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Abstract

A set S of vertices of a graph G = (V, E) without isolated vertex is a
total dominating set if every vertex of V (G) is adjacent to some vertex
in S. The total domination number γt(G) is the minimum cardinality of
a total dominating set of G. The total domination subdivision number

sdγt
(G) is the minimum number of edges that must be subdivided (each

edge in G can be subdivided at most once) in order to increase the total
domination number. Favaron, Karami, Khoeilar and Sheikholeslami
(Journal of Combinatorial Optimization, to appear) conjectured that:
For any connected graph G of order n ≥ 3, sdγt

(G) ≤ γt(G) + 1. In
this paper we use matchings to prove this conjecture for graphs with
at most three induced 4-cycles through each vertex.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph of order n with minimum degree
δ(G) ≥ 1. The neighborhood of a vertex u is denoted by NG(u) and its
degree |NG(u)| by dG(u) (briefly N(u) and d(u) when no ambiguity on the
graph is possible). If S ⊆ V (G), N(S) = ∪x∈SN(x). We denote by N2(v)
the set of vertices at distance 2 from the vertex v and put d2(v) = |N2(v)| and
δ2(G) = min{d2(v); v ∈ V (G)}. A matching is a set of edges with no shared
endvertices. A perfect matching M of G is a matching with V (M) = V (G).
If n is odd, a near perfect matching leaves exactly one vertex uncovered,
i.e., |V (M)| = n − 1. A graph is factor-critical if the deletion of any vertex
leaves a graph with a perfect matching. Note that factor-critical graphs have
odd order. The maximum number of edges of a matching in G is denoted
by α′(G) (α′ for short). The length of a smallest cycle in a graph G, that
contains cycles, is the girth of G (denoted g(G)). We use [15] for terminology
and notation which are not defined here.

A set S of vertices of a graph G with minimum degree δ(G) > 0 is a
total dominating set if N(S) = V (G). The minimum cardinality of a total
dominating set, denoted by γt(G), is called the total domination number of
G. A γt(G)-set is a total dominating set of G of cardinality γt(G). The total

domination subdivision number sdγt
(G) is the minimum number of edges of

G that must be subdivided once in order to increase the total domination
number. This kind of concept was first introduced for the domination num-
ber by Velammal in his Ph.D. thesis [14]. The total domination subdivision
number was considered by Haynes et al. in [8] and since then have been
studied by several authors (see for example [2, 4, 5, 3, 6, 7, 10, 11]). Since
the total domination number of the graph K2 does not change when its only
edge is subdivided, in the study of total domination subdivision number we
must assume that the graph has maximum degree at least two.

It is known that the parameter sdγt
can take arbitrarily large values

[6] and an interesting problem is to find good bounds on sdγt
(G) in terms

of other parameters of G. For instance it has been proved that for any
graph G of order n, sdγt

(G) ≤ n − γt(G) + 1 [4], sdγt
(G) ≤ 2n/3 [5] and

sdγt
(G) ≤ n−∆+2 [2]. Favaron et al. in [3] posed the following conjecture



Matchings and Total Domination Subdivision Number in ... 613

Conjecture 1. For any connected graph G of order n ≥ 3,

sdγt
(G) ≤ γt(G) + 1

and proved it for some classes of graphs.

Our purpose in this paper is to prove Conjecture 1 for connected graphs with
few induced cycles C4 through each vertex of G. We will use the following
results on α′(G), γt(G) and sdγt

(G).

Theorem A [6]. For any connected graph G with adjacent vertices u and

v, each of degree at least two,

sdγt
(G) ≤ d(u) + d(v) − |N(u) ∩ N(v)| − 1 = |N(u) ∪ N(v)| − 1.

Theorem B [3]. For any connected graph G of order n ≥ 3 and γt(G) ≤
α′(G),

sdγt
(G) ≤ γt(G) + 1.

Theorem C [3]. For any connected graph G of order n ≥ 3 with δ = 1,

sdγt
(G) ≤ γt(G).

Theorem D [2]. Let G be a connected graph of minimum degree at least 2.
Then sdγt

(G) ≤ δ2(G) + 3.

In the proof of Theorem 1 we use the concept of barrier. If S is a separa-
tor of a graph G, o(G) denotes the number of odd components of G − S,
i.e., components of odd order. A barrier of G is a separator S such that
o(G − S) = |S| + t where t = n − 2α′ is the number of vertices of G which
are not covered by a maximum matching. By Tutte-Berge’s Theorem every
connected graph admits barriers. Moreover (see for example exercise 3.3.18
in [12]) if S is a maximal barrier, then all the components G1, G2, . . . , G|S|+t

of G−S are factor-critical (hence odd) and every maximum matching of G is
formed by a matching pairing S with |S| different components of G−S and
a near perfect matching in each component. Therefore, with the notation
|S| + t = ` and |V (Gi)| = ni,

(1) α′(G) = |S| +
∑̀

i=1

ni − 1

2
.
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2. Main Result

Theorem 1. Every connected graph G of order n ≥ 3 such that each vertex

belongs to at most three induced C4 satisfies

sdγt
(G) ≤ γt(G) + 1.

Proof. By Theorems B and C, we may assume δ(G) ≥ 2 and

(2) α′(G) ≤ γt(G) − 1.

Let S be a maximal barrier of G and G1, G2, . . . , G` the components of G−S.
Let S1 be the set of the isolated vertices of G[S].

If S1 = ∅ and G − S has only trivial components, then S is a total
dominating set of G and γt(G) ≤ |S| = α′(G) by (1), a contradiction with
(2). If S1 6= ∅ and if all the neighbors of a vertex x of S1 belong to trivial
components of G−S, then N2(x) ⊆ S−{x} and by Theorem D, (1) and (2),

sdγt
(G) ≤ δ2(G) + 3 ≤ |N2(x)| + 3 ≤ |S| + 2 ≤ α′(G) + 2 ≤ γt(G) + 1.

Therefore we can assume that at least one component of G−S is not trivial
and that every isolated vertex of S has at least one neighbor in a non-trivial
component of G − S.

First suppose that at least two components of G − S, say G1 and G2

with n1 ≤ n2, are not trivial. Let uv be an edge of G1. Since δ(G) ≥ 2,
Theorem A, (1) and (2) imply

sdγt
(G) ≤ |N(u) ∪ N(v)| − 1 ≤ n1 + |S| − 1

≤
n1 + n2

2
+ |S| − 1 ≤ α′(G) ≤ γt(G) − 1.

Now suppose that G1 is the unique nontrivial component of G − S. Then
α′(G) = |S| + n1−1

2
and every vertex of S1 has a neighbor in G1. Let Gi =

{yi} for 2 ≤ i ≤ `, and Y = {yi | 2 ≤ i ≤ `}. If |N(u)∪N(v)|−1 ≤ γt(G)+1
for some edge uv of G1, then the result follows from Theorem A. Therefore
we may assume that for each edge uv of G1,

(3) |N(u) ∪ N(v)| ≥ γt(G) + 3.
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This implies in particular by (2) that

|S| +
n1 − 1

2
= α′(G) ≤ γt(G) − 1 ≤ |N(u) ∪ N(v)| − 4 ≤ |S| + n1 − 4

and thus n1 ≥ 7.

Claim. γt(G1) ≤
n1 − 1

2
.

Proof of the Claim. Let M = {u1v1, . . . , un1−1

2

vn1−1

2

} be a near perfect

matching of G1 and let {x} = V (G1) − V (M). Without loss of generality
we assume x is adjacent to u n1−1

2

. Let X be a subset of V (G1) satisfying

the following properties:

(a) un1−1

2

∈ X and x /∈ X,

(b) |X ∩ {ui, vi}| ≤ 1 for 1 ≤ i ≤ n1−1

2
,

(c) G[X] has no isolated vertex if |X| > 1.

Choose X to be maximum among all such sets. By Property (b), |X| ≤
n1−1

2
. Suppose |X| < n1−1

2
. Without loss of generality we may assume

X ∩ {ui, vi} = ∅ for 1 ≤ i ≤ r < n1−1

2
. Let R = {uivi | 1 ≤ i ≤ r},

R′ = {ui, vi | 1 ≤ i ≤ r} and G′ = G[R′] − R. If uv ∈ E(G′), then X ′ =
X∪{u, v} satisfies Properties (a) to (c), a contradiction with the choice of X.
Similarly if G contains an edge uv with u ∈ X and v ∈ R′, then X ′ = X∪{v}
contradicts the choice of X. Hence G′ is empty and no edge exists between
X and R′. Therefore N(u1) ∪ N(v1) ⊆ S ∪ {u1, v1} ∪ (V (G1) \ (X ∪ R′)).
Since |V (G1)| ≤ 2|X| + |R′| + 1, we have by (2),

|N(u1) ∪ N(v1)| ≤ |S| + |X| + 3 < α′(G) + 3 ≤ γt(G) + 2,

in contradiction with (3). Therefore |X| = n1−1

2
≥ 3 and from its construc-

tion, it is clear that X is a total dominating set of G1. �

Let X be a total dominating set of G1 of order n1−1

2
as in the claim. If

S1 = ∅ or if every vertex of S1 has a neighbor in X, then S ∪ X is a total
dominating set of G and thus γt(G) ≤ |S| + |X| = α′(G), a contradiction
with (2). Hence the set S2 of the isolated vertices of G[S] with no neighbor
in X is not empty.
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If N(yi) * S2 for each i with 2 ≤ i ≤ `, we associate to each vertex x
of S2 one of its neighbors f(x) in V (G1) − X (recall that each vertex of
S1 has at least one neighbor in G1) and we let S ′

2 = {f(x) | x ∈ S2}.
Clearly |S ′

2| ≤ |S2|, S′
2 dominates S2, and X ∪ S′

2 is a total dominating set
of V (G1) ∪ S1. Therefore (S − S2) ∪ X ∪ S′

2 is a total dominating set of G
and γt(G) ≤ |S| + |X| = α′(G), a contradiction with (2).

Hence some vertex yi of Y , say y2, has all its neighbors in S2. Since
δ(G) ≥ 2, |S2| ≥ 2. Let uv be an edge of G[X] (such an edge exists since
n1 ≥ 7). Then N(u) ∪ N(v) ⊆ (S − S2) ∪ V (G1). By (2) and (3),

|S|+
n1 − 1

2
= α′(G) ≤ γt(G)− 1 ≤ |N(u)∪N(v)| − 4 ≤ |S| − |S2|+ n1 − 4.

Therefore

n1 ≥ 2|S2| + 7 ≥ 11.

Let z1 and z2 be two neighbors of y2. The neighborhoods NG1
(z1) and

NG1
(z2) are contained in V (G1) − X. Let |NG1

(z1) ∩ NG1
(z2)| = p and

suppose without loss of generality dG1
(z1) ≤ dG1

(z2). Then

2|NG1
(z1)| ≤ |NG1

(z1)| + |NG1
(z2)| ≤

n1 + 1

2
+ p

and since p ≥ 0 and n1 ≥ 11,

(4) |NG1
(z1)| ≤

n1 + 1

4
+

p

2
≤

n1 − 1

2
− 2 + p.

Note that each of the p vertices of NG1
(z1)∩NG1

(z2) induces with y2, z1, z2

a cycle C4 containing one vertex in Y and one vertex in G1.

Let A = NY (z1) − {y2} and B = N(y2) − {z1} (⊆ S2). For each a ∈ A,
let a′ be one of its neighbors in S − {z1} (a′ exists since δ(G) ≥ 2) and let
A′ = {a′ | a ∈ A}. Then |A′| ≤ |A| and |A| − |A′| is at most the number
of pairs ai, aj of vertices of A such that a′

i = a′j. Note that if a′i = a′j, then
a′i, ai, aj , z1 induce a C4 not containing y2. Since the set B ∪A′ is contained
in S − {z1}, |B ∪ A′| ≤ |S| − 1. Each vertex a′ of B ∩ A′ corresponds to at
least one induced C4 of the form z1y2a

′az1 (possibly more if a′ is associated
to several vertices of A). Hence if we denote by q the number of induced
cycles C4 containing z1 and two vertices of Y , we get |A|−|A′|+|B∩A′| ≤ q.
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Therefore

|NY (z1)| + |N(y2)| = |A| + 1 + |B| + 1

= |A − A′| + |A′| + |B| + 2

= |A − A′| + |A′ ∪ B| + |A′ ∩ B| + 2

≤ |A′ ∪ B| + q + 2

≤ |S| + q + 1.

Since N(z1) ∩ N(y2) = ∅ and by Theorem A, (1), (2) and (4), we get

sdγt
(G) ≤ |N(z1)| + |N(y2)| − 1

≤ |NG1
(z1)| + |NY (z1)| + |N(y2)| − 1

≤ (n1−1

2
− 2 + p) + (|S| + q + 1) − 1

≤ α′(G) + p + q − 2

≤ γt(G) − 3 + p + q.

By hypothesis, z1 is contained in at most three induced cycles C4. Hence
p + q ≤ 3 and sdγt

(G) ≤ γt(G) + 1, which completes the proof of
Theorem 1.

Corollary 2. For any connected graph G of order n ≥ 3 with girth greater

than 4, sdγt
(G) ≤ γt(G) + 1.

Corollary 3. For any connected chordal graph G of order n ≥ 3, sdγt
(G) ≤

γt(G) + 1.
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