
Discussiones Mathematicae 651
Graph Theory 30 (2010 ) 651–661

CLIQUE GRAPH REPRESENTATIONS

OF PTOLEMAIC GRAPHS

Terry A. McKee

Department of Mathematics and Statistics

Wright State University

Dayton, Ohio 45435, USA

Abstract

A graph is ptolemaic if and only if it is both chordal and distance-
hereditary. Thus, a ptolemaic graph G has two kinds of intersection
graph representations: one from being chordal, and the other from
being distance-hereditary. The first of these, called a clique tree rep-
resentation, is easily generated from the clique graph of G (the inter-
section graph of the maximal complete subgraphs of G). The second
intersection graph representation can also be generated from the clique
graph, as a very special case of the main result: The maximal Pn-free

connected induced subgraphs of the p-clique graph of a ptolemaic graph

G correspond in a natural way to the maximal Pn+1-free induced sub-

graphs of G in which every two nonadjacent vertices are connected by

at least p internally disjoint paths.

Keywords: Ptolemaic graph, clique graph, chordal graph, clique tree,
graph representation.
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1. Basic Concepts

For any graph G, denote the family of all maxcliques of G—meaning the
inclusion-maximal complete subgraphs of G—as C(G), and denote the fam-
ily of all inclusion-maximal induced connected subgraphs of G that are
cographs—meaning they contain no induced path of length three—as CC(G).
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(Of course C(G) can be equivalently described as the family of all maximal
induced subgraphs of G that contain no induced path of length two.)

Let Ω(C(G)) [respectively, Ω(CC(G))] denote the clique intersection graph

[or the CC intersection graph] of G, meaning the intersection graph that has
the members of C(G) [or CC(G)] as nodes, with two nodes adjacent if and
only if their vertex sets have nonempty intersection. Let Ωw(C(G)) and
Ωw(CC(G)) denote their weighted counterparts where, for S, S ′ in C(G) or
in CC(G), the weight of the edge SS ′ equals |V (S)∩ V (S ′)|. Figure 1 shows
an example.
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Figure 1. A graph G (at the top) with its weighted clique graph (lower left) and its

weighted CC graph (lower right), where abde abbreviates the subgraph

of G that is induced by {a, b, d, e}, etc.

For each p ≥ 1, the p-clique graph Kp(G) of G is the graph that has the
maxcliques of G as nodes, with two nodes Q and Q′ adjacent in Kp(G) if
and only if |V (Q) ∩ V (Q′)| ≥ p; see [6, section 6.1]. In other words, Kp(G)
is the graph that is formed by the edges of Ωw(C(G)) that have weight p

or more. The clique graph of G is K1(G), typically abbreviated as K(G);
see [9]. For instance, K(G) for the graph G in Figure 1 is Ωw(C(G)) without
the edge weights; Figure 2 shows K2(G) for the same G.

A graph is chordal if every cycle of length four or more has a chord

(meaning an edge that joins two vertices of the cycle that are not consecu-
tive along the cycle). Among many characterizations in [3, 6], a graph G is
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Figure 2. The 2-clique graph K2(G) of the graph G in Figure 1.

chordal if and only if G has a C(G) tree representation—typically called a
clique tree—where this means a tree T whose nodes are the maxcliques of
G such that, for each v ∈ V (G), the subgraph Tv of T that is induced by
those nodes of T that contain v is connected—in other words, each Tv is a
subtree of T . A graph is chordal if and only if it is the intersection graph
of a family of subtrees of some tree, and that family can always be taken to
be the subtrees Tv of a clique tree T . The clique trees of a chordal graph G

are exactly the maximum spanning trees of Ωw(C(G)); see [6] for a thorough
discussion of all this. The graph shown in Figure 1 is chordal, and Figure 3
shows one of its clique trees.
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Figure 3. A clique tree (on the left) and a CC tree (on the right) for the graph G

in Figure 1.

A set S ⊂ V (G) is a vertex separator of a graph G if there are vertices
v, w that are in a common component of G but different components of the
subgraph induced by V (G)−S; such an S is also called a v, w-separator. If G

is chordal with a clique tree T , then the inclusion-minimal vertex separators
of G correspond exactly to V (Q) ∩ V (Q′) where QQ′ is an edge T ; see [6,
section 2.1] for details.

A graph G is distance-hereditary if the distance between vertices in a
connected induced subgraph of G always equals their distance in G. Equiv-
alently, G is distance-hereditary if and only if, for every v, w ∈ V (G), all
the induced v-to-w paths in G have the same length; see [3]. A graph G is
distance-hereditary if and only if G has a CC tree T , where T is a spanning
tree of Ω(CC(G)) such that each subgraph Tv (defined the same as for clique
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trees) is a subtree of T . Again, CC trees are the maximum spanning trees of
Ωw(CC(G)); see [3, 5, 7] for details of all this. The graph shown in Figure 1
is distance-hereditary, and Figure 3 shows its CC tree (which is unique in
this example).

Let Pn and Cn denote, respectively, a path or cycle with n vertices. Let
v ∼ w denote that vertices v and w are adjacent, and let N(v) = {x : v ∼
x ∈ V (G)}. Define a gem to be a graph that consists of a cycle of length
five together with two chords with a common endpoint. For any graph H, a
graph G is said to be H-free if G has no induced subgraph isomorphic to H.
For any graph G with induced subgraph H and vertex v ∈ V (G) − V (H),
let H+v denote the subgraph of G induced by V (H) ∪ {v}.

A graph is ptolemaic if it is both chordal and distance-hereditary; see
[3, 4] for history and details. Being ptolemaic is equivalent to being both
gem-free and chordal, and also to being both C4-free and distance-hereditary.
Ptolemaic graphs therefore have two kinds of tree representations: both a
clique tree because of being chordal, and a CC tree because of being distance-
hereditary. Corollary 5 will show how the clique graph of a ptolemaic graph
G also determines CC(G) and thereby the CC trees of G. But first, Theorem 1
will further characterize ptolemaic graphs and Theorem 4 will show how
subgraphs of a ptolemaic graph G can be identified in the clique graph of G.

Theorem 1. Each of the following is equivalent to a chordal graph G being

ptolemaic:

(1.1) Every edge in K(G) is contained in some clique tree for G.

(1.2) For every p ≥ 1, every induced path in Kp(G) is contained in some

clique tree for G.

Proof. From [4, Theorem 2.4], a graph G is ptolemaic if and only if every
nonempty intersection of two maxcliques of G is an inclusion-minimal vertex
separator of G. Recalling that the inclusion-minimal vertex separators of
G correspond exactly to the edges of a clique tree for G, and that every
maximum spanning tree of Ωw(C(G)) is a clique tree for G, it follows that
being ptolemaic is equivalent to condition (1.1). Also, the p = 1 case of
(1.2) implies (1.1).

To finish the proof, suppose G is ptolemaic, condition (1.1) holds, and
p ≥ 1 [toward proving condition (1.2)]. Let C(G) = {Q1, . . . , Qc} where
Π = Q1, . . . , Qn is an induced path in Kp(G), and let

µ = max{|V (Qi) ∩ V (Qj)| : 1 ≤ i < j ≤ n}.
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Using (1.1), let T2 be a clique tree that contains the edge Q1Q2. Each node
Qi of T2—equivalently, each maxclique Qi of G—with i 6∈ {1, 2} will contain
a vertex vi 6∈ V (Q1) ∪ V (Q2). Form a new graph G2 from G by creating a
set S2 of µ − |V (Q1) ∩ V (Q2)| + 1 new vertices that are adjacent precisely
to each other and to the vertices in Q1 ∪ Q2. For i ∈ {1, 2}, let Q2

i be the
subgraph induced by V (Qi) ∪ S2 in G2; for i 6∈ {1, 2}, let Q2

i = Qi. The
maxcliques of G2 will be precisely Q2

1, . . . , Q
2
c (since each N(vi) ∩ S2 = ∅).

To show that G2 is chordal, suppose C were a chordless cycle of G2

with length four or more such that C contained a vertex s ∈ S2 [arguing
by contradiction]. Then C would consist of edges sq1 and sq2 with q1 ∈
V (Q1)−V (Q2) and q2 ∈ V (Q2)−V (Q1), together with an induced q1-to-q2

path π within G. Because Q1Q2 is an edge of the clique tree T2, the set
V (Q1) ∩ V (Q2) will be a q1, q2-separator, and so the path π must contain
an internal vertex w ∈ V (Q1)∩ V (Q2), making w ∼ s [contradicting that C

was chordless].

To show that G2 is gem-free, suppose {a, b, c, d, e, a} induced a gem in
G2 [arguing by contradiction], where a, b, c, d, e, a is a cycle that has exactly
the two chords be and ce. If a ∈ S2, then a, b, e ∈ V (Q2

i ) where i ∈ {1, 2}
and c, d 6∈ V (Q2

i ); then there would exist a v ∈ V (Qi) with c 6∼ v 6∼ d,
which would make {v, b, c, d, e} induce a gem in G [contradicting that G is
ptolemaic]. The case d ∈ S2 is similar. If b ∈ S2, then (without loss of
generality) vertex a is in Q1 − Q2, vertex c is in Q2 − Q1, vertex d is not
in Q1 ∪ Q2, and vertices b and e are in Q1 ∩ Q2; then there would exist a
v ∈ V (Q1) ∩ V (Q2) − {e}, which would make {a, v, c, d, e} induce a gem in
G [contradicting that G is ptolemaic]. The case c ∈ S2 is similar. Note that
e 6∈ S2, since e is in at least three maxcliques of G.

Therefore, G2 is ptolemaic.

Repeat the G2 construction to form new ptolemaic graphs Gi—from
Gi−1 using µ − |V (Qi−1) ∩ V (Qi)| + 1 new vertices adjacent precisely to
each other and to the vertices in V (Qi−1) ∪ V (Qi)—whenever 3 ≤ i ≤
n. The final ptolemaic graph Gn will have maxcliques Qn

1 , . . . , Qn
c that

contain Q1, . . . , Qc respectively, where Qn
1 , . . . , Qn

n forms an induced path
Πn of maximum-weight edges of Kµ+1(Gn). Let Tn be a maximum spanning
tree of Ωw(C(Gn)) that contains Πn. This Tn will be a clique tree for Gn and,
by suppressing all the vertices in V (Gn) − V (G), this Tn will correspond to
a clique tree of G that contains the edges of Π.

The following consequence of Theorem 1 will be used several times in Sec-
tion 2.
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Lemma 2. If G is ptolemaic with p ≥ 1 and n ≥ 2 and if Q1, . . . , Qn is

an induced path in Kp(G), then there exist v0, . . . , vn ∈ V (G) such that

v0 ∈ V (Qj) exactly when j = 1, each 1 ≤ i ≤ n − 1 has vi ∈ V (Qj) exactly

when j ∈ {i, i + 1}, and vn ∈ V (Qj) exactly when j = n.

Proof. Suppose G is ptolemaic with p ≥ 1 and n ≥ 2, suppose Π =
Q1, . . . , Qn is an induced path in Kp(G) and, within this proof, identify each
Qi with V (Qi). Therefore |i − j| = 1 implies |Qi ∩ Qj| ≥ p and |i − j| > 1
implies |Qi ∩ Qj| < p. The existence of the desired v0 ∈ Q1 and vn ∈ Qn

follows from Q1 6⊆ Q2 and Qn 6⊆ Qn−1 (since maxcliques of any graph have
incomparable vertex sets). The existence of the desired v1 ∈ Q1 ∩ Q2 − Q3

follows from Q1 ∩ Q2 6⊆ Q2 ∩ Q3 (since |Q1 ∩ Q3| < p); the existence of
vn−1 ∈ Qn ∩ Qn−1 − Qn−2 follows similarly.

Suppose 1 < i < n − 1 [toward showing the existence of vi ∈ (Qi ∩
Qi+1) − (Qi−1 ∪ Qi+2)]. Suppose instead that Qi ∩ Qi+1 ⊆ Qi−1 ∪ Qi+2

[arguing by contradiction]. By Theorem 1, Π is a path in some clique
tree T for G. Because Π is an induced path, the three cardinality-p sets
Qi−1 ∩ Qi, Qi ∩ Qi+1, and Qi+1 ∩ Qi+2 are pairwise unequal, and so there
exist v ∈ Qi ∩ Qi+1 − Qi−1 and w ∈ Qi ∩ Qi+1 − Qi+2 (and so w ∈ Qi−1,
since Qi ∩ Qi+1 ⊂ Qi−1 ∪ Qi+2). There would also exist t ∈ Qi−1 − Qi,
u ∈ Qi−1∩Qi−Qi+1, and x ∈ Qi+1∩Qi+2−Qi (just as for the i = 0, 1, n−1
cases, respectively, but now for the path Qi−1, Qi, Qi+1, Qi+2). So {t, u, w},
{u, v, w}, and {v, w, x} would induce triangles (inside Qi−1, Qi and Qi+1

respectively), and u 6∼ x 6∼ t 6∼ v (for instance, u 6∼ x since u and x

are not in a common maxclique, using that T is a clique tree for G).
But then {t, u, v, w, x} would induce a gem in G [contradicting that G

is ptolemaic].

2. Representing Subgraphs of G within K(G)

For each p ≥ 1 and n ≥ 2, let 〈G, p, n〉 denote the family of all induced
subgraphs of G that are maximal with respect to both being Pn-free and
having every two nonadjacent vertices connected by at least p internally-
disjoint paths (such paths form what is sometimes called a p-skein). That
second condition is equivalent to the subgraph being either p-connected or
complete. For example, 〈G, 1, 2〉 = V (G), 〈G, 1, 3〉 = C(G), and 〈G, 1, 4〉 =
CC(G), while 〈G, 2, 4〉 consists of the 2-connected members of CC(G) together
with any bridges (edges that are not in cycles) and isolated vertices.
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If H is a connected induced subgraph of K(G) and H is a connected induced
subgraph of G, then say that H represents H in G if H is induced by the
vertices that are in the union of the maxcliques of G that correspond to
the nodes of H. In Figure 1 for instance, the path H of K(G) induced
by the nodes ghjk, jkm, and mn represents the subgraph H of G that is
induced by {g, h, j, k,m, n}. Every connected induced subgraph H of K(G)
clearly represents a connected induced subgraph H of G with H ∼= K(H),
but not conversely: for instance, V (H) = {e, h, k} is not even a union of
maxcliques of G.

Given a family FamK(G) of connected induced subgraphs of K(G) and
a family FamG of connected induced subgraphs of G, say that the members
of FamK(G) represent precisely the members of FamG if every H ∈ FamK(G)

represents an H ∈ FamG and every H ∈ FamG is represented by some H ∈
FamK(G). For instance, the nodes of K(G) always represent precisely the
maxcliques of G.

Theorem 4 will look at certain kinds of subgraphs of the clique graph of
a ptolemaic graph G and at the kinds of subgraphs of G that they represent.
For instance, Corollary 5 will show that the maxcliques of the clique graph of
a ptolemaic graph G represent precisely the members of CC(G). Theorem 4
will use the following lemma.

Lemma 3. If G is ptolemaic with p ≥ 1 and n ≥ 2 and if H ∈ 〈G, p, n〉,
then C(H) ⊆ C(G).

Proof. Suppose G is ptolemaic (and so chordal and distance-hereditary)
with p ≥ 1 and n ≥ 2, and suppose H ∈ 〈G, p, n〉 and Q ∈ C(H) − C(G)
[arguing by contradiction]; so there exists v ∈ V (G) − V (H) with Q ⊆
N(v). The maximality of H from being in 〈G, p, n〉 implies that H+v 6∈
〈G, p, n〉, and so H must be p-connected (as opposed to H being complete
with |V (H)| = |V (Q)| ≤ p). Also, H must be chordal (since G is), and so
H will have a clique tree T . Since H is p-connected, every edge QiQj of
T will have |V (Qi) ∩ V (Qj)| ≥ p (since V (Qi) ∩ V (Qj) will be a minimal
vertex separator in G), and so every node Qi of T will have |V (Qi)| ≥ p. In
particular, |V (Q)| ≥ p, which makes H+v also p-connected. Hence, H+v 6∈
〈G, p, n〉 implies that there must exist an induced path π = v1, . . . , vn in G

that has v ∈ V (π) ⊆ V (H) ∪ {v}.
Vertex v cannot be an interior vertex of π—otherwise {v1, vn} ⊂ V (H)

and H ∈ 〈G, p, n〉 would imply there is an induced v1-to-vn path within H

shorter than π [contradicting that G is distance-hereditary].
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Without loss of generality, say v = v1 and suppose for the moment that
v2 6∈ V (Q). Note that vi 6∈ V (Q) for i ≥ 3 (since V (Q) ⊂ N(v) and π

induced implies such vi not adjacent to v1). Because v2 6∈ V (Q) and Q

is a maxclique of G, there is a q ∈ V (Q) such that v2 6∼ q ∼ v1. Note
that vi 6∼ q for i ≥ 3 [otherwise some q, v1, . . . , vi, q would be an induced
cycle in G with length i + 1 ≥ 4, contradicting that G is chordal]. So
q, v1, . . . , vn is an induced q-to-vn-path of length n in G. But H ∈ 〈G, p, n〉
would imply there is an induced q-to-vn-path within H of length less than
n [again contradicting that G is distance-hereditary].

Thus v2 ∈ V (Q). As before, vi 6∈ V (Q) for i ≥ 3. Because v3 6∈ V (Q),
there is a q ∈ V (Q) such that v3 6∼ q ∼ v2. Note that vi 6∼ q when
i ≥ 4 (otherwise some q, v2, . . . , vi, q would be an induced cycle in G with
length n = i ≥ 4). But then q, v2, . . . , vn would form an induced Pn in H

[contradicting H ∈ 〈G, p, n〉].

Theorem 4. If G is ptolemaic with p ≥ 1 and n ≥ 2, then the subgraphs of

K(G) in 〈Kp(G), 1, n〉 represent precisely the subgraphs of G in 〈G, p, n+1〉.

Before proving Theorem 4, it will be helpful to illustrate it using Figure 1
and Figure 2: When p = 2 and n = 3, the six H ∈ 〈K2(G), 1, 3〉—these
are the six maxcliques of K2(G)—represent the six subgraphs of G that are
induced by {a, b, c, d, e, g, h}, {g, h, j, k, l,m}, {d, e, g, h, j, k}, {f, g}, {i, j},
and {m,n}, and these are precisely the six subgraphs H ∈ 〈G, 2, 4〉. When
p = 2 and n = 4, the subgraph H ∈ 〈K2(G), 1, 4〉 that is induced by the four
nodes degh, ghjk, jkl, and jkm represents the subgraph H ∈ 〈G, 2, 5〉 that is
induced by {d, e, g, h, j, k, l,m}. When p = 3 and n = 3, the maxclique H ∈
〈K3(G), 1, 3〉 that is formed by the edge between abde and acde represents
the subgraph H ∈ 〈G, 3, 4〉 that is induced by {a, b, c, d, e}.

Proof. Suppose G is ptolemaic (and so chordal and distance-hereditary)
with p ≥ 1 and n ≥ 2.

First suppose H ∈ 〈Kp(G), 1, n〉 and H represents a subgraph H of G.
To show H ∈ 〈G, p, n+1〉 requires showing three things: (i) that H is Pn+1-
free, (ii) that every two nonadjacent vertices of H are connected by at least
p internally-disjoint paths of H, and (iii) the maximality of H with respect
to (i) and (ii). Within this proof, identify each maxclique Q with V (Q).

To show (i), suppose instead that π = v1, v2, . . . , vn+1 is an induced
path in H [arguing by contradiction]. Observe that H ∈ 〈Kp(G), 1, n〉 is a
subgraph of an induced subgraph H∗ ∈ 〈K(G), 1, n〉 on the same node-set as
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H. For each i ∈ {1, 2, . . . , n−1}, let Qi be a maxclique of G that is a node of
H∗ such that Qi∩V (π) = {vi, vi+1}. Note that |i−j| = 1 implies Qi∩Qj 6= ∅
(because vi ∈ Qi ∩ Qi+1). If |i − j| > 1 and x ∈ Qi ∩ Qj, then x will be
adjacent to vi and vi+1 (because x ∈ Qi), to vj and vj+1 (because x ∈ Qj),
and to every vi′ with i + 1 < i′ < j (since π being induced implies that such
xvi′ would be the only possible chords in the cycle formed by edges from
E(π) ∪ {xvi+1, xvj} in the chordal graph G). Therefore |i − j| > 1 implies
Qi∩Qj = ∅ (because if x ∈ Qi∩Qj , then {x, vi, vi+1, vi+2, vi+3} would induce
a gem in G [contradicting that G is distance-hereditary]). Thus Q1, . . . , Qn

would be an induced path in H∗ [contradicting H∗ ∈ 〈K(G), 1, n〉].

To show (ii), suppose v and w are nonadjacent vertices of H and suppose
Π = Q1, . . . , Ql is an induced path in H (so |i− j| = 1 implies |Qi ∩Qj| ≥ p

and |i−j| > 1 implies |Qi∩Qj| < p) with v ∈ Q1−Q2 and w ∈ Ql−Ql−1. By
Theorem 1, Π is a subpath of some clique tree for G. Therefore if i < j < k

and x ∈ Qi ∩ Qk, then x ∈ Qj . Hence, for each 1 ≤ i ≤ l − 1, it is possible
to pick distinct vertices x(i,1), . . . , x(i,p) ∈ Qi ∩Qi+1 such that x(i,j) 6= x(i′,j′)

whenever j 6= j ′. (It is possible that x(i,j) = x(i′,j) with i 6= i′). For each
1 ≤ j ≤ p, each set {v, x(1,j), . . . , x(l,j), w} will then contain the vertices of a
v-to-w path πj in H with 2 ≤ |E(πj)| ≤ l such that πj and πj′ are internally
disjoint whenever j 6= j ′.

To show (iii), suppose that H is a proper induced subgraph of H ′ ∈
〈G, p, n + 1〉 [arguing by contradiction]. Specifically, suppose there exists a
v ∈ V (H ′) − V (H). Note that H 6⊆ N(v) in H ′, by the maximality of H ′

from being in 〈G, p, n + 1〉. Thus there exists a w ∈ V (H) with v 6∼ w. Let
π1, . . . , πp be internally-disjoint induced v-to-w paths in H ′, and let ui be
the neighbor of v along each πi. Whenever ui 6= uj , the edge uiuj must
be a chord of the cycle E(πi) ∪ E(πj) (because G is chordal and πi and πj

are induced paths). Thus {u1, . . . , up, v} will induce a complete subgraph
of G. Let Q′ be a maxclique of H ′—and so a node of H′—that contains
{u1, . . . , up, v}. Note that v 6∈ V (H) implies that Q′ is not a node of H.
Since there also exists a maxclique of H—and so a node of H—that contains
{u1, . . . , up} (but not v), H+Q′

will also be a connected subgraph of Kp(G)).
The maximality of H from being in 〈Kp(G), 1, n〉 implies that H+Q′

is not
Pn-free, and so there must be an induced path Q1, Q2, . . . , Qn of Kp(G) in
H+Q1 with Q′ = Qi where 1 ≤ i ≤ n. By Lemma 2, there would then exist
an induced path v0, v1, v2, . . . , vn in H ′ [contradicting H ′ ∈ 〈G, p, n + 1〉].

To finish the proof, suppose now that H ∈ 〈G, p, n+1〉 [toward showing
H is represented by some H ∈ 〈Kp(G), 1, n〉]. By Lemma 3, H is the union
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of maxcliques of G. Let H+ be the connected subgraph of K(G) that is
induced by the nodes that correspond to those maxcliques of G whose union
is H—so H+ represents H. Let H be the subgraph of Kp(G) induced by the
nodes of H+. Then H also represents H and is connected in Kp(G) (since
every two nonadjacent vertices of H are connected by p internally-disjoint
paths in H). To show that H is Pn-free, suppose instead that Q1, . . . , Qn is
an induced path in H [arguing by contradiction]. By Lemma 2, there would
exist an induced path v0, v1, . . . , vn in H [contradicting H ∈ 〈G, 1, n + 1〉].
The maximality of H from being in 〈G, p, n + 1〉 implies the maximality of
H that ensures H ∈ 〈Kp(G), 1, n〉.

Corollary 5. If G is ptolemaic, then the maxcliques of K(G) represent

precisely the subgraphs of G that are in CC(G).

Proof. This is the p = 1, n = 3 case of Theorem 4.

For the graph G in Figure 1 for instance, CC(G) has exactly four members,
induced by the vertex sets {a, b, c, d, e, g, h} and {d, e, f, g, h, j, k} (repre-
sented by the two K3 maxcliques of K(G)), {g, h, i, j, k, l,m} (represented
by the K4 maxclique of K(G)), and {j, k,m, n} (represented by the K2

maxclique of K(G)).

Ptolemaic graphs are not characterized by Corollary 5, as shown by
taking G to be the non-ptolemaic graph formed by the union of the length-10
cycle v1, v2, . . . , v10, v1 and the length-5 cycle v1, v3, v5, v7, v9, v1. We leave as
an open question how this might be modified into an actual characterization.

As another consequence of the p = 1 case of Theorem 4, the clique graph

K(G) of a connected ptolemaic graph G is complete—equivalently, K(G) is
P3-free—if and only if G is P4-free. Such P4-free ptolemaic (equivalently,
P4-free chordal) graphs have been well-studied under various names in the
literature, including ‘trivially perfect,’ ‘nested interval,’ ‘hereditary upper
bound,’ and ‘quasi-threshold’ graphs; see [6, section 7.9].

For any graph G, the diameter of G, denoted diamG, is the maximum
distance between vertices in G. If G is distance-hereditary, then diamG ≤ k

if and only if G is Pk+2-free. (The equivalence fails for graphs that are not
distance-hereditary; for instance, diamC5 = 2 and yet C5 contains induced
P4 subgraphs.) Reference [1] shows that G is ptolemaic if and only if K(G)
is ptolemaic. Using that, the following would be another consequence of the
p = 1 case of Theorem 4: A ptolemaic graph G always satisfies diamK(G) =
diam G − 1. (This is also a special case of the following much more general
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result from [1, 2, 8], in which K1(G) = K(G) and K i(G) = K(K i−1(G))
when i ≥ 2: A chordal graph G always satisfies diamK i(G) = diamG − i

whenever i ≤ diamG.)
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