ON RAMSEY ($K_{1,2}, C_{4}$)-MINIMAL GRAPHS

Tomáš Vetrík
School of Mathematical Sciences
University of KwaZulu-Natal
Durban, South Africa
e-mail: tomas.vetrik@gmail.com

Lyra Yulianti and Edy Tri Baskoro
Combinatorial Mathematics Research Division
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung
Bandung, Indonesia
e-mail: lyra@students.itb.ac.id
e-mail: ebaskoro@math.itb.ac.id

Abstract

For graphs F, G and H, we write $F \rightarrow(G, H)$ to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H. The graph F is Ramsey (G, H)-minimal if $F \rightarrow(G, H)$ but $F^{*} \rightarrow(G, H)$ for any proper subgraph $F^{*} \subset F$. We present an infinite family of Ramsey $\left(K_{1,2}, C_{4}\right)$-minimal graphs of any diameter ≥ 4.

Keywords: Ramsey-minimal graph, edge coloring, diameter of a graph. 2010 Mathematics Subject Classification: 05C55, 05D10.

1. Introduction

All graphs considered in this paper are finite, undirected, without loops and multiple edges. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. The distance $d_{G}(u, v)$ between two vertices u and v in a graph G is the length of the shortest path connecting them. The eccentricity of a vertex u is the greatest distance between u and any other vertex in G. The diameter
of a connected graph G is the maximum distance between two vertices in G. If G contains vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and edges $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{1}, v_{1} v_{3}$, we say that the edge $v_{1} v_{3}$ lies inside 4 -cycle $v_{1} v_{2} v_{3} v_{4}$.

Let F, G and H be graphs. We say that F contains G if F contains a subgraph isomorphic to G. We write $F \rightarrow(G, H)$ if whenever each edge of F is colored either red or blue, then F contains a red copy of G or a blue copy of H. A graph F is Ramsey (G, H)-minimal if $F \rightarrow(G, H)$ but $F^{*} \nrightarrow(G, H)$ for any proper subgraph $F^{*} \subset F$. The class of all Ramsey (G, H)-minimal graphs is denoted by $\mathcal{R}(G, H)$.

Numerous papers study the problem of determining the set $\mathcal{R}(G, H)$. Burr, Erdös and Lovász [5] showed that $\mathcal{R}\left(K_{1,2}, K_{1,2}\right)=\left\{K_{1,3}, C_{2 n+1}\right\}$ where $n \geq 1$. Later, Burr et al. [4] proved that if m, n are odd, then $\mathcal{R}\left(K_{1, m}, K_{1, n}\right)=\left\{K_{1, m+n-1}\right\}$. All graphs belonging to $\mathcal{R}\left(2 K_{2}, K_{1, n}\right)$ for $n \geq 3$ were presented by Mengersen and Oeckermann [7]. Borowiecki, Hałuszczak and Sidorowicz [2] determined the class $\mathcal{R}\left(K_{1,2}, K_{1, n}\right)$ for $n \geq 3$.

Luczak [6] proved that if G is a forest other than a matching and H is a graph containing at least one cycle, then $\mathcal{R}(G, H)$ is infinite. It follows that the set $\mathcal{R}\left(K_{1,2}, C_{n}\right)$ is infinite for any $n \geq 3$. Borowiecki, Schiermeyer and Sidorowicz [3] found all graphs in $\mathcal{R}\left(K_{1,2}, C_{3}\right)$. Recently, Baskoro, Yulianti and Assiyatun [1] gave a family of graphs belonging to $\mathcal{R}\left(K_{1,2}, C_{4}\right)$, where an infinite family of Ramsey ($K_{1,2}, C_{4}$)-minimal graphs was stated only for diameter 2. We present an infinite class of Ramsey ($K_{1,2}, C_{4}$)-minimal graphs for any diameter ≥ 4.

2. Graphs of Diameter 4

We define some classes of graphs. Let $t \geq 6$ be an even integer. Let $G(t)$ be a graph with the vertex set $V(G(t))=\left\{v, v_{1}, v_{2}, \ldots, v_{t}=v_{0}\right\}$ and with the edge set $E(G(t))=\left\{v v_{2 i}: i=1,2, \ldots, \frac{t}{2}\right\} \cup\left\{v_{j} v_{j+1}: j=0,1, \ldots, t-1\right\}$.

Let $A_{1}(t)$ be a graph with $V\left(A_{1}(t)\right)=V(G(t)) \cup\left\{v^{\prime}, v_{0}^{\prime}\right\}$ and $E\left(A_{1}(t)\right)=$ $E(G(t)) \cup\left\{v v_{1}, v v_{0}^{\prime}, v_{0} v_{0}^{\prime}, v^{\prime} v_{0}, v^{\prime} v_{1}, v_{2} v_{4}\right\}$.
Let $A_{2}(t)$ be a graph with $V\left(A_{2}(t)\right)=V(G(t)) \cup\left\{v_{1}^{\prime}, v_{p}^{\prime}\right\}$ for odd $p \in$ $\{3,5, \ldots, t-1\}$ and $E\left(A_{2}(t)\right)=E(G(t)) \cup\left\{v_{0} v_{1}^{\prime}, v_{1}^{\prime} v_{2}, v_{p-1} v_{p}^{\prime}, v_{p}^{\prime} v_{p+1}\right\}$.

Let $A_{3}(t)$ be a graph with $V\left(A_{3}(t)\right)=V(G(t)) \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}\right\}$ and $E\left(A_{3}(t)\right)=$ $E(G(t)) \cup\left\{v v_{3}, v v_{2}^{\prime}, v_{2} v_{2}^{\prime}, v_{0} v_{1}^{\prime}, v_{1}^{\prime} v_{2}\right\}$.

We show that $A_{1}(t), A_{2}(t)$ and $A_{3}(t)$ are Ramsey $\left(K_{1,2}, C_{4}\right)$-minimal graphs.

Assertion 1. $A_{1}(t) \in \mathcal{R}\left(K_{1,2}, C_{4}\right)$.
Proof. First we prove that $A_{1}(t) \rightarrow\left(K_{1,2}, C_{4}\right)$. Consider any red-blue coloring of the edges of $A_{1}(t)$. Suppose that there is no red copy of $K_{1,2}$ in the coloring. Since the edges $v v_{0}, v v_{1}, v v_{2}, v_{0} v_{1}$ and $v_{2} v_{4}$ lie inside 4 -cycles, we can not color them by red, because otherwise, we would have blue copies of C_{4} in our coloring. We must color by red the edge $v_{1} v_{2}$ to avoid blue 4 -cycle $v v_{0} v_{1} v_{2}$. Next, we must color by red the edge $v^{\prime} v_{0}$ to avoid blue 4 -cycle $v v_{0} v^{\prime} v_{1}$ and the edge $v v_{0}^{\prime}$ to avoid blue 4 -cycle $v v_{0}^{\prime} v_{0} v_{1}$. Then all the edges $v v_{i}, i=0,2, \ldots, t-2$ must be blue. It follows that to avoid blue 4 -cycles $v v_{j} v_{j+1} v_{j+2}, j=2,4, \ldots, t-4$, the edges $v_{j+1} v_{j+2}$ must be red and $v_{j} v_{j+1}$ are blue. But since $v_{t-3} v_{t-2}$ and $v^{\prime} v_{0}$ are red, we are not able to avoid blue 4 -cycle $v v_{t-2} v_{t-1} v_{0}$ which means that $A_{1}(t) \rightarrow\left(K_{1,2}, C_{4}\right)$.

Now let us show that $A_{1}^{*}(t) \nrightarrow\left(K_{1,2}, C_{4}\right)$ for the graph $A_{1}^{*}(t) \simeq A_{1}(t) \backslash$ $\{e\}$, where e is any fixed edge of $A_{1}(t)$. Let $e=v_{l} v_{l+1}, l=2,3, \ldots, t-1$. We can color by red the edges $v v_{0}^{\prime}, v^{\prime} v_{0}$ and $v_{i} v_{i+1}$, where $i=1,3, \ldots$, $l-1 ; l+2, l+4, \ldots, t-2$ if l is even, and $i=1,3, \ldots, l-2 ; l+1, l+3, \ldots$, $t-2$ if l is odd. We color by blue all the edges of $A_{1}^{*}(t)$ that are not colored by red.

If $e=v v_{l}, l=2,4, \ldots, t$, color by red the edges $v v_{0}^{\prime}, v^{\prime} v_{0}, v_{1} v_{2}$ and $v_{i} v_{i+1}, i=3,5, \ldots, l-3 ; l+2, l+4, \ldots, t-2$. If $e=v v_{0}^{\prime}, v_{0} v_{0}^{\prime}$ or $v_{0} v_{1}$, the edges colored by red are $v v_{0}$ and $v_{i} v_{i+1}$, where $i=1,3, \ldots, t-3$. If $e=v v_{1}, v_{1} v_{2}$ or $v_{2} v_{4}$, we can color by red $v^{\prime} v_{1}, v_{0} v_{0}^{\prime}, v v_{2}$ and $v_{i} v_{i+1}, i=4,6, \ldots, t-2$. Finally, if $e=v^{\prime} v_{0}$ or $v^{\prime} v_{1}$, we color by red $v v_{4}, v_{0} v_{1}$ and $v_{i} v_{i+1}, i=6$, $8, \ldots, t-2$. The other edges will be colored by blue. These colorings of $A_{1}^{*}(t)$ contain neither a red copy of $K_{1,2}$ nor a blue copy if C_{4}. The proof is complete.

Assertion 2. $A_{2}(t) \in \mathcal{R}\left(K_{1,2}, C_{4}\right)$.
Proof. Let us show that $A_{2}(t) \rightarrow\left(K_{1,2}, C_{4}\right)$. We consider any red-blue coloring of the edges of $A_{2}(t)$ such that there is no red copy of $K_{1,2}$ in the coloring. In order to avoid blue 4 -cycles containing at least one of the vertices $v_{1}, v_{1}^{\prime}, v_{p}$ or v_{p}^{\prime}, we must color by red one of the edges $v_{i} v, v_{i} v_{1}, v_{i} v_{1}^{\prime}$ for $i=0,2$ and one of the edges $v_{j} v, v_{j} v_{p}, v_{j} v_{p}^{\prime}$ for $j=p-1, p+1$. Note that if $p=3$ or $p=t-1$, we must color by red the edge $v v_{2}$ or $v v_{0}$. There can be at most one red edge $v v_{i}, i \in\{2,4, \ldots, t\}$ in our coloring. It can be seen that if all the edges $v v_{i}, i=2,4, \ldots, p-1$ are blue, we can not avoid blue 4 -cycle $v v_{j} v_{j+1} v_{j+2}$ for some $j \in\{2,4, \ldots, p-3\}$, and if all the edges
$v v_{i}, i=p+1, p+3, \ldots, t$ are blue, it is not possible to avoid blue 4-cycle $v v_{j} v_{j+1} v_{j+2}$ for a $j \in\{p+1, p+3, \ldots, t-2\}$. Therefore, $A_{2}(t) \rightarrow\left(K_{1,2}, C_{4}\right)$.

To prove the minimality of $A_{2}(t)$, consider the graph $A_{2}^{*}(t) \simeq A_{2}(t) \backslash\{e\}$ for any fixed edge $e \in E\left(A_{2}(t)\right)$. Let $e=v_{l} v_{l+1}, l=0,1, \ldots, p$. We can color by red the edges $v v_{0}, v_{p}^{\prime} v_{p+1}, v_{i} v_{i+1}, i=p+2, p+4, \ldots, t-3$ and $v_{j} v_{j+1}$, where $j=1,3, \ldots, l-1 ; l+2, l+4, \ldots, p-1$ if l is even, and $j=1,3, \ldots, l-2 ; l+1, l+3, \ldots, p-1$ if l is odd. If $e=v v_{l}, l=2,4, \ldots, p+1$, the edges colored by red are $v v_{0}, v_{1}^{\prime} v_{2}, v_{p}^{\prime} v_{p+1}$ and $v_{i} v_{i+1}, i=3,5, \ldots, l-$ $3 ; l+2, l+4, \ldots, p-1 ; p+2, p+4, \ldots, t-3$. The rest of the edges of $A_{2}^{*}(t)$ will be colored by blue. There is no red copy of $K_{1,2}$ and no blue copy of C_{4} in these colorings. The cases $e=v_{0} v_{1}^{\prime}, v_{1}^{\prime} v_{2}, v_{p-1} v_{p}^{\prime}, v_{p}^{\prime} v_{p+1}, v_{j} v_{j+1}, j=$ $p+1, p+2, \ldots, t-1$ or $e=v v_{i}, i=p+3, p+5, \ldots, t$ are similar.

Assertion 3. $A_{3}(t) \in \mathcal{R}\left(K_{1,2}, C_{4}\right)$.
Proof. We show that $A_{3}(t) \rightarrow\left(K_{1,2}, C_{4}\right)$. Let us consider any red-blue coloring of $A_{3}(t)$. Assume there is no red $K_{1,2}$ in the coloring. We can not color by red the edges $v v_{2}$ and $v v_{3}$, because they lie inside 4 -cycles $v v_{2}^{\prime} v_{2} v_{3}$ and $v v_{2} v_{3} v_{4}$. We also can not color by red the edges $v_{2} v_{2}^{\prime}$ and $v_{2} v_{3}$, because then, we would not be able to avoid blue 4 -cycle $v v_{0} v_{1} v_{2}, v v_{0} v_{1}^{\prime} v_{2}$ or $v_{0} v_{1} v_{2} v_{1}^{\prime}$. It follows that to avoid blue 4 -cycle $v v_{2}^{\prime} v_{2} v_{3}$, we must color by red the edge $v v_{2}^{\prime}$. Then the edges $v v_{i}, i=2,4, \ldots, t$ must be blue. Consequently, if we want to avoid blue cycles $v v_{0} v_{1} v_{2}$ and $v v_{0} v_{1}^{\prime} v_{2}$, we must color by red either the edges $v_{0} v_{1}, v_{1}^{\prime} v_{2}$ or the edges $v_{0} v_{1}^{\prime}, v_{1} v_{2}$. The edges $v_{j} v_{j+1}, j=$ $2,3, \ldots, t-3$ must be colored alternatingly by blue and red. It follows that we can not avoid blue 4 -cycle $v v_{t-2} v_{t-1} v_{t}$. Hence, $A_{3}(t) \rightarrow\left(K_{1,2}, C_{4}\right)$.

In order to prove the minimality of $A_{3}(t)$ we consider $A_{3}^{*}(t) \simeq A_{3}(t) \backslash\{e\}$, where e is any fixed edge of $A_{3}(t)$. Let $e=v_{l} v_{l+1}, l=0,1, \ldots, t-1$. We can color by red the edges $v v_{2}^{\prime}, v_{0} v_{1}^{\prime}$ and $v_{i} v_{i+1}$, where $i=1,3, \ldots, l-1 ; l+2, l+$ $4, \ldots, t-2$ if l is even (where $i=1,3, \ldots, l-2 ; l+1, l+3, \ldots, t-2$ if l is odd). If $e=v v_{l}, l=2,4, \ldots, t$, the edges colored by red are $v v_{2}^{\prime}, v_{0} v_{1}^{\prime}, v_{1} v_{2}$ and $v_{i} v_{i+1}, i=1,3, \ldots, l-3 ; l+2, l+4, \ldots, t-2$. If $e=v v_{3}, v v_{2}^{\prime}$ or $v_{2} v_{2}^{\prime}$, color by red $v v_{2}, v_{0} v_{1}^{\prime}$ and $v_{i} v_{i+1}$, where $i=4,6, \ldots, t-2$, and if $e=v_{0} v_{1}^{\prime}$ or $v_{1}^{\prime} v_{2}$, color by red $v v_{0}, v_{2} v_{2}^{\prime}$ and $v_{i} v_{i+1}, i=3,5, \ldots, t-3$. The other edges will be colored by blue. The colorings of $A_{3}^{*}(t)$ contain neither a red $K_{1,2}$ nor a blue C_{4}. This finishes the proof.

It is easy to verify that the graphs $A_{i}(t), i=1,2,3$ have diameter 4 for $t \geq 8$, and 3 if $t=6$.

3. Auxiliary Results

Let us introduce Definitions 1 and 2.
Definition 1. Let F be a graph with $U \subset V(F)$. For any given graphs G and H, provided that the vertices in U are not incident to red edges, we write $F \rightarrow(G(U), H)$ to mean that any red-blue coloring of the edges of F contains a red copy of G or a blue copy of H.

Definition 2. Let $U_{0} \subset V(F)$ where $\left|U_{0}\right|=p$. For $i \in\{0,1, \ldots, p-1\}$ a graph F is Ramsey $\left(G\left(U_{0}\right)_{i}, H\right)$-minimal if
(i) $F \rightarrow\left(G\left(U_{i}\right), H\right)$, where U_{i} is any subset of U_{0} such that $\left|U_{i}\right|=p-i$,
(ii) $F^{*} \nrightarrow\left(G\left(U_{i}\right), H\right)$ for any proper subgraph $F^{*} \subset F$,
(iii) $F \nrightarrow\left(G\left(U_{i+1}\right), H\right)$, where U_{i+1} is any subset of U_{i} such that $\left|U_{i+1}\right|=$ $p-i-1$.

Vertices in U_{0} will be called roots of F and the class of all Ramsey $\left(G\left(U_{0}\right)_{i}, H\right)$ minimal graphs will be denoted by $\mathcal{R}\left(G\left(U_{0}\right)_{i}, H\right)$.

If F is Ramsey $\left(G\left(U_{0}\right)_{0}, H\right)$-minimal, we write $F \in \mathcal{R}\left(G\left(U_{0}\right), H\right)$. Particularly, for $U_{0}=\emptyset, F$ is a Ramsey (G, H)-minimal graph.

We need to define the following families of graphs:
$L_{1}(t)$ is a graph with $V\left(L_{1}(t)\right)=V(G(t)) \cup\left\{v^{\prime}\right\}$ and $E\left(L_{1}(t)\right)=$ $E(G(t)) \cup\left\{v v_{1}, v^{\prime} v_{0}, v^{\prime} v_{1}, v_{2} v_{4}\right\}$. Let us remind that $G(t)$ is defined for an even integer $t \geq 6$.
$L_{2}(t)$ is a graph with $V\left(L_{2}(t)\right)=V(G(t)) \cup\left\{v_{1}^{\prime}\right\}$ and $E\left(L_{2}(t)\right)=$ $E(G(t)) \cup\left\{v_{0} v_{1}^{\prime}, v_{1}^{\prime} v_{2}\right\}$.
$L_{3}(t)$ is a graph with $V\left(L_{3}(t)\right)=V(G(t)) \cup\left\{v_{0}^{\prime}\right\}$ and $E\left(L_{3}(t)\right)=$ $E(G(t)) \cup\left\{v v_{1}, v v_{0}^{\prime}, v_{0} v_{0}^{\prime}\right\}$.
$M_{2}(t)=G(t)$ and $M_{3}(t)$ is a graph with $V\left(M_{3}(t)\right)=V(G(t))$ and $E\left(M_{3}(t)\right)=E(G(t)) \backslash\left\{v_{0} v_{1}, v_{1} v_{2}\right\} \cup\left\{v v_{1}, v_{1} v_{4}, v v_{5}\right\}$.
Let $s \geq 5$ be odd. $M_{1}(s)$ is a graph with the vertex set $V\left(M_{1}(s)\right)=\left\{v, v_{1}\right.$, $\left.v_{2}, \ldots, v_{s}=v_{0}\right\}$ and with the edge set $E\left(M_{1}(s)\right)=\left\{v v_{i}, i=1,2, \ldots, s\right\}$ $\cup\left\{v_{j} v_{j+1}, j=1,2, \ldots, s-1\right\}$.

We prove some lemmas characterizing the graphs defined above.
Lemma 1. (i) Let $t \geq 8$ and $p \in\{6,8, \ldots, t-2\}$. Then $L_{1}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{p}\right)\right.$, C_{4}).
(ii) Let $t \geq 10$ and $r, s \in\{6,8, \ldots, t-2\}, r \neq s$. Then $L_{1}(t) \in \mathcal{R}\left(K_{1,2}\right.$ $\left.\left(v_{r}, v_{s}\right)_{1}, C_{4}\right)$.

Proof. (i) First we show that $L_{1}(t) \rightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$ for even integers t, p, where $t \geq 8$ and $p \in\{6,8, \ldots, t-2\}$. Provided that there are no red edges incident to the vertex v_{p}, let us consider any red-blue coloring of the edges of $L_{1}(t)$ such that we have no red copy of $K_{1,2}$ in the coloring. Since the edges $v v_{1}, v v_{2}, v_{0} v_{1}$ and $v_{2} v_{4}$ lie inside 4 -cycles, we can not color them by red, because then, we would have blue copies of C_{4} in our coloring. We must color by red one of the edges $v v_{0}, v_{1} v_{2}$ and one of the edges $v v_{4}, v_{1} v_{2}$ to avoid blue 4 -cycles $v v_{0} v_{1} v_{2}$ and $v v_{1} v_{2} v_{4}$, which means that $v_{1} v_{2}$ must be red in any case. Consequently, we color by red one of the edges $v v_{4}, v_{3} v_{4}$ and one of the edges $v v_{0}, v^{\prime} v_{0}$ to avoid blue 4-cycles $v v_{2} v_{3} v_{4}$ and $v v_{0} v^{\prime} v_{1}$.

Since there can be at most one red edge $v v_{i}, i \in\{4,6 \ldots, t\}, i \neq p$, without lose of generality we can assume that all the edges $v v_{j}, j=4,6, \ldots, p-2$ are blue. In order to avoid blue 4 -cycles $v v_{j} v_{j+1} v_{j+2}, j=2,4, \ldots, p-4$, we must color the edges $v_{j+1} v_{j+2}$ by red. Clearly, the edges $v_{j} v_{j+1}$ are blue. Then, since $v_{p-3} v_{p-2}$ is red and no red edge can be incident to v_{p}, we have blue 4 -cycle $v v_{p-2} v_{p-1} v_{p}$ in our coloring. Hence, $L_{1}(t) \rightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$.

Now we prove that $L_{1}^{*}(t) \nrightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$, where $L_{1}^{*}(t) \simeq L_{1}(t) \backslash\{e\}$ for any fixed edge $e \in E\left(L_{1}(t)\right)$. Let $e=v_{l} v_{l+1}, l=2,3, \ldots, p-1$. The edges colored by red are $v v_{0}, v_{i} v_{i+1}, i=p+1, p+3, \ldots, t-3$ and $v_{j} v_{j+1}$, where $j=1,3, \ldots, l-1 ; l+2, l+4, \ldots, p-2$ if l is even, and $j=1,3, \ldots, l-2$; $l+1, l+3, \ldots, p-2$ if l is odd.

If $e=v v_{l}, l=2,4, \ldots, p$, we can color by red the edges $v v_{0}, v_{1} v_{2}, v_{i} v_{i+1}$, $i=3,5, \ldots, l-3 ; l+2, l+4, \ldots, p-2 ; p+1, p+3, \ldots, t-3$. If $e=v v_{0}, v v_{1}, v^{\prime} v_{0}$ or $v^{\prime} v_{1}$, color by red the edges $v v_{p-2}$ and $v_{i} v_{i+1}$, where $i=1,3, \ldots, p-5$; $p+1, p+3, \ldots, t-1$. If $e=v_{0} v_{1}$ or $v_{1} v_{2}$, the edges colored by red are $v v_{1}$ and $v_{i} v_{i+1}, i=2,4, \ldots, p-2 ; p+1, p+3, \ldots, t-1$. If $e=v_{2} v_{4}$, we color by red $v^{\prime} v_{1}, v v_{2}$ and $v_{i} v_{i+1}, i=4,6, \ldots, p-2 ; p+1, p+3, \ldots, t-1$. The rest of the edges will be colored by blue. If $e=v_{l} v_{l+1}, l=p, p+1, \ldots, t-1$ or $e=v v_{k}, k=p+2, p+4, \ldots, t-2$, we can analogously show that there exists a red-blue coloring of $L_{1}^{*}(t)$ containing neither a red $K_{1,2}$ nor a blue C_{4} such that there is no red edge incident to the vertex v_{p}.

Clearly, $L_{1}(t) \nrightarrow\left(K_{1,2}, C_{4}\right)$, because $L_{1}(t) \subset A_{1}(t)$. Hence, $L_{1}(t) \in$ $\mathcal{R}\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$.
(ii) From the proof of part (i) we get $L_{1}(t) \rightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$ for $p \in$ $\{6,8, \ldots, t-2\}, L_{1}^{*}(t) \nrightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$ for $L_{1}^{*}(t) \simeq L_{1}(t) \backslash\{e\}$, where e is any fixed edge of $L_{1}(t)$, and $L_{1}(t) \leftrightarrow\left(K_{1,2}, C_{4}\right)$. This shows that for $t \geq 10$ one has $L_{1}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{r}, v_{s}\right)_{1}, C_{4}\right)$, where $r, s \in\{6,8, \ldots, t-2\}, r \neq s$. The proof is complete.

Lemma 2. (i) Let $t \geq 6$ and $p \in\{4,6, \ldots, t-2\}$. Then $L_{2}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{p}\right)\right.$, $\left.C_{4}\right)$.
(ii) Let $t \geq 8$ and $r, s \in\{4,6, \ldots, t-2\}, r \neq s$. Then $L_{2}(t) \in \mathcal{R}\left(K_{1,2}\right.$ $\left.\left(v_{r}, v_{s}\right)_{1}, C_{4}\right)$.

Proof. (i) We prove that $L_{2}(t) \rightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$. Consider any red-blue coloring of the edges of $L_{2}(t)$ such that there is no red edge incident to the vertex v_{p}. Assume that we have no red $K_{1,2}$ in the coloring. We must color by red one of the edges $v_{i} v, v_{i} v_{1}, v_{i} v_{1}^{\prime}$ for $i=0,2$ to avoid blue 4 -cycles containing at least one of the vertices v_{1}, v_{1}^{\prime}. Note that there can be at most one red edge $v v_{i}, i \in\{2,4, \ldots, t\}, i \neq p$ in our coloring. It is easy to show that if all the edges $v v_{i}, i=2,4, \ldots, p-2$ are blue, we are not able to avoid blue 4 -cycle $v v_{j} v_{j+1} v_{j+2}$ for some $j \in\{2,4, \ldots, p-2\}$, and if $v v_{i}, i=p+2, p+4, \ldots, t$ are blue, we can not avoid blue 4 -cycle $v v_{j} v_{j+1} v_{j+2}$ for a $j \in\{p, p+2, \ldots, t-2\} . L_{2}(t) \rightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$.

Consider $L_{2}^{*}(t) \simeq L_{2}(t) \backslash\{e\}$ for any fixed edge $e \in E\left(L_{2}(t)\right)$. We show that $L_{2}^{*}(t) \nrightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$. Let $e=v_{l} v_{l+1}, l=0,1, \ldots, p-1$. We can color by red the edges $v v_{0}, v_{i} v_{i+1}, i=p+1, p+3, \ldots, t-3$ and the edges $v_{j} v_{j+1}$, where $j=1,3, \ldots, l-1 ; l+2, l+4, \ldots, p-2$ if l is even, and $j=1,3, \ldots, l-2 ; l+1, l+3, \ldots, p-2$ if l is odd. If $e=v v_{l}, l=2,4, \ldots, p$, the edges colored by red are $v v_{0}, v_{1} v_{2}, v_{i} v_{i+1}, i=3,5, \ldots, l-3 ; l+2, l+4, \ldots$, $p-2 ; p+1, p+3, \ldots, t-3$. The other edges are colored by blue. The cases $e=v_{0} v_{1}^{\prime}, v_{1}^{\prime} v_{2}, v_{l} v_{l+1}, l=p, p+1 \ldots, t-1$ and $e=v v_{k}, k=p+2, p+4, \ldots, t$ are similar.

Finally, since $L_{2}(t) \subset A_{2}(t)$, it is evident that $L_{2}(t) \nrightarrow\left(K_{1,2}, C_{4}\right)$.
(ii) The proof follows from the previous part.

Lemma 3. (i) Let $t \geq 6$ and $p=0$ or $t-2$. Then $L_{3}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$. (ii) Let $t \geq 6$. Then $L_{3}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{0}, v_{t-2}\right)_{1}, C_{4}\right)$.

The proof is analogous to the proofs of Lemma 1 and Lemma 2.
Lemma 4. Let $s \geq 5$. Then $M_{1}(s) \in \mathcal{R}\left(K_{1,2}\left(v_{1}, v_{s}\right), C_{4}\right)$.
Proof. Let us show that $M_{1}(s) \rightarrow\left(K_{1,2}\left(v_{1}, v_{s}\right), C_{4}\right)$. Provided that the vertices v_{1}, v_{s} are not incident to red edges, we consider any red-blue coloring of $M_{1}(s)$ such that there is no red copy of $K_{1,2}$ in the coloring. If we color by red some edge $v v_{i}, i \in\{2,3, \ldots, s-1\}$, we have blue 4 -cycle $v v_{i-1} v_{i} v_{i+1}$. Therefore, all the edges $v v_{i}, i=1,2, \ldots, s$ must be blue. In order to avoid
blue 4 -cycles $v v_{j-1} v_{j} v_{j+1}$ and $v v_{j} v_{j+1} v_{j+2}, j=2,4, \ldots, s-3$, the edges $v_{j} v_{j+1}$ must be red. Then we are not able to avoid blue 4 -cycle $v v_{s-2} v_{s-1} v_{s}$.

We prove that $M_{1}^{*}(s) \nrightarrow\left(K_{1,2}\left(v_{1}, v_{s}\right), C_{4}\right)$, where $M_{1}^{*}(s) \simeq M_{1}(s) \backslash\{e\}$ for any fixed edge $e \in E\left(M_{1}(s)\right)$. Let $e=v_{l} v_{l+1}, l=1,2, \ldots, s-1$. We can color by red the edges $v_{i} v_{i+1}$, where $i=2,4, \ldots, l-2 ; l+1, l+3, \ldots, s-2$ if l is even, and $i=2,4, \ldots, l-1 ; l+2, l+4, \ldots, s-2$ if l is odd. Let $e=v v_{l}, l=3,4, \ldots, s$. The edges colored by red are $v v_{l-1}$ and $v_{i} v_{i+1}$, where $i=2,4, \ldots, l-4, l+1, l+3, \ldots, s-2$ if l is even, and $i=2,4, \ldots, l-3$, $l+2, l+4, \ldots, s-2$ if l is odd. We color by blue all the edges of $M_{1}^{*}(s)$ that are not colored by red. The cases $e=v v_{1}$ or $v v_{2}$ can be handled similarly.

Finally, $M_{1}(s) \nrightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$ for $p=1$ (for $\left.p=s\right)$, since there exists a red-blue coloring of $M_{1}(s)$ containing neither a red $K_{1,2}$ nor a blue C_{4} such that there is no red edge incident to v_{p}. It is enough to color by red the edges $v_{i} v_{i+1}$, where $i=2,4, \ldots, s-1$ (where $i=1,3, \ldots, s-2$) and color by blue the rest of the edges. This finishes the proof.

Lemma 5. Let $t \geq 6$. Then $M_{3}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{0}, v_{2}\right), C_{4}\right)$.
Proof. Let us consider any red-blue coloring of $M_{3}(t)$ such that the vertices v_{0}, v_{2} are not incident to any red edges. We show that $M_{3}(t) \rightarrow$ $\left(K_{1,2}\left(v_{0}, v_{2}\right), C_{4}\right)$. Suppose that we have no red $K_{1,2}$ in the coloring. We can not color by red the edges $v v_{4}$ and $v v_{5}$, because they lie inside 4 -cycles $v v_{1} v_{4} v_{5}$ and $v v_{4} v_{5} v_{6}$. It follows that we must color by red the edge $v_{3} v_{4}$ to avoid blue cycle $v v_{2} v_{3} v_{4}$, and the edge $v v_{1}$ to avoid blue cycle $v v_{1} v_{4} v_{5}$. But then, it is not possible to avoid blue 4 -cycle $v v_{j} v_{j+1} v_{j+2}$ for some $j \in\{4,6, \ldots, t-2\}$, which shows that $M_{3}(t) \rightarrow\left(K_{1,2}\left(v_{0}, v_{2}\right), C_{4}\right)$.

Now consider the graph $M_{3}^{*}(t) \simeq M_{3}(t) \backslash\{e\}$, where e is any fixed edge of $M_{3}(t)$. Let us prove that $M_{3}^{*}(t) \nrightarrow\left(K_{1,2}\left(v_{0}, v_{2}\right), C_{4}\right)$, Let $e=$ $v_{l} v_{l+1}, l=2,3, \ldots, t-1$. We can color by red the edges $v v_{1}$ and $v_{i} v_{i+1}$, where $i=3,5, \ldots, l-1 ; l+2, l+4, \ldots, t-2$ if l is even, and $i=3,5, \ldots, l-2$; $l+1, l+3, \ldots, t-2$ if l is odd. If $e=v v_{l}, l=2,4, \ldots, t$, the edges colored by red are $v v_{1}$ and $v_{i} v_{i+1}$, where $i=3,5, \ldots, l-3 ; l+2, l+4, \ldots, t-2$. If $e=$ $v v_{1}, v v_{5}$ or $v_{1} v_{4}$, we color by red the edges $v v_{4}$ and $v_{i} v_{i+1}, i=6,8, \ldots, t-2$. The rest of the edges will be colored by blue. The colorings of $M_{3}^{*}(t)$ contain neither a red copy of $K_{1,2}$ nor a blue copy of C_{4}.

In order to show that $M_{3}(t) \nrightarrow\left(K_{1,2}\left(v_{p}\right), C_{4}\right)$ for $p=0($ for $p=2)$ it suffices to color by red the edges $v_{i} v_{i+1}, i=2,4, \ldots, t-2$ (the edges $v v_{1}$ and $\left.v_{i} v_{i+1}, i=3,5, \ldots, t-1\right)$ and color by blue all the other edges.

Lemma 6. (i) Let $t \geq 6$ and $p \in\{2,4, \ldots, t\}$. Then $M_{2}(t) \in \mathcal{R}\left(K_{1,2}\left(v, v_{p}\right)\right.$, $\left.C_{4}\right)$.
(ii) Let $t \geq 8$ and $p \in\{4,6, \ldots, t-4\}$. Then $M_{2}(t) \in \mathcal{R}\left(K_{1,2}\left(v_{0}, v_{p}\right), C_{4}\right)$.

The proof is similar to the previous proofs.

4. Main Results

Let $n \geq 4$. Let $M_{a_{j}}, j=1,2, \ldots, k$ be any graphs with roots $r_{a_{j}, 1}, r_{a_{j}, 2}$ such that $M_{a_{j}} \in \mathcal{R}\left(K_{1,2}\left(r_{a_{j}, 1}, r_{a_{j}, 2}\right), C_{n}\right)$. Let $L_{b_{i}}, i=1,2$ be any graphs with a root $r_{b_{i}}$ such that $L_{b_{i}} \in \mathcal{R}\left(K_{1,2}\left(r_{b_{i}}\right), C_{n}\right)$ and let L be any graph with roots r_{1}, r_{2}, where $L \in \mathcal{R}\left(K_{1,2}\left(r_{1}, r_{2}\right)_{1}, C_{n}\right)$.

Let $P\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ be a graph which consists of k graphs $M_{a_{1}}, M_{a_{2}}$, $\ldots, M_{a_{k}}$, where the vertex $r_{a_{j}, 2}$ is stuck to the vertex $r_{a_{j+1}, 1}, j=1,2, \ldots$, $k-1$. A graph $C\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is defined in the same way with the only difference that $r_{a_{1}, 1}$ is stuck to $r_{a_{k}, 2}$ as well.

Finally, we define the following families of graphs:
$B_{1}\left(C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right), P\left(a_{1}, a_{2}, \ldots, a_{k_{2}}\right)\right), k_{1} \geq n+1, k_{2} \geq 1$, is a graph that consists of the graphs $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)$ and $P\left(a_{1}, a_{2}, \ldots, a_{k_{2}}\right)$, where the first root of $M_{a_{1}}$ is stuck to any root x of $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)$ and the second root of $M_{a_{k_{2}}}$ is stuck to any root y of $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)$, where $d_{C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)}(x, y)+d_{P\left(a_{1}, a_{2}, \ldots, a_{k_{2}}\right)}(x, y) \geq n+1$.
$B_{2}\left(L, P\left(a_{1}, a_{2}, \ldots, a_{k}\right)\right), k \geq n$, is a graph which consists of the graphs L and $P\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, where the first root of $M_{a_{1}}$ is stuck to the first root of L and the second root of $M_{a_{k}}$ is stuck to the second root of L.
$B_{3}\left(L_{b_{1}}, P\left(a_{1}, a_{2}, \ldots, a_{k}\right), L_{b_{2}}\right), k \geq 0$, is obtained by sticking the first root of $M_{a_{1}}$ to the root of $L_{b_{1}}$ and the second root of $M_{a_{k}}$ is stuck to the root of $L_{b_{2}}$.
$B_{4}\left(C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right), P\left(a_{1}, a_{2}, \ldots, a_{k_{2}}\right), C\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{k_{3}}^{\prime \prime}\right)\right) ; k_{1}, k_{3} \geq$ $n+1, k_{2} \geq 0$, is constructed by sticking the first root of $M_{a_{1}}$ to any root of $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)$ and the second root of $M_{a_{k_{2}}}$ is stuck to any root of $C\left(a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, \ldots, a_{k_{3}}^{\prime \prime}\right)$.
$B_{5}\left(L_{b_{1}}, P\left(a_{1}, a_{2}, \ldots, a_{k_{1}}\right), C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{2}}^{\prime}\right)\right), k_{1} \geq 0, k_{2} \geq n+1$, is obtained by sticking the first root of $M_{a_{1}}$ to the root of $L_{b_{1}}$ and the second root of $M_{a_{k_{1}}}$ is stuck to any root of $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{3}}^{\prime}\right)$.

The graphs defined above will be also denoted briefly by $B_{1}, B_{2}, \ldots, B_{5}$. The graphs $M_{a_{i}^{\prime}}, i=1,2, \ldots, k_{1}$ and $M_{a_{j}}, j=1,2, \ldots, k_{2}$ will be called seeds of B_{1}. Seeds of B_{2}, B_{3}, B_{4} and B_{5} can be defined analogously. We show that $B_{1}, B_{2}, \ldots, B_{5}$ are Ramsey $\left(K_{1,2}, C_{n}\right)$-minimal graphs.

Theorem 1. $B_{1} \in \mathcal{R}\left(K_{1,2}, C_{n}\right)$.

Proof. First let us show by contradiction that $B_{1} \rightarrow\left(K_{1,2}, C_{n}\right)$. Assume that $B_{1} \nrightarrow\left(K_{1,2}, C_{n}\right)$. Since $M_{a_{i}^{\prime}} \in \mathcal{R}\left(K_{1,2}\left(r_{a_{i}^{\prime}, 1}, r_{a_{i}^{\prime}, 2}\right), C_{n}\right), i=1,2, \ldots, k_{1}$ and $M_{a_{j}} \in \mathcal{R}\left(K_{1,2}\left(r_{a_{j}, 1}, r_{a_{j}, 2}\right), C_{n}\right), j=1,2, \ldots, k_{2}$, by part (i) of Definition 2 , we must color by red at least one edge incident to some root in $M_{a_{i}^{\prime}}$ (in $M_{a_{j}}$) to have a red-blue coloring of the edges of $M_{a_{i}^{\prime}}$ (of $M_{a_{j}}$) that contains neither a red copy of $K_{1,2}$ nor a blue copy of C_{n}. But then, we have at least $k_{1}+k_{2}$ red edges incident to roots in B_{1}. Because the number of different roots in B_{1} is $k_{1}+k_{2}-1$, there must be a red copy of $K_{1,2}$ in any coloring of B_{1}. A contradiction.

In order to prove the minimality of B_{1} it suffices to show that $B_{1}^{*} \nrightarrow$ $\left(K_{1,2}, C_{n}\right)$, where $B_{1}^{*} \simeq B_{1} \backslash\{e\}$ for any fixed edge $e \in E\left(B_{1}\right)$. Suppose $e \in$ $E\left(M_{a_{i}^{\prime}}\right)$ where $i \in\left\{1,2, \ldots, k_{1}\right\}$. (The case $e \in E\left(M_{a_{j}}\right), j \in\left\{1,2, \ldots, k_{2}\right\}$ can be handled similarly). Then $M_{a_{i}^{\prime}}^{*} \simeq M_{a_{i}^{\prime}} \backslash\{e\}$. We know that $M_{a_{i}^{\prime}}^{*} \nrightarrow$ $\left(K_{1,2}\left(r_{a_{i}^{\prime}, 1}, r_{a_{i}^{\prime}, 2}\right), C_{n}\right)$, which means that there exists a red-blue coloring of the edges of $M_{a_{i}^{\prime}}^{*}$ containing neither a red copy of $K_{1,2}$ nor a blue copy of C_{n} such that the roots $r_{a_{i}^{\prime}, 1}, r_{a_{i}^{\prime}, 2}$ are not incident to red edges in $M_{a_{i}^{\prime}}^{*}$.

From Definition 2 it follows that in any other seed of B_{1}^{*} we must color by red some edges incident to any fixed root, while the second root does not have to be incident to red edges of the seed to have a red-blue coloring of the seed containing no red $K_{1,2}$ and no blue C_{n}. Note that since the coloring contains no red $K_{1,2}$, there must be just one red edge in the seed which is incident to the fixed root.

Thus, we can color the edges of B_{1}^{*} such that every root is incident to exactly one red edge. We do not have any red copy of $K_{1,2}$ in the coloring of B_{1}^{*}. Since the number of seeds in $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)$ is $k_{1} \geq n+1$ and $d_{C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{1}}^{\prime}\right)}(x, y)+d_{P\left(a_{1}, a_{2}, \ldots, a_{k_{2}}\right)}(x, y) \geq n+1$, we do not have any blue copy of C_{n} in the coloring of B_{1}^{*} as well. This finishes the proof.

Theorem 2. $B_{2} \in \mathcal{R}\left(K_{1,2}, C_{n}\right)$.
Proof. We show that $B_{2} \rightarrow\left(K_{1,2}, C_{n}\right)$. Suppose the contrary, let $B_{2} \rightarrow$ $\left(K_{1,2}, C_{n}\right)$. Since $M_{a_{i}} \in \mathcal{R}\left(K_{1,2}\left(r_{a_{i}, 1}, r_{a_{i}, 2}\right), C_{n}\right), i=1,2, \ldots, k$ and $L \in$ $\mathcal{R}\left(K_{1,2}\left(r_{1}, r_{2}\right)_{1}, C_{n}\right)$, from part (i) of Definition 2 it follows that we must have at least one red edge incident to some root in $M_{a_{i}}$ to obtain a red-blue coloring of the edges of $M_{a_{i}}$ containing neither a red copy of $K_{1,2}$ nor a blue copy of C_{n}.

In any red-blue coloring of L that contains no red $K_{1,2}$ and no blue C_{n}, there must be at least one red edge e_{1} incident to the first root in L and at least one red edge e_{2} incident to the second root in L, where the edges e_{1}, e_{2} are not necessarily different. Because the number of different roots in B_{2} is $k+1$, there must be a root incident to at least two red edges. We have a red copy of $K_{1,2}$ in the coloring of B_{2}, a contradiction.

Let us prove that $B_{2}^{*} \nrightarrow\left(K_{1,2}, C_{n}\right)$ for $B_{2}^{*} \simeq B_{2} \backslash\{e\}$, where e is any fixed edge of B_{2}. We distinguish two cases:
a) Let $e \in E\left(M_{a_{i}}\right)$ where $i \in\{1,2, \ldots, k\}$. Then $M_{a_{i}}^{*} \simeq M_{a_{i}} \backslash\{e\}$ and $M_{a_{i}}^{*} \nrightarrow\left(K_{1,2}\left(r_{a_{i}, 1}, r_{a_{i}, 2}\right), C_{n}\right)$, which says that there exists a red-blue coloring of $M_{a_{i}}^{*}$ containing neither a red $K_{1,2}$ nor a blue C_{n}, where there are no red edges incident to the roots $r_{a_{i}, 1}, r_{a_{i}, 2}$ in $M_{a_{i}}^{*}$.

Now consider all the other seeds $M_{a_{j}}, j=1,2, \ldots, k, j \neq i$ and L. By Definition 2 , in any seed $M_{a_{j}}$ we must color by red some edges incident to any fixed root to have a red-blue coloring of $M_{a_{j}}$ that contains neither a red $K_{1,2}$ nor a blue C_{n}. The second root does not have to be incident to any red edge of $M_{a_{j}}$. Since the coloring does not contain any red $K_{1,2}$, the fixed root is incident to exactly one red edge in $M_{a_{j}}$. In the seed L, if we have exactly one red edge incident to the first root and one red edge incident to the second root, there exists a red-blue coloring of L that does not contain any red $K_{1,2}$ and any blue C_{n}.

It follows that it is possible to color the edges of B_{2}^{*} such that every root is incident to exactly one red edge, hence there is no red $K_{1,2}$ in the coloring of B_{2}^{*}. Because the number of seeds in B_{2}^{*} is $k+1 \geq n+1$, there is also no blue C_{n} in the coloring.
b) Let $e \in E(L)$. Then $L^{*} \simeq L \backslash\{e\}$ and $L^{*} \nrightarrow\left(K_{1,2}\left(r_{j}\right), C_{n}\right), j=1,2$, which means that there is a red-blue coloring of L^{*} that contains neither a red $K_{1,2}$ nor a blue C_{n}, where there is no red edge incident to r_{j} in L^{*}. Note that the other root can be incident to at most one red edge in L^{*}, otherwise we have a red $K_{1,2}$ in the coloring of L^{*}.

Consider the seeds $M_{a_{j}}, j=1,2, \ldots, k$. Analogously as in case a) it suffices to color by red exactly one edge of $M_{a_{j}}$ which is incident to any root, while the second root does not have to be incident to any red edge in $M_{a_{j}}$ to have a red-blue coloring of $M_{a_{j}}$ that contains no red $K_{1,2}$ and no blue C_{n}, Then we are able to color B_{2}^{*} such that we have neither a red $K_{1,2}$ nor a blue C_{n} in the coloring. The proof is complete.

Theorem 3. $B_{5} \in \mathcal{R}\left(K_{1,2}, C_{n}\right)$.

Proof. Let us prove by contradiction that $B_{5} \rightarrow\left(K_{1,2}, C_{n}\right)$. Because $M_{a_{i}} \in \mathcal{R}\left(K_{1,2}\left(r_{a_{i}, 1}, r_{a_{i}, 2}\right), C_{n}\right), i=1,2, \ldots, k_{1}$ (because $M_{a_{j}^{\prime}} \in \mathcal{R}\left(K_{1,2}\right.$ $\left.\left(r_{a_{j}^{\prime}, 1}, r_{a_{j}^{\prime}, 2}\right), C_{n}\right), j=1,2, \ldots, k_{2}$ and $\left.L_{b_{1}} \in \mathcal{R}\left(K_{1,2}\left(r_{b_{1}}\right), C_{n}\right)\right)$, in any redblue coloring of $M_{a_{i}}$ (of $M_{a_{j}^{\prime}}, L_{b_{1}}$) that contains no red $K_{1,2}$ and no blue C_{n}, there must be at least one red edge incident to some root in $M_{a_{i}}$ (in $\left.M_{a_{j}^{\prime}}, L_{b_{1}}\right)$. Then there are at least $k_{1}+k_{2}+1$ red edges incident to roots in B_{5}. Since the number of roots in B_{5} is $k_{1}+k_{2}$, we have a red $K_{1,2}$ in any coloring of B_{5}. A contradiction.

We show that $B_{5}^{*} \nrightarrow\left(K_{1,2}, C_{n}\right)$ for the graph $B_{5}^{*} \simeq B_{5} \backslash\{e\}$, where e is any fixed edge of B_{5}. Assume that $e \in E\left(M_{a_{i}}\right)$ where $i \in\left\{1,2, \ldots, k_{1}\right\}$. (The cases $e \in E\left(M_{a_{j}^{\prime}}\right), j \in\left\{1,2, \ldots, k_{2}\right\}$ and $e \in E\left(L_{b_{1}}\right)$ are similar.) Then $M_{a_{i}}^{*} \simeq M_{a_{i}} \backslash\{e\}$ and $M_{a_{i}}^{*} \nrightarrow\left(K_{1,2}\left(r_{a_{i}, 1}, r_{a_{i}, 2}\right), C_{n}\right)$, which means that there exists a red-blue coloring of $M_{a_{i}}^{*}$ containing neither a red $K_{1,2}$ nor a blue C_{n} such that $r_{a_{i}, 1}, r_{a_{i}, 2}$ are not incident to red edges in $M_{a_{i}}^{*}$.

In any other seed of B_{5}^{*}, if one of the roots is not incident to red edges of the seed and the second root is incident to exactly one red edge, there exists a red-blue coloring of the seed that contains neither a red $K_{1,2}$ nor a blue C_{n} (in $L_{b_{1}}^{*}$ we have just one root which is incident to one red edge of $L_{b_{1}}^{*}$).

Hence, it is possible to color the edges of B_{5}^{*} such that every root is incident to exactly one red edge and there is no red $K_{1,2}$ in the coloring of B_{5}^{*}. Because the number of seeds in $C\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{k_{2}}^{\prime}\right)$ is $k_{2} \geq n+1$, there is no blue C_{n} in the coloring as well.

Similarly as Theorem 3, we can prove the next theorem.
Theorem 4. $B_{3}, B_{4} \in \mathcal{R}\left(K_{1,2}, C_{n}\right)$.
Theorems 1-4 in combination with Lemmas 1-6 give infinite families of Ramsey ($K_{1,2}, C_{4}$)-minimal graphs.

For example, the graph $B_{3}\left(L_{m}\left(t_{1}^{\prime}\right), P\left(a_{1}, a_{2}, \ldots, a_{k}\right), L_{n}\left(t_{2}^{\prime}\right)\right)$, where $P\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ consists of the graphs $M_{a_{j}}\left(t_{j}\right), j=1,2, \ldots, k$ and $a_{j}, m, n \in$ $\{1,2,3\}$ is a Ramsey ($K_{1,2}, C_{4}$)-minimal graph. Values of the parameters $t_{1}^{\prime}, t_{2}^{\prime}, t_{j}$ follow from Lemmas 1-6.

Let $B_{3}\left(L_{m}\left(t_{1}^{\prime}\right), P\left(a_{1}, a_{2}, \ldots, a_{k}\right), L_{n}\left(t_{2}^{\prime}\right)\right)$ contains exactly r seeds $M_{2}\left(t_{j}\right), j \in\{1,2, \ldots, k\}$ such that the vertex which has degree $t_{j} / 2$ in $M_{2}\left(t_{j}\right)$ is one of the roots of $M_{2}\left(t_{j}\right)$ and let $B_{3}\left(L_{m}\left(t_{1}^{\prime}\right), P\left(a_{1}, a_{2}, \ldots, a_{k}\right), L_{n}\left(t_{2}^{\prime}\right)\right)$ also contains z seeds $L_{3}(6)$ with the root denoted by v_{4} in $L_{3}(6)$. Note
that $0 \leq r \leq k$ and $0 \leq z \leq 2$. It is easy to show that the diameter of $B_{3}\left(L_{m}\left(t_{1}^{\prime}\right), P\left(a_{1}, a_{2}, \ldots, a_{k}\right), L_{n}\left(t_{2}^{\prime}\right)\right)$ is $2 k+6-r-z$, since

- the eccentricity of the root of $L_{i}\left(t^{\prime}\right)$ is 3 for $i=1,2,3$ and any t^{\prime} except for the eccentricity of v_{4} in $L_{3}(6)$ that is equal to 2 ,
- the distance between two roots in $M_{i}(t)$ is 2 for $i=1,3$, while in $M_{2}(t)$ the roots can be adjacent.
It follows that we found an infinite class of Ramsey ($K_{1,2}, C_{4}$)-minimal graphs for every diameter ≥ 4. The problem of existence of an infinite family of Ramsey ($K_{1,2}, C_{4}$)-minimal graphs of diameter 3 remains open.

Acknowledgement

Research of the first author was supported by the VEGA Grant No. 1/2004/05 and the APVV Grants No. 20-000704 and 40-06.

References

[1] E.T. Baskoro, L. Yulianti and H. Assiyatun, Ramsey ($K_{1,2}, C_{4}$)-minimal graphs, J. Combin. Mathematics and Combin. Computing 65 (2008) 79-90.
[2] M. Borowiecki, M. Hałuszczak and E. Sidorowicz, On Ramsey-minimal graphs, Discrete Math. 286 (2004) 37-43.
[3] M. Borowiecki, I. Schiermeyer and E. Sidorowicz, Ramsey ($K_{1,2}, K_{3}$)-minimal graphs, Electronic J. Combinatorics 12 (2005) \#R20.
[4] S.A. Burr, P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, Ramseyminimal graphs for star-forests, Discrete Math. 33 (1981) 227-237.
[5] S.A. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976) 167-190.
[6] T. Łuczak, On Ramsey-minimal graphs, Electronic J. Combinatorics 1 (1994) \#R4.
[7] I. Mengersen and J. Oeckermann, Matching-star Ramsey sets, Discrete Appl. Math. 95 (1999) 417-424.

