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Abstract

For graphs F , G and H , we write F → (G, H) to mean that any
red-blue coloring of the edges of F contains a red copy of G or a blue
copy of H . The graph F is Ramsey (G, H)-minimal if F → (G, H) but
F ∗

9 (G, H) for any proper subgraph F ∗ ⊂ F . We present an infinite
family of Ramsey (K1,2, C4)-minimal graphs of any diameter ≥ 4.
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1. Introduction

All graphs considered in this paper are finite, undirected, without loops and
multiple edges. Let G be a graph with the vertex set V (G) and the edge set
E(G). The distance dG(u, v) between two vertices u and v in a graph G is
the length of the shortest path connecting them. The eccentricity of a vertex
u is the greatest distance between u and any other vertex in G. The diameter
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of a connected graph G is the maximum distance between two vertices in
G. If G contains vertices v1, v2, v3, v4 and edges v1v2, v2v3, v3v4, v4v1, v1v3,
we say that the edge v1v3 lies inside 4-cycle v1v2v3v4.

Let F , G and H be graphs. We say that F contains G if F contains
a subgraph isomorphic to G. We write F → (G,H) if whenever each edge
of F is colored either red or blue, then F contains a red copy of G or a
blue copy of H. A graph F is Ramsey (G,H)-minimal if F → (G,H) but
F ∗

9 (G,H) for any proper subgraph F ∗ ⊂ F . The class of all Ramsey
(G,H)-minimal graphs is denoted by R(G,H).

Numerous papers study the problem of determining the set R(G,H).
Burr, Erdös and Lovász [5] showed that R(K1,2,K1,2) = {K1,3, C2n+1}
where n ≥ 1. Later, Burr et al. [4] proved that if m,n are odd, then
R(K1,m,K1,n) = {K1,m+n−1}. All graphs belonging to R(2K2,K1,n) for
n ≥ 3 were presented by Mengersen and Oeckermann [7]. Borowiecki,
Ha luszczak and Sidorowicz [2] determined the class R(K1,2,K1,n) for n ≥ 3.

 Luczak [6] proved that if G is a forest other than a matching and H is a
graph containing at least one cycle, then R(G,H) is infinite. It follows that
the set R(K1,2, Cn) is infinite for any n ≥ 3. Borowiecki, Schiermeyer and
Sidorowicz [3] found all graphs in R(K1,2, C3). Recently, Baskoro, Yulianti
and Assiyatun [1] gave a family of graphs belonging to R(K1,2, C4), where an
infinite family of Ramsey (K1,2, C4)-minimal graphs was stated only for di-
ameter 2. We present an infinite class of Ramsey (K1,2, C4)-minimal graphs
for any diameter ≥ 4.

2. Graphs of Diameter 4

We define some classes of graphs. Let t ≥ 6 be an even integer. Let G(t) be
a graph with the vertex set V (G(t)) = {v, v1, v2, . . . , vt = v0} and with the
edge set E(G(t)) = {vv2i : i = 1, 2, . . . , t

2} ∪ {vjvj+1 : j = 0, 1, . . . , t − 1}.

Let A1(t) be a graph with V (A1(t)) = V (G(t))∪{v′, v′0} and E(A1(t)) =
E(G(t)) ∪ {vv1, vv′0, v0v

′

0, v
′v0, v

′v1, v2v4}.

Let A2(t) be a graph with V (A2(t)) = V (G(t)) ∪ {v′1, v
′

p } for odd p ∈
{3, 5, . . . , t − 1} and E(A2(t)) = E(G(t)) ∪ {v0v

′

1, v
′

1v2, vp−1v
′

p, v
′

pvp+1}.

Let A3(t) be a graph with V (A3(t)) = V (G(t))∪{v′1, v
′

2} and E(A3(t)) =
E(G(t)) ∪ {vv3, vv′2, v2v

′

2, v0v
′

1, v
′

1v2}.

We show that A1(t), A2(t) and A3(t) are Ramsey (K1,2, C4)-minimal
graphs.
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Assertion 1. A1(t) ∈ R(K1,2, C4).

Proof. First we prove that A1(t) → (K1,2, C4). Consider any red-blue
coloring of the edges of A1(t). Suppose that there is no red copy of K1,2 in
the coloring. Since the edges vv0, vv1, vv2, v0v1 and v2v4 lie inside 4-cycles,
we can not color them by red, because otherwise, we would have blue copies
of C4 in our coloring. We must color by red the edge v1v2 to avoid blue
4-cycle vv0v1v2. Next, we must color by red the edge v ′v0 to avoid blue
4-cycle vv0v

′v1 and the edge vv′0 to avoid blue 4-cycle vv′0v0v1. Then all
the edges vvi, i = 0, 2, . . . , t − 2 must be blue. It follows that to avoid blue
4-cycles vvjvj+1vj+2, j = 2, 4, . . . , t− 4, the edges vj+1vj+2 must be red and
vjvj+1 are blue. But since vt−3vt−2 and v′v0 are red, we are not able to
avoid blue 4-cycle vvt−2vt−1v0 which means that A1(t) → (K1,2, C4).

Now let us show that A∗

1(t) 9 (K1,2, C4) for the graph A∗

1(t) ' A1(t)\
{e}, where e is any fixed edge of A1(t). Let e = vlvl+1, l = 2, 3, . . . , t − 1.
We can color by red the edges vv′

0, v
′v0 and vivi+1, where i = 1, 3, . . . ,

l − 1; l + 2, l + 4, . . . , t − 2 if l is even, and i = 1, 3, . . . , l − 2; l + 1, l + 3, . . . ,
t− 2 if l is odd. We color by blue all the edges of A∗

1(t) that are not colored
by red.

If e = vvl, l = 2, 4, . . . , t, color by red the edges vv ′

0, v
′v0, v1v2 and

vivi+1, i = 3, 5, . . . , l−3; l+2, l+4, . . . , t−2. If e = vv ′

0, v0v
′

0 or v0v1, the edges
colored by red are vv0 and vivi+1, where i = 1, 3, . . . , t − 3. If e = vv1, v1v2

or v2v4, we can color by red v′v1, v0v
′

0, vv2 and vivi+1, i = 4, 6, . . . , t − 2.
Finally, if e = v′v0 or v′v1, we color by red vv4, v0v1 and vivi+1, i = 6,
8, . . . , t − 2. The other edges will be colored by blue. These colorings of
A∗

1(t) contain neither a red copy of K1,2 nor a blue copy if C4. The proof
is complete.

Assertion 2. A2(t) ∈ R(K1,2, C4).

Proof. Let us show that A2(t) → (K1,2, C4). We consider any red-blue
coloring of the edges of A2(t) such that there is no red copy of K1,2 in
the coloring. In order to avoid blue 4-cycles containing at least one of the
vertices v1, v

′

1, vp or v′p, we must color by red one of the edges viv, viv1, viv
′

1

for i = 0, 2 and one of the edges vjv, vjvp, vjv
′

p for j = p − 1, p + 1. Note
that if p = 3 or p = t − 1, we must color by red the edge vv2 or vv0. There
can be at most one red edge vvi, i ∈ {2, 4, . . . , t} in our coloring. It can be
seen that if all the edges vvi, i = 2, 4, . . . , p − 1 are blue, we can not avoid
blue 4-cycle vvjvj+1vj+2 for some j ∈ {2, 4, . . . , p − 3}, and if all the edges
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vvi, i = p + 1, p + 3, . . . , t are blue, it is not possible to avoid blue 4-cycle
vvjvj+1vj+2 for a j ∈ {p+1, p+3, . . . , t−2}. Therefore, A2(t) → (K1,2, C4).

To prove the minimality of A2(t), consider the graph A∗

2(t) ' A2(t)\{e}
for any fixed edge e ∈ E(A2(t)). Let e = vlvl+1, l = 0, 1, . . . , p. We can
color by red the edges vv0, v

′

pvp+1, vivi+1, i = p + 2, p + 4, . . . , t − 3 and
vjvj+1, where j = 1, 3, . . . , l − 1; l + 2, l + 4, . . . , p − 1 if l is even, and
j = 1, 3, . . . , l−2; l+1, l+3, . . . , p−1 if l is odd. If e = vvl, l = 2, 4, . . . , p+1,
the edges colored by red are vv0, v

′

1v2, v
′

pvp+1 and vivi+1, i = 3, 5, . . . , l −
3; l + 2, l + 4, . . . , p− 1; p + 2, p + 4, . . . , t− 3. The rest of the edges of A∗

2(t)
will be colored by blue. There is no red copy of K1,2 and no blue copy of
C4 in these colorings. The cases e = v0v

′

1, v
′

1v2, vp−1v
′

p, v
′

pvp+1, vjvj+1, j =
p + 1, p + 2, . . . , t − 1 or e = vvi, i = p + 3, p + 5, . . . , t are similar.

Assertion 3. A3(t) ∈ R(K1,2, C4).

Proof. We show that A3(t) → (K1,2, C4). Let us consider any red-blue
coloring of A3(t). Assume there is no red K1,2 in the coloring. We can
not color by red the edges vv2 and vv3, because they lie inside 4-cycles
vv′2v2v3 and vv2v3v4. We also can not color by red the edges v2v

′

2 and v2v3,
because then, we would not be able to avoid blue 4-cycle vv0v1v2, vv0v

′

1v2 or
v0v1v2v

′

1. It follows that to avoid blue 4-cycle vv ′

2v2v3, we must color by red
the edge vv′2. Then the edges vvi, i = 2, 4, . . . , t must be blue. Consequently,
if we want to avoid blue cycles vv0v1v2 and vv0v

′

1v2, we must color by red
either the edges v0v1, v

′

1v2 or the edges v0v
′

1, v1v2. The edges vjvj+1, j =
2, 3, . . . , t− 3 must be colored alternatingly by blue and red. It follows that
we can not avoid blue 4-cycle vvt−2vt−1vt. Hence, A3(t) → (K1,2, C4).

In order to prove the minimality of A3(t) we consider A∗

3(t) ' A3(t)\{e},
where e is any fixed edge of A3(t). Let e = vlvl+1, l = 0, 1, . . . , t− 1. We can
color by red the edges vv′2, v0v

′

1 and vivi+1, where i = 1, 3, . . . , l−1; l + 2, l +
4, . . . , t − 2 if l is even (where i = 1, 3, . . . , l − 2; l + 1, l + 3, . . . , t − 2 if l is
odd). If e = vvl, l = 2, 4, . . . , t, the edges colored by red are vv ′

2, v0v
′

1, v1v2

and vivi+1, i = 1, 3, . . . , l − 3; l + 2, l + 4, . . . , t − 2. If e = vv3, vv′2 or v2v
′

2,
color by red vv2, v0v

′

1 and vivi+1, where i = 4, 6, . . . , t− 2, and if e = v0v
′

1 or
v′1v2, color by red vv0, v2v

′

2 and vivi+1, i = 3, 5, . . . , t − 3. The other edges
will be colored by blue. The colorings of A∗

3(t) contain neither a red K1,2

nor a blue C4. This finishes the proof.

It is easy to verify that the graphs Ai(t), i = 1, 2, 3 have diameter 4 for t ≥ 8,
and 3 if t = 6.
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3. Auxiliary Results

Let us introduce Definitions 1 and 2.

Definition 1. Let F be a graph with U ⊂ V (F ). For any given graphs G
and H, provided that the vertices in U are not incident to red edges, we
write F → (G(U),H) to mean that any red-blue coloring of the edges of F
contains a red copy of G or a blue copy of H.

Definition 2. Let U0 ⊂ V (F ) where |U0| = p. For i ∈ {0, 1, . . . , p − 1} a
graph F is Ramsey (G(U0)i,H)-minimal if

(i) F → (G(Ui),H), where Ui is any subset of U0 such that |Ui| = p − i,

(ii) F ∗
9 (G(Ui),H) for any proper subgraph F ∗ ⊂ F ,

(iii) F 9 (G(Ui+1),H), where Ui+1 is any subset of Ui such that |Ui+1| =
p − i − 1.

Vertices in U0 will be called roots of F and the class of all Ramsey (G(U0)i,H)-
minimal graphs will be denoted by R(G(U0)i,H).

If F is Ramsey (G(U0)0,H)-minimal, we write F ∈ R(G(U0),H). Par-
ticularly, for U0 = ∅, F is a Ramsey (G,H)-minimal graph.

We need to define the following families of graphs:
L1(t) is a graph with V (L1(t)) = V (G(t)) ∪ {v′} and E(L1(t)) =

E(G(t)) ∪ {vv1, v
′v0, v

′v1, v2v4}. Let us remind that G(t) is defined for an
even integer t ≥ 6.

L2(t) is a graph with V (L2(t)) = V (G(t)) ∪ {v′1} and E(L2(t)) =
E(G(t)) ∪ {v0v

′

1, v
′

1v2}.
L3(t) is a graph with V (L3(t)) = V (G(t)) ∪ {v′0} and E(L3(t)) =

E(G(t)) ∪ {vv1, vv′0, v0v
′

0}.
M2(t) = G(t) and M3(t) is a graph with V (M3(t)) = V (G(t)) and

E(M3(t)) = E(G(t))\{v0v1, v1v2} ∪ {vv1, v1v4, vv5}.
Let s ≥ 5 be odd. M1(s) is a graph with the vertex set V (M1(s)) = {v, v1,
v2, . . . , vs = v0} and with the edge set E(M1(s)) = {vvi, i = 1, 2, . . . , s}
∪ {vjvj+1, j = 1, 2, . . . , s − 1}.

We prove some lemmas characterizing the graphs defined above.

Lemma 1. (i) Let t ≥ 8 and p ∈ {6, 8, . . . , t−2}. Then L1(t) ∈ R(K1,2(vp),
C4).
(ii) Let t ≥ 10 and r, s ∈ {6, 8, . . . , t − 2}, r 6= s. Then L1(t) ∈ R(K1,2

(vr, vs)1, C4).
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Proof. (i) First we show that L1(t) → (K1,2(vp), C4) for even integers
t, p, where t ≥ 8 and p ∈ {6, 8, . . . , t − 2}. Provided that there are no red
edges incident to the vertex vp, let us consider any red-blue coloring of the
edges of L1(t) such that we have no red copy of K1,2 in the coloring. Since
the edges vv1, vv2, v0v1 and v2v4 lie inside 4-cycles, we can not color them
by red, because then, we would have blue copies of C4 in our coloring. We
must color by red one of the edges vv0, v1v2 and one of the edges vv4, v1v2

to avoid blue 4-cycles vv0v1v2 and vv1v2v4, which means that v1v2 must be
red in any case. Consequently, we color by red one of the edges vv4, v3v4

and one of the edges vv0, v
′v0 to avoid blue 4-cycles vv2v3v4 and vv0v

′v1.

Since there can be at most one red edge vvi, i ∈ {4, 6 . . . , t}, i 6= p, with-
out lose of generality we can assume that all the edges vvj , j = 4, 6, . . . , p−2
are blue. In order to avoid blue 4-cycles vvjvj+1vj+2, j = 2, 4, . . . , p − 4, we
must color the edges vj+1vj+2 by red. Clearly, the edges vjvj+1 are blue.
Then, since vp−3vp−2 is red and no red edge can be incident to vp, we have
blue 4-cycle vvp−2vp−1vp in our coloring. Hence, L1(t) → (K1,2(vp), C4).

Now we prove that L∗

1(t) 9 (K1,2(vp), C4), where L∗

1(t) ' L1(t)\{e} for
any fixed edge e ∈ E(L1(t)). Let e = vlvl+1, l = 2, 3, . . . , p − 1. The edges
colored by red are vv0, vivi+1, i = p + 1, p + 3, . . . , t − 3 and vjvj+1, where
j = 1, 3, . . . , l − 1; l + 2, l + 4, . . . , p − 2 if l is even, and j = 1, 3, . . . , l − 2;
l + 1, l + 3, . . . , p − 2 if l is odd.

If e = vvl, l = 2, 4, . . . , p, we can color by red the edges vv0, v1v2, vivi+1,
i = 3, 5, . . . , l−3; l+2, l+4, . . . , p−2; p+1, p+3, . . . , t−3. If e = vv0, vv1, v

′v0

or v′v1, color by red the edges vvp−2 and vivi+1, where i = 1, 3, . . . , p − 5;
p + 1, p + 3, . . . , t − 1. If e = v0v1 or v1v2, the edges colored by red are vv1

and vivi+1, i = 2, 4, . . . , p − 2; p + 1, p + 3, . . . , t − 1. If e = v2v4, we color
by red v′v1, vv2 and vivi+1, i = 4, 6, . . . , p − 2; p + 1, p + 3, . . . , t − 1. The
rest of the edges will be colored by blue. If e = vlvl+1, l = p, p + 1, . . . , t − 1
or e = vvk, k = p + 2, p + 4, . . . , t − 2, we can analogously show that there
exists a red-blue coloring of L∗

1(t) containing neither a red K1,2 nor a blue
C4 such that there is no red edge incident to the vertex vp.

Clearly, L1(t) 9 (K1,2, C4), because L1(t) ⊂ A1(t). Hence, L1(t) ∈
R(K1,2(vp), C4).

(ii) From the proof of part (i) we get L1(t) → (K1,2(vp), C4) for p ∈
{6, 8, . . . , t − 2}, L∗

1(t) 9 (K1,2(vp), C4) for L∗

1(t) ' L1(t)\{e}, where e is
any fixed edge of L1(t), and L1(t) 9 (K1,2, C4). This shows that for t ≥ 10
one has L1(t) ∈ R(K1,2(vr, vs)1, C4), where r, s ∈ {6, 8, . . . , t − 2}, r 6= s.
The proof is complete.
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Lemma 2. (i) Let t ≥ 6 and p ∈ {4, 6, . . . , t−2}. Then L2(t) ∈ R(K1,2(vp),
C4).
(ii) Let t ≥ 8 and r, s ∈ {4, 6, . . . , t − 2}, r 6= s. Then L2(t) ∈ R(K1,2

(vr, vs)1, C4).

Proof. (i) We prove that L2(t) → (K1,2(vp), C4). Consider any red-blue
coloring of the edges of L2(t) such that there is no red edge incident to
the vertex vp. Assume that we have no red K1,2 in the coloring. We must
color by red one of the edges viv, viv1, viv

′

1 for i = 0, 2 to avoid blue 4-cycles
containing at least one of the vertices v1, v

′

1. Note that there can be at
most one red edge vvi, i ∈ {2, 4, . . . , t}, i 6= p in our coloring. It is easy
to show that if all the edges vvi, i = 2, 4, . . . , p − 2 are blue, we are not
able to avoid blue 4-cycle vvjvj+1vj+2 for some j ∈ {2, 4, . . . , p − 2}, and if
vvi, i = p+2, p+4, . . . , t are blue, we can not avoid blue 4-cycle vvjvj+1vj+2

for a j ∈ {p, p + 2, . . . , t − 2}. L2(t) → (K1,2(vp), C4).
Consider L∗

2(t) ' L2(t)\{e} for any fixed edge e ∈ E(L2(t)). We show
that L∗

2(t) 9 (K1,2(vp), C4). Let e = vlvl+1, l = 0, 1, . . . , p − 1. We can
color by red the edges vv0, vivi+1, i = p + 1, p + 3, . . . , t − 3 and the edges
vjvj+1, where j = 1, 3, . . . , l − 1; l + 2, l + 4, . . . , p − 2 if l is even, and
j = 1, 3, . . . , l − 2; l + 1, l + 3, . . . , p − 2 if l is odd. If e = vvl, l = 2, 4, . . . , p,
the edges colored by red are vv0, v1v2, vivi+1, i = 3, 5, . . . , l−3; l+2, l+4, . . . ,
p− 2; p + 1, p + 3, . . . , t− 3. The other edges are colored by blue. The cases
e = v0v

′

1, v
′

1v2, vlvl+1, l = p, p+ 1 . . . , t−1 and e = vvk, k = p+ 2, p+ 4, . . . , t
are similar.

Finally, since L2(t) ⊂ A2(t), it is evident that L2(t) 9 (K1,2, C4).
(ii) The proof follows from the previous part.

Lemma 3. (i) Let t ≥ 6 and p = 0 or t− 2. Then L3(t) ∈ R(K1,2(vp), C4).
(ii) Let t ≥ 6. Then L3(t) ∈ R(K1,2(v0, vt−2)1, C4).

The proof is analogous to the proofs of Lemma 1 and Lemma 2.

Lemma 4. Let s ≥ 5. Then M1(s) ∈ R(K1,2(v1, vs), C4).

Proof. Let us show that M1(s) → (K1,2(v1, vs), C4). Provided that the
vertices v1, vs are not incident to red edges, we consider any red-blue coloring
of M1(s) such that there is no red copy of K1,2 in the coloring. If we color
by red some edge vvi, i ∈ {2, 3, . . . , s− 1}, we have blue 4-cycle vvi−1vivi+1.
Therefore, all the edges vvi, i = 1, 2, . . . , s must be blue. In order to avoid
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blue 4-cycles vvj−1vjvj+1 and vvjvj+1vj+2, j = 2, 4, . . . , s − 3, the edges
vjvj+1 must be red. Then we are not able to avoid blue 4-cycle vvs−2vs−1vs.

We prove that M ∗

1 (s) 9 (K1,2(v1, vs), C4), where M ∗

1 (s) ' M1(s)\{e}
for any fixed edge e ∈ E(M1(s)). Let e = vlvl+1, l = 1, 2, . . . , s − 1. We can
color by red the edges vivi+1, where i = 2, 4, . . . , l − 2; l + 1, l + 3, . . . , s − 2
if l is even, and i = 2, 4, . . . , l − 1; l + 2, l + 4, . . . , s − 2 if l is odd. Let
e = vvl, l = 3, 4, . . . , s. The edges colored by red are vvl−1 and vivi+1, where
i = 2, 4, . . . , l − 4, l + 1, l + 3, . . . , s − 2 if l is even, and i = 2, 4, . . . , l − 3,
l + 2, l + 4, . . . , s− 2 if l is odd. We color by blue all the edges of M ∗

1 (s) that
are not colored by red. The cases e = vv1 or vv2 can be handled similarly.

Finally, M1(s) 9 (K1,2(vp), C4) for p = 1 (for p = s), since there exists
a red-blue coloring of M1(s) containing neither a red K1,2 nor a blue C4

such that there is no red edge incident to vp. It is enough to color by red the
edges vivi+1, where i = 2, 4, . . . , s − 1 (where i = 1, 3, . . . , s − 2) and color
by blue the rest of the edges. This finishes the proof.

Lemma 5. Let t ≥ 6. Then M3(t) ∈ R(K1,2(v0, v2), C4).

Proof. Let us consider any red-blue coloring of M3(t) such that the ver-
tices v0, v2 are not incident to any red edges. We show that M3(t) →
(K1,2(v0, v2), C4). Suppose that we have no red K1,2 in the coloring. We
can not color by red the edges vv4 and vv5, because they lie inside 4-cycles
vv1v4v5 and vv4v5v6. It follows that we must color by red the edge v3v4 to
avoid blue cycle vv2v3v4, and the edge vv1 to avoid blue cycle vv1v4v5.
But then, it is not possible to avoid blue 4-cycle vvjvj+1vj+2 for some
j ∈ {4, 6, . . . , t − 2}, which shows that M3(t) → (K1,2(v0, v2), C4).

Now consider the graph M ∗

3 (t) ' M3(t)\{e}, where e is any fixed
edge of M3(t). Let us prove that M ∗

3 (t) 9 (K1,2(v0, v2), C4), Let e =
vlvl+1, l = 2, 3, . . . , t − 1. We can color by red the edges vv1 and vivi+1,
where i = 3, 5, . . . , l−1; l+2, l+4, . . . , t−2 if l is even, and i = 3, 5, . . . , l−2;
l +1, l +3, . . . , t−2 if l is odd. If e = vvl, l = 2, 4, . . . , t, the edges colored by
red are vv1 and vivi+1, where i = 3, 5, . . . , l − 3; l + 2, l + 4, . . . , t − 2. If e =
vv1, vv5 or v1v4, we color by red the edges vv4 and vivi+1, i = 6, 8, . . . , t− 2.
The rest of the edges will be colored by blue. The colorings of M ∗

3 (t) contain
neither a red copy of K1,2 nor a blue copy of C4.

In order to show that M3(t) 9 (K1,2(vp), C4) for p = 0 (for p = 2) it
suffices to color by red the edges vivi+1, i = 2, 4, . . . , t−2 (the edges vv1 and
vivi+1, i = 3, 5, . . . , t − 1) and color by blue all the other edges.
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Lemma 6. (i) Let t ≥ 6 and p ∈ {2, 4, . . . , t}. Then M2(t) ∈ R(K1,2(v, vp),
C4).
(ii) Let t ≥ 8 and p ∈ {4, 6, . . . , t − 4}. Then M2(t) ∈ R(K1,2(v0, vp), C4).

The proof is similar to the previous proofs.

4. Main Results

Let n ≥ 4. Let Maj
, j = 1, 2, . . . , k be any graphs with roots raj ,1, raj ,2 such

that Maj
∈ R(K1,2(raj ,1, raj ,2), Cn). Let Lbi

, i = 1, 2 be any graphs with a
root rbi

such that Lbi
∈ R(K1,2(rbi

), Cn) and let L be any graph with roots
r1, r2, where L ∈ R(K1,2(r1, r2)1, Cn).

Let P (a1, a2, . . . , ak) be a graph which consists of k graphs Ma1
,Ma2

,
. . . ,Mak

, where the vertex raj ,2 is stuck to the vertex raj+1,1, j = 1, 2, . . . ,
k − 1. A graph C(a1, a2, . . . , ak) is defined in the same way with the only
difference that ra1,1 is stuck to rak ,2 as well.

Finally, we define the following families of graphs:
B1(C(a′1, a

′

2, . . . , a
′

k1
), P (a1, a2, . . . , ak2

)), k1 ≥ n + 1, k2 ≥ 1, is a graph
that consists of the graphs C(a′

1, a
′

2, . . . , a
′

k1
) and P (a1, a2, . . . , ak2

), where
the first root of Ma1

is stuck to any root x of C(a′

1, a
′

2, . . . , a
′

k1
) and the

second root of Mak2
is stuck to any root y of C(a′

1, a
′

2, . . . , a
′

k1
), where

dC(a′

1
,a′

2
,...,a′

k1
)(x, y) + dP (a1,a2,...,ak2

)(x, y) ≥ n + 1.

B2(L,P (a1, a2, . . . , ak)), k ≥ n, is a graph which consists of the graphs
L and P (a1, a2, . . . , ak), where the first root of Ma1

is stuck to the first root
of L and the second root of Mak

is stuck to the second root of L.
B3(Lb1 , P (a1, a2, . . . , ak), Lb2), k ≥ 0, is obtained by sticking the first

root of Ma1
to the root of Lb1 and the second root of Mak

is stuck to the
root of Lb2 .

B4(C(a′1, a
′

2, . . . , a
′

k1
), P (a1, a2, . . . , ak2

), C(a′′1 , a
′′

2 , . . . , a
′′

k3
)); k1, k3 ≥

n + 1, k2 ≥ 0, is constructed by sticking the first root of Ma1
to any root

of C(a′1, a
′

2, . . . , a
′

k1
) and the second root of Mak2

is stuck to any root of
C(a′′1 , a

′′

2 , . . . , a
′′

k3
).

B5(Lb1 , P (a1, a2, . . . , ak1
), C(a′1, a

′

2, . . . , a
′

k2
)), k1 ≥ 0, k2 ≥ n + 1, is ob-

tained by sticking the first root of Ma1
to the root of Lb1 and the second

root of Mak1
is stuck to any root of C(a′

1, a
′

2, . . . , a
′

k3
).

The graphs defined above will be also denoted briefly by B1, B2, . . . , B5.
The graphs Ma′

i
, i = 1, 2, . . . , k1 and Maj

, j = 1, 2, . . . , k2 will be called seeds

of B1. Seeds of B2, B3, B4 and B5 can be defined analogously. We show
that B1, B2, . . . , B5 are Ramsey (K1,2, Cn)-minimal graphs.
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Theorem 1. B1 ∈ R(K1,2, Cn).

Proof. First let us show by contradiction that B1 → (K1,2, Cn). Assume
that B1 9 (K1,2, Cn). Since Ma′

i
∈ R(K1,2(ra′

i,1
, ra′

i,2
), Cn), i = 1, 2, . . . , k1

and Maj
∈ R(K1,2(raj ,1, raj ,2), Cn), j = 1, 2, . . . , k2, by part (i) of Defini-

tion 2, we must color by red at least one edge incident to some root in Ma′

i

(in Maj
) to have a red-blue coloring of the edges of Ma′

i
(of Maj

) that con-
tains neither a red copy of K1,2 nor a blue copy of Cn. But then, we have
at least k1 + k2 red edges incident to roots in B1. Because the number of
different roots in B1 is k1 + k2 − 1, there must be a red copy of K1,2 in any
coloring of B1. A contradiction.

In order to prove the minimality of B1 it suffices to show that B∗

1 9

(K1,2, Cn), where B∗

1 ' B1\{e} for any fixed edge e ∈ E(B1). Suppose e ∈
E(Ma′

i
) where i ∈ {1, 2, . . . , k1}. (The case e ∈ E(Maj

), j ∈ {1, 2, . . . , k2}
can be handled similarly). Then M ∗

a′

i
' Ma′

i
\{e}. We know that M ∗

a′

i
9

(K1,2(ra′

i ,1
, ra′

i,2
), Cn), which means that there exists a red-blue coloring of

the edges of M ∗

a′

i
containing neither a red copy of K1,2 nor a blue copy of

Cn such that the roots ra′

i,1
, ra′

i,2
are not incident to red edges in M ∗

a′

i
.

From Definition 2 it follows that in any other seed of B∗

1 we must color
by red some edges incident to any fixed root, while the second root does not
have to be incident to red edges of the seed to have a red-blue coloring of the
seed containing no red K1,2 and no blue Cn. Note that since the coloring
contains no red K1,2, there must be just one red edge in the seed which is
incident to the fixed root.

Thus, we can color the edges of B∗

1 such that every root is incident to
exactly one red edge. We do not have any red copy of K1,2 in the coloring
of B∗

1 . Since the number of seeds in C(a′

1, a
′

2, . . . , a
′

k1
) is k1 ≥ n + 1 and

dC(a′

1
,a′

2
,...,a′

k1
)(x, y) + dP (a1 ,a2,...,ak2

)(x, y) ≥ n + 1, we do not have any blue

copy of Cn in the coloring of B∗

1 as well. This finishes the proof.

Theorem 2. B2 ∈ R(K1,2, Cn).

Proof. We show that B2 → (K1,2, Cn). Suppose the contrary, let B2 9

(K1,2, Cn). Since Mai
∈ R(K1,2(rai,1, rai,2), Cn), i = 1, 2, . . . , k and L ∈

R(K1,2(r1, r2)1, Cn), from part (i) of Definition 2 it follows that we must
have at least one red edge incident to some root in Mai

to obtain a red-blue
coloring of the edges of Mai

containing neither a red copy of K1,2 nor a blue
copy of Cn.



On Ramsey (K1,2, C4)-Minimal Graphs 647

In any red-blue coloring of L that contains no red K1,2 and no blue Cn,
there must be at least one red edge e1 incident to the first root in L and at
least one red edge e2 incident to the second root in L, where the edges e1, e2

are not necessarily different. Because the number of different roots in B2 is
k + 1, there must be a root incident to at least two red edges. We have a
red copy of K1,2 in the coloring of B2, a contradiction.

Let us prove that B∗

2 9 (K1,2, Cn) for B∗

2 ' B2\{e}, where e is any
fixed edge of B2. We distinguish two cases:

a) Let e ∈ E(Mai
) where i ∈ {1, 2, . . . , k}. Then M ∗

ai
' Mai

\{e} and
M∗

ai
9 (K1,2(rai,1, rai,2), Cn), which says that there exists a red-blue coloring

of M∗

ai
containing neither a red K1,2 nor a blue Cn, where there are no red

edges incident to the roots rai,1, rai ,2 in M∗

ai
.

Now consider all the other seeds Maj
, j = 1, 2, . . . , k, j 6= i and L. By

Definition 2, in any seed Maj
we must color by red some edges incident to

any fixed root to have a red-blue coloring of Maj
that contains neither a red

K1,2 nor a blue Cn. The second root does not have to be incident to any
red edge of Maj

. Since the coloring does not contain any red K1,2, the fixed
root is incident to exactly one red edge in Maj

. In the seed L, if we have
exactly one red edge incident to the first root and one red edge incident to
the second root, there exists a red-blue coloring of L that does not contain
any red K1,2 and any blue Cn.

It follows that it is possible to color the edges of B∗

2 such that every
root is incident to exactly one red edge, hence there is no red K1,2 in the
coloring of B∗

2 . Because the number of seeds in B∗

2 is k + 1 ≥ n + 1, there is
also no blue Cn in the coloring.

b) Let e ∈ E(L). Then L∗ ' L\{e} and L∗
9 (K1,2(rj), Cn), j = 1, 2,

which means that there is a red-blue coloring of L∗ that contains neither a
red K1,2 nor a blue Cn, where there is no red edge incident to rj in L∗. Note
that the other root can be incident to at most one red edge in L∗, otherwise
we have a red K1,2 in the coloring of L∗.

Consider the seeds Maj
, j = 1, 2, . . . , k. Analogously as in case a) it

suffices to color by red exactly one edge of Maj
which is incident to any

root, while the second root does not have to be incident to any red edge in
Maj

to have a red-blue coloring of Maj
that contains no red K1,2 and no

blue Cn, Then we are able to color B∗

2 such that we have neither a red K1,2

nor a blue Cn in the coloring. The proof is complete.

Theorem 3. B5 ∈ R(K1,2, Cn).
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Proof. Let us prove by contradiction that B5 → (K1,2, Cn). Because
Mai

∈ R(K1,2(rai,1, rai,2), Cn), i = 1, 2, . . . , k1 (because Ma′

j
∈ R(K1,2

(ra′

j
,1, ra′

j
,2), Cn), j = 1, 2, . . . , k2 and Lb1 ∈ R(K1,2(rb1), Cn)), in any red-

blue coloring of Mai
(of Ma′

j
, Lb1) that contains no red K1,2 and no blue

Cn, there must be at least one red edge incident to some root in Mai
(in

Ma′

j
, Lb1). Then there are at least k1 + k2 + 1 red edges incident to roots in

B5. Since the number of roots in B5 is k1 + k2, we have a red K1,2 in any
coloring of B5. A contradiction.

We show that B∗

5 9 (K1,2, Cn) for the graph B∗

5 ' B5\{e}, where e
is any fixed edge of B5. Assume that e ∈ E(Mai

) where i ∈ {1, 2, . . . , k1}.
(The cases e ∈ E(Ma′

j
), j ∈ {1, 2, . . . , k2} and e ∈ E(Lb1) are similar.) Then

M∗

ai
' Mai

\{e} and M ∗

ai
9 (K1,2(rai,1, rai,2), Cn), which means that there

exists a red-blue coloring of M ∗

ai
containing neither a red K1,2 nor a blue Cn

such that rai,1, rai ,2 are not incident to red edges in M ∗

ai
.

In any other seed of B∗

5 , if one of the roots is not incident to red edges
of the seed and the second root is incident to exactly one red edge, there
exists a red-blue coloring of the seed that contains neither a red K1,2 nor a
blue Cn (in L∗

b1
we have just one root which is incident to one red edge of

L∗

b1
).

Hence, it is possible to color the edges of B∗

5 such that every root is
incident to exactly one red edge and there is no red K1,2 in the coloring of
B∗

5 . Because the number of seeds in C(a′

1, a
′

2, . . . , a
′

k2
) is k2 ≥ n + 1, there

is no blue Cn in the coloring as well.

Similarly as Theorem 3, we can prove the next theorem.

Theorem 4. B3, B4 ∈ R(K1,2, Cn).

Theorems 1–4 in combination with Lemmas 1–6 give infinite families of
Ramsey (K1,2, C4)-minimal graphs.

For example, the graph B3(Lm(t′1), P (a1, a2, . . . , ak), Ln(t′2)), where
P (a1, a2, . . . , ak) consists of the graphs Maj

(tj), j = 1, 2, . . . , k and aj,m, n ∈
{1, 2, 3} is a Ramsey (K1,2, C4)-minimal graph. Values of the parameters
t′1, t

′

2, tj follow from Lemmas 1–6.

Let B3(Lm(t′1), P (a1, a2, . . . , ak), Ln(t′2)) contains exactly r seeds
M2(tj), j ∈ {1, 2, . . . , k} such that the vertex which has degree tj/2 in M2(tj)
is one of the roots of M2(tj) and let B3(Lm(t′1), P (a1, a2, . . . , ak), Ln(t′2))
also contains z seeds L3(6) with the root denoted by v4 in L3(6). Note
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that 0 ≤ r ≤ k and 0 ≤ z ≤ 2. It is easy to show that the diameter of
B3(Lm(t′1), P (a1, a2, . . . , ak), Ln(t′2)) is 2k + 6 − r − z, since

• the eccentricity of the root of Li(t
′) is 3 for i = 1, 2, 3 and any t′ except

for the eccentricity of v4 in L3(6) that is equal to 2,

• the distance between two roots in Mi(t) is 2 for i = 1, 3, while in M2(t)
the roots can be adjacent.

It follows that we found an infinite class of Ramsey (K1,2, C4)-minimal
graphs for every diameter ≥ 4. The problem of existence of an infinite
family of Ramsey (K1,2, C4)-minimal graphs of diameter 3 remains open.
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