers. Define
G1 = Ky * K1 and Gg := Ky 1041 — € where e € E (K41 p041). Let
G = (V,E) be a (K, 1)-vertex stable graph with minimum size. Thus,
by Proposition 1, |[E(G)| < mn 4+ m + n. Clearly G contains a subgraph
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H isomorphic to K, . Let H = (X,Y; Ey) with vertex bipartition sets
X,Y such that | X| = m and |Y| = n. Let v € X. Since G is (Kpn;1)-
vertex stable, G — v contains a subgraph H’ isomorphic to K, ,. Let H =
(X',)Y'; Efr) with vertex bipartition sets X', Y’ such that |X’| = m and
Y| = n. We denote 1 = [ X NX'|, 2o = | X NY'|, 1hn = |[Y NX|, yo =
Y NY'|. Hence 1 + 20 <m —1, y1 + y2 < n, y1 < m. One can see that
|E(G)| > 2mn — x1y2 — x2y1. Consider the following linear programming
problem with respect to y1 and o

y1<m

y1+y2<n

y1 =0

y2 >0

C = T1Y2 + T2y1 — max

where x; and x5 are parameters such that x1,z9 > 0,21 + 29 < m — 1.

Y2

Max xoy1 + x1y2, 1 > T2

Max zoy1 + x1y2, 1 < T2

m Y1
Figure 1. Geometrical interpretation of the linear programming problem.

The proof falls into two cases.

Case 1. 1 < xo.
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In this case y3 = m,ys = n —m, ¢ = xom + x1(n — m) is the unique
optimal solution of the above linear programming problem. This can be
easily checked using a geometrical interpretation of the linear programming
problem, see Figure 1. Thus |E(G)| > 2mn — xogm — xz1(n — m) and the
inequality is strict if y; # m or yo # n—m. We assume that z14+x9 =m—1
because otherwise the size of G may only increase. Then

|E(G)| > 2mn —m? +m + x1(2m — n) := f(x1).

Subcase la. n > 2m.

Then f(z1) is decreasing. Furthermore, z1 < -1 since 21 < z. Thus
-1 3 1
|E(GQ)| > f <mT> = amn—i—in > mn+m+n.

Thus |E(G)| > mn + m + n, a contradiction.

Subcase 1b. n < 2m.
Then f(x1) is increasing. Thus

E(G) > f(0) =2mn—m?*+m>mn+m+n

with equality if and only if m = 2 and n = 4, which is not possible in this
subcase.

Subcase 1c. n = 2m.
In this case
EG)>mn+m+n

with equality if and only if m = 2, n =4, y1 = yo = 2. Recall that x1 < x9
whence 1 = 0 and 23 = 1. Let u € Y'\ (X UY). Thus |E(G)| > 12+ degu.
Hence degu = 2 and |V (G)| = 7 because otherwise |E(G)| > mn + m + n.
However, then G is not (K3 4;1)-stable. Indeed let w be a neighbor of w.
Then G — w does not contain any subgraph isomorphic to K9 4 since G —w
has 6 vertices and one of them has degree 1. Therefore Case 1 is not possible.

Case 2. 1 > x9.
In this case ¢ = x1n is the optimal solution of the above linear problem, see
Figure 1. Therefore, |[E(G)| > 2mn — x1n. If 1 < m — 2 then |E(G)| >
2mn — (m — 2)n = mn + 2n > mn + m + n. Hence we may assume that
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1 = m — 1 and 9 = 0. Thus there is only one vertex, say u, such that
ue X'\ X.

Subcase 2a. ys = n.

Thus, u have n neighbors in Y. Note that |[V(G)| < m + n + 2. Indeed,
otherwise by Proposition 3, |[E(G)| > mn+n+2m —1 > mn+ m + n.
Consider now a graph G” := G — w where w € Y. Clearly G — w contains
a subgraph H" isomorphic to K, ,. Let H" = (X",Y"; Egn) with vertex
bipartition sets X", Y"” such that |X”| = m and |Y”| = n. Let 2 = | XNX"|,
= XY, 4 = [V 0 X7, g = Y 0 Y]

Suppose first that |V(G)| = m+n+2 and u,u; € V(G)\ (XUY). Since
|E(G)| < mn+m+n, degu; = m and degu < n+1. In particular, uy ¢ X"
and v has no neighbor in X. Furthermore, |E(G)| > mn+n+m-+zizh+y;yh.
Thus, 27 = 0 or 2, = 0, and y§ = 0 or y, = 0. We distinguish two
possibilities

1. 24 = 0. Then y] # 0. Indeed, otherwise X" = {u,u;}, a contradic-
tion with previous observation that u; ¢ X”. Hence, y5 = 0. Thus, z, =m
and u,u; € Y” (so n = m + 2). Consequently, y; = m. However, then G is
not (K, m+2; 1)-stable. Indeed, let wy be a neighbor of uy, w; € X" C Y.
Then G'—w; consists of a subgraph isomorphic to K, +1m+1 plus one vertex
(namely u1) and m — 1 edges incident to it. Therefore, G — w; does not
contain any subgraph isomorphic to K, m42.

2. 24 #0. Then zf, = 0 and u ¢ Y”. Consequently, u; € Y and v} # 0.
Hence y} = 0. It is easy to see now that G = Gs.

Assume now that |V(G)| = m+n+1. Hence x| +25 = m and y] +vy5 = n—1.
We have the next two possibilities.

3. @) +y; = m. Then |E(G)| > mn + zjzh + yjyh + degu > mn +
i xh + yiyh +n + 2. Hence

E(G)] = mn+ (m —2))(n —1—m+224) +n+af = fi(«}), 0< 2} <m.

It is not difficult to see that fi(x}) obtains the smallest value for zj = 0
or 4 = m only. Thus, |[E(G)| > min{f;(0), fi(m)}. Note that f1(0) =
2mn +n —m —m? > mn 4+ m + n with equality if and only if n = m + 2.
However, then there is a vertex y € Y” such that G —y = K1 m41 SO
G — y does not contain any subgraph isomorphic to K, ;,42. Furthermore,
f(m) >mn+n+m. Thus, |E(G)| > mn+m +n with equality if and only
1 =m. Then G = G;.
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4. xb + y4 = n. Then |E(G)| > mn + x4 + yiy5 + n + z,. Hence,
|E(G)] = mn+(m—ap)rh+ (x5 —1)(n—ah) +nt+ay = fo(z2), 1 < a5 <m.

One can see that fa(x}) obtains the smallest value for zf, = 1 or 2, = m
only. Thus, |E(G)| > min{f2(1), f2(m)}. Note that fo(1) = mn + n + m.
Then G =2 G1. On the other hand, f2(m) = 2mn +2m —m? > mn+m+n.

Subcase 2b. ys < n.
Thus, there is a vertex z € Y’/ such that z € V(G) \ (X UY). This clearly
forces m — 1 neighbours of z in X \ {v}. Consider now a graph G — v,
v # vp € X. We repeat all preceding arguments to the graph G — vy.
Consequently, G = G;, i = 1,2, or there is a vertex z; € V(G) \ (X UY)
which has m — 1 neighbors in X \ {v1}. If z = 2; then z has m neighbors
in X and G 2 Gy ifu € Y or G = Gy otherwise. If z # z; then either
deg z + deg z1 > 2m + 1 if both vertices z and z; are involved in a K, ,
contained in G — v or G — vy, or degu > n + 1 otherwise. Thus, |E(G)| >
mn+2m—14+n>mn+m+n. [ |

3. CONCLUDING REMARKS

In [2, 3] it is proved that Q(K1,;k) = (k+ 1)n. However, for n > 3 the
extremal graphs are not characterized.

Proposition 4. Let G be a (K ,,; k)-vertex stable graph with minimum size,
n>3. Then G = (k+1)Ky,.

Proof. The proof is by induction on k. The thesis is obvious for k = 0.
Assume that £ > 0. Let G be a (K ,; k)-vertex stable graph with minimum
size. Hence, |E(G)| = (k+1)n. Note that each (K p; k)-vertex stable graph
contains k + 1 vertices of degree at least n. Let v € V(G) with degv > n.
Thus, G—wv is (K1 ,; k—1)-vertex stable graph with |E(G—v)| < kn. Hence,
|E(G—v)| = kn and degv = n. By the induction hypothesis G —v = kK .
Note that v is not a neighbor of any vertex of degree m. Suppose on the
contrary, that uv € E(G) and degu = n. Then G — u contains only k& — 1
vertices of degree greater than or equal to n whence is not (Kqn;k — 1)-
vertex stable, a contradiction. Thus, G contains k£ 4 1 independent vertices
of degree exactly n. We will show that these vertices have pairwise disjoint
sets of neighbors. Indeed, otherwise let x be a common neighbor of two
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vertices of degree n. Thus, again, G — = has only k& — 1 vertices of degree
greater than or equal to n, a contradiction. [ |

In the following table we present the complete characterization of (K, ,,;1)-
vertex stable graphs with minimum size.

m;n Q(Kmon; 1) All (K, n; 1)-vertex stable graphs
with minimum size

m=1n=1 2 (3] 2K5 1 (3]

m = 177’L =2 4 [3] K272, 2K112 [3]

m=1n>3 2n 2] 2K1

m=2,n:2 8 [3] Kg,g*Kl, l(v373—€7 2K272 [3]
m>2,n=m+1 (m+1)2 [3] Kpnt+1,m+1 (3]

m>3,n=m m? + 2m [3] Kpm * K1, Kjt1,m+1 — € [3]
m2>2n>m+2 | mn+m+n Kpn* K1, Kjpinge1 — €
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