ON THE EXISTENCE OF A CYCLE OF LENGTH AT LEAST 7 IN A $(1, \leq 2)$-TWIN-FREE GRAPH

David Auger, Irène Charon, Olivier Hudry
Institut Telecom - Telecom ParisTech \& Centre National de la Recherche Scientifique - LTCI UMR 5141
46, rue Barrault, 75634 Paris Cedex 13, France

AND

Antoine Lobstein
Centre National de la Recherche Scientifique - LTCI UMR 5141
\& Telecom ParisTech
46, rue Barrault, 75634 Paris Cedex 13, France
e-mail: \{david.auger, irene.charon, olivier.hudry, antoine.lobstein\}@telecom-paristech.fr

Abstract

We consider a simple, undirected graph G. The ball of a subset Y of vertices in G is the set of vertices in G at distance at most one from a vertex in Y. Assuming that the balls of all subsets of at most two vertices in G are distinct, we prove that G admits a cycle with length at least 7 .

Keywords: undirected graph, twin subsets, identifiable graph, distinguishable graph, identifying code, maximum length cycle.
2010 Mathematics Subject Classification: 05C38, 05C75.

1. Introduction

We consider a finite, undirected, simple graph $G=(X, E)$, where X is the vertex set and E the edge set.

If r is a positive integer and x a vertex in G, the ball of x with radius r, denoted by $B_{r}(x)$, is the set of vertices in G which are within distance r
from x. If Y is a subset of X, the ball of Y with radius r, denoted by $B_{r}(Y)$, is defined by

$$
B_{r}(Y)=\bigcup_{y \in Y} B_{r}(y)
$$

For $x \in X$, we set $B(x)=B_{1}(x)$ and call this set the ball of x : in other words, the ball of x consists of x and its neighbours; for $Y \subseteq X$, we set $B(Y)=B_{1}(Y)$ and call this set the ball of Y.

Two distinct subsets of X are said to be separated if they have distinct balls with radius r. For a given integer $\ell \geq 1$, the graph G is said to be $(r, \leq \ell)$-twin-free if any two distinct subsets of at most ℓ vertices are separated. In an $(r, \leq \ell)$-twin-free graph, for any subset V of X, there is at most one subset Y of X, with $|Y| \leq \ell$, such that $B_{r}(Y)=V$: the subsets of at most ℓ vertices are characterized by their balls with radius r. In this case, it is also said that G is $(r, \leq \ell)$-identifiable or $(r, \leq \ell)$-distinguishable, or that G admits an $(r, \leq \ell)$-identifying code. See, among many others, [7]-[11] and [13] for results on these codes.

Graphs admitting ($r, \leq 1$)-identifying codes, i.e., $(r, \leq 1)$-twin-free graphs, have particular structural properties (see for instance [1, 4] and [5]; see [12] for references upon these codes). In particular, it was proved in [1] that a connected $(r, \leq 1)$-twin-free graph with at least two vertices always contains as an induced subgraph the path $P_{2 r+1}$ on $2 r+1$ vertices; since $P_{2 r+1}$ itself is $(r, \leq 1)$-twin-free, it is therefore the smallest $(r, \leq 1)$-twin-free graph.

Several results have been published about ($r, \leq \ell$)-identifying codes in various graphs (see [7]-[11] and [13]), but little is known about the structure of these graphs. Using, for $i \geq 3$, the notation \mathcal{C}_{i} (respectively, $\mathcal{C}_{\geq i}$) for a cycle of length i (respectively, at least i), it is easily seen that the cycles $\mathcal{C}_{\geq 7}$ are $(1, \leq 2)$-twin-free and that the smallest $(1, \leq 2)$-twin-free graph is the cycle \mathcal{C}_{7}. Hence it seems natural to wonder whether a cycle \mathcal{C}_{k} with $k \geq 7$ is contained in any $(1, \leq 2)$-twin-free graph.

Thus we shall restrict ourselves to the case $r=1, \ell=2$ and prove in this article that an undirected connected $(1, \leq 2)$-twin-free graph of order at least 2, contains an elementary cycle (not going through a vertex twice) with length at least 7 .

We now give some basic definitions for a graph $G=(X, E)$ (see $[2,3]$ or [6] for more). A subgraph of G is a graph $G^{\prime}=\left(X^{\prime}, E^{\prime}\right)$, where $X^{\prime} \subseteq X$
and

$$
E^{\prime} \subseteq\left\{\{u, v\} \in E: u \in X^{\prime}, v \in X^{\prime}\right\}
$$

Such a subgraph is said to be induced by X^{\prime} if

$$
E^{\prime}=\left\{\{u, v\} \in E: u \in X^{\prime}, v \in X^{\prime}\right\}
$$

A cut-vertex of G is a vertex $u \in X$ such that the subgraph induced by $X \backslash\{u\}$ has more connected components than G. A cut-edge of G is an edge $e \in E$ such that the subgraph $(X, E \backslash\{e\})$ has more connected components than G. If G is connected, the deletion of a cut-vertex or of a cut-edge makes G disconnected. More generally, a h-connected graph, $h \geq 1$, is a graph G such that the minimum number of vertices to be deleted in order to disconnect G, or to reduce it to a singleton, is at least h. A h-connected component of G is an induced subgraph which is h-connected and maximal (for inclusion) in G.

A block of G is a maximal induced subgraph with no cut-vertex, and a bridge is an induced subgraph consisting of two adjacent vertices, linked by an edge which is a cut-edge in G.

Throughout this article, the paths and cycles will be elementary, and $G=(X, E)$ will be an undirected, simple graph of order at least 2. Moreover, we shall assume that G is connected: if not, the result would be obtained by choosing any connected component of G, with at least 2 vertices.

2. Choosing a leaf-block of G

The blocks of G are 2-connected components or bridges. The graph given in the left part of Figure 1 contains 5 blocks: $\{a, b, c, d\},\{c, e\},\{g, h, i\}$, $\{e, f, g\}$, and $\{f, j\}$, which are surrounded with dotted lines. Two blocks of G either do not intersect, or intersect on a cut-vertex of G. Define the graph G^{\prime} whose vertices are the blocks of G and whose edges link blocks having a nonempty intersection: G^{\prime} is a tree. Now a block of G which is a leaf in G^{\prime} is called a leaf-block of G. For instance, the graph G in Figure 1 has 3 leaf-blocks.

We give the following definition:
Definition 1. Let $G=(X, E)$ be an undirected connected graph, $Y \subset X$, $y \in Y$, and $s \in X \backslash Y$. A (G, s, Y, y)-path is a path in G whose ends are s and $t \in Y \backslash\{y\}$, and whose vertices other than t are in $X \backslash Y$.

Figure 1. One example for the graphs G and G^{\prime}.
We shall use the following proposition repeatedly.
Proposition 1. Let $G=(X, E)$ be an undirected connected graph, H a 2connected component of G, Y a subset of at least 2 vertices in H, y a vertex in Y which is not a cut-vertex of G, and s a neighbour of y which is not in Y. Then s belongs to H and there is a (H, s, Y, y)-path.

Proof. Let $G \backslash\{y\}$ be the induced subgraph obtained from G by withdrawing the vertex y. Since y is not a cut-vertex, the graph $G \backslash\{y\}$ is still connected: there exists in $G \backslash\{y\}$ a path between s and $Y \backslash\{y\}$, whose vertices, other than its end in $Y \backslash\{y\}$, are in $X \backslash Y$, i.e., a (G, s, Y, y)-path; if we concatenate this path with the edge $\{s, y\}$, we get a path P between y and t, which are two distinct vertices in the 2 -connected component H. Therefore, the union of H and P is still 2-connected, and, by the maximality of H as an induced 2-connected subgraph, P is a path in H.

Proposition 1 states that, if we wish to "leave"a subset Y of at least two vertices in a 2 -connected component H, starting from a non cut-vertex y, then we stay inside H and we "come back" inside Y, on a vertex other than y.

From now on and throughout this article, we assume that G is $(1, \leq 2)$-twin-free.

Note that G cannot have vertices with degree 1: if x has degree 1 and y is its unique neighbour, then the sets $\{y\}$ and $\{x, y\}$ are not separated; actually, this is part of a more general result on $(1, \leq \ell)$-twin-free graphs, which have minimal degree at least ℓ [11, Theorem 8]. Consequently, a leaf-block of G cannot be a bridge: all leaf-blocks of G are 2 -connected components, and Proposition 1 can be applied to them. We denote by H one leaf-block of G. The graph H has at least one cycle.

Also, either H is the whole graph G and in this case has no cut-vertex, or H has one, and only one, cut-vertex of G, α. In the following, we keep the notation α for the cut-vertex of G in the 2 -connected component H, if α exists.

3. The Length of the Longest Cycle in H is Not 6

Lemma 1 will be used repeatedly to show Lemmas 2-4, which state that if H admits certain subgraphs, then, under certain conditions, a $\mathcal{C}_{\geq 7}$ is a subgraph of H. Lemma 5 concludes this section, establishing that the length of the longest cycle in H is not 6 .

Lemma 1. We assume that the longest cycle in H has length 6 . If the graph L given in Figure 2 is a subgraph of H, with $x \neq \alpha$ and $y \neq \alpha$, then t is adjacent to either x or y, and x and y have no neighbours in G other than z, u, and, for exactly one of them, t.

Figure 2. The graph L in Lemma 1.
Proof. We assume that H contains no $\mathcal{C}_{\geq 7}$ and that L is a subgraph of H, with $x \neq \alpha$ and $y \neq \alpha$. Let Y be the set of the 7 vertices in L.

First, we show that the neighbours, in G, of x and y belong to $\{z, u, t\}$. Assume on the contrary that x has a neighbour $s \in X \backslash\{z, u, t\}$.

If s belongs to Y, then $s=y, s=v$, or $s=w$.
If $s \notin Y$, then, since x is not the cut-vertex, we can use Proposition 1: the vertex s belongs to H and there is a (H, s, Y, x)-path.

So, whether $s \in Y$ or not, there is a path P of length at least 1 linking x and $Y \backslash\{x\}$, other than the edges $\{x, z\},\{x, u\}$ and $\{x, t\}$, and whose vertices, but its two ends, do not belong to Y; now we examine the different possible cases, represented in Figure 3.

Figure 3. Illustrations for the proof of Lemma 1.

- (a) If P links x and z, P has length at least 2 ; by concatenating it with the path z, v, t, w, u, x, we obtain a $\mathcal{C}_{\geq 7}$, given in bold in Figure 3(a); this case is impossible, as is the case when P links x and u.
- (b) If P links x and y, this path concatenated with the path y, z, v, t, w, u, x yields a $\mathcal{C}_{\geq 7}$: this case is impossible.
- (c) If P links x and v, this path concatenated with the path v, t, w, u, y, z, x yields a $\mathcal{C}_{\geq 7}$. Similarly, P cannot link x and w.
- (d) Finally, if P links x and t, then P has length at least 2 and by concatenating it with the path t, w, u, y, z, x, we get a $\mathcal{C}_{\geq 7}$, still a contradiction.

None of the above cases is possible, the neighbours of x are in $\{z, u, t\}$ and the same is true for y. Furthermore, we have: $B(\{z, x\}) \supset\{x, y, z, u\}$ and $B(\{z, y\}) \supset\{x, y, z, u\}$. In order to separate the sets $\{z, x\}$ and $\{z, y\}$, it is
necessary to use t, and so, one, and only one, vertex in $\{x, y\}$ is linked to t, which ends the proof of Lemma 1.

Lemma 2. If the graph L given in Figure 2 is a subgraph of H, with $x \neq \alpha$ and $y \neq \alpha$, then $\mathcal{C}_{\geq 7}$ is a subgraph of H.

Proof. We assume that no $\mathcal{C}_{\geq 7}$ is a subgraph of H, that L is a subgraph of H, and that $x \neq \alpha, y \neq \alpha$. We still denote by Y the set of the 7 vertices in L.

One can assume that, if $\alpha \notin Y$, then the path z, α, t does not exist: indeed, if the path z, α, t exists with $\alpha \notin Y$, then we delete in L the path z, v, t and replace it with the path z, α, t, and α is renamed as v. Similarly, one can assume that, if $\alpha \notin Y$, then the path u, α, t does not exist.

If $\alpha=z$ or $\alpha=w$, we rename the vertices, exchanging the names z and u as well as v and w, and so we can assume, without loss of generality, that $\alpha \neq z$ and $\alpha \neq w$.

The graph L we shall consider from now on has the following properties.

- L corresponds to Figure 2,
- $x \neq \alpha, y \neq \alpha, z \neq \alpha$, and $w \neq \alpha$,
- if the path z, α, t exists, then α belongs to Y,
- if the path u, α, t exists, then α belongs to Y.

Using Lemma 1 , we can moreover assume that y is linked to t, and we then know that x and y have no neighbours in G other than those in Figure 4. The graph represented in Figure 4 is a subgraph of H.

Figure 4. The graph L, with the edge $\{y, t\}$.

In order to prove Lemma 2, we proceed step by step, with intermediate results, from 1 to 7 .

1. The vertex w has no neighbour outside Y.

Assume on the contrary that w has a neighbour $s \notin Y$ (see Figure 5); since $w \neq \alpha$, there is a (H, s, Y, w)-path P. By Lemma $1, x$ and y have their neighbours in Y, so P cannot end in x or y. It cannot end in u or t either, since this would yield a $\mathcal{C}_{\geq 7}$, represented in bold in Figure $5($ a) when P ends in u. If P ends in v, then we have a $\mathcal{C}_{\geq 8}$, and if it ends in z, then we have a $\mathcal{C}_{\geq 7}$: the path P cannot end in any vertex of Y. Consequently, w has no neighbour outside Y.

Figure 5. Lemma 2, illustrations for Result 1.
2. If $v \neq \alpha$, then v has no neighbour outside Y.

This result is obtained in exactly the same way as Result 1.
3. There is no vertex outside Y, different from α and adjacent to both z and u.

Assume on the contrary that there exists $s \notin Y$, with $s \neq \alpha$ and s adjacent to z and u (see Figure 6); by Lemma 1, since x is not adjacent to t and neither x nor s is the cut-vertex α, s is adjacent to t; but now $s \neq \alpha$, $y \neq \alpha$, and both s and y are adjacent to t : this contradicts Lemma 1 .
4. If $v \neq \alpha$ and if z has a neighbour $s \notin Y$, then $s=\alpha$ and the path z, α, u exists.

We assume that $v \neq \alpha$ and that z has a neighbour $s \notin Y$. We recall that $z \neq \alpha$, so that by Proposition 1, there is a (H, s, Y, z)-path, P.

The path P cannot end in x, y, or v, otherwise we would have a $\mathcal{C}_{\geq 7}$. On the same grounds, it cannot end in w either, cf. Figure 5(c).

Figure 6. Lemma 2, illustration for Result 3.
Assume now that P ends in t; necessarily, P has length $1(P=\{s, t\})$, otherwise there would be a $\mathcal{C}_{\geq 7}$; but L has been chosen so that, if the path z, α, t exists, then $\alpha \in Y$: we can conclude that $s \neq \alpha$; by Lemma 1, applied to s and v, either v or s is adjacent to u, and s and v have no neighbours outside $\{z, t, u\}$. We are going to show that v cannot be adjacent to u; assume on the contrary that $\{v, u\}$ exists. Since y has no neighbour outside $\{z, u, t\}$, we have (see Figure 7):

$$
B(\{t, y\})=B(\{t, v\})=\{y, z, t, u, v\} \cup B(t)
$$

Figure 7. Lemma 2, illustration for Result 4, when P ends in t.

The sets $\{t, y\}$ and $\{t, v\}$ are not separated, and therefore v is not adjacent to u. In a similar way, if it is s which is adjacent to u, then the sets $\{t, y\}$ and $\{t, s\}$ are not separated. So neither v nor s can be adjacent to u and we have just proved that P cannot end in t.

There remains the possibility that P ends in u. Then, as previously, P has necessarily length 1 , and we have the path z, s, u. Result 3 shows that $s=\alpha$, which ends the proof of Result 4.
5. If $u \neq \alpha$ and if u has a neighbour $s \notin Y$, then $s=\alpha$ and the path u, α, z exists.

We assume that $u \neq \alpha$ and have assumed previously that $w \neq \alpha$. The proof of Result 4 used the assumptions $z \neq \alpha, v \neq \alpha$; we can rerun this proof and obtain Result 5, symmetrically.

Figure 8. Lemma 2, illustration for Result 6.
6. $\alpha=u$ or $\alpha=v$.

Assume that $\alpha \neq u, \alpha \neq v$. By Results 1 and $2, v$ and w have no neighbours outside Y; by Results 4 and $5, z$ and u can possibly have only one neighbour outside Y, that is α, which they share in this case (see Figure 8). We have:

$$
B(\{w, z\})=B(\{v, u\})=Y \text { or } B(\{w, z\})=B(\{v, u\})=Y \cup\{\alpha\} .
$$

The pairs $\{w, z\}$ and $\{v, u\}$ are not separated, so $\alpha=u$ or $\alpha=v$.
7. The sets $\{x, t\}$ and $\{z, w\}$ are not separated.

By the previous result, $t \neq \alpha$. We have:

$$
B(\{x, t\}) \cap Y=B(\{z, w\}) \cap Y=Y
$$

Remember that x, y, and w have no neighbours outside Y (Lemma 1 and Result 1). To separate the pairs $\{x, t\}$ and $\{z, w\}, t$ or z must have a neighbour outside Y which separates them.

Figure 9. Lemma 2, illustrations for Result 7.
Assume first that t has a neighbour $s \notin Y$ which separates $\{x, t\}$ and $\{z, w\}$; by Proposition 1 and since t is not the cut-vertex, there is a (H, s, Y, t) path P, which can end neither in v nor w, because this would give a $\mathcal{C}_{\geq 7}$; it cannot end in x or y either, because these vertices have no neighbours outside Y. Assume now that P ends in u, see Figure 9(a); this means that P is the path u, s, t (otherwise, existence of a $\mathcal{C}_{\geq 7}$), and, using Result 6 (or the hypotheses on L), $s \neq \alpha$. By Lemma 1 applied to w and s, either w or s is adjacent to z. Assume first that it is w. We have:

$$
B(\{t, y\})=B(\{t, w\})=\{y, z, t, u, v, w\} \cup B(t) .
$$

Since y and w have no neighbours outside Y, only x could separate $\{t, y\}$ and $\{t, w\}$, but we already know that the only neighbours of x in G are z and u : the sets $\{t, y\}$ and $\{t, w\}$ cannot be separated, and w is not adjacent to z. Similarly, if it is s which is adjacent to z, then the sets $\{t, y\}$ and $\{t, s\}$ are not separated. We have just proved that P cannot end in u, and the only possibility left is that it ends in z, in which case it has length 1 , see

Figure 9(b), where s and z are neighbours. This however contradicts the choice of s, which was supposed to separate $\{x, t\}$ and $\{z, w\}$.

Assume now that z has a neighbour $s \notin Y$, which separates $\{x, t\}$ and $\{z, w\}$; by Proposition 1, and because $z \neq \alpha$, there is a (H, s, Y, z)-path P, which cannot end in v, x, or y, otherwise there would be a $\mathcal{C}_{\geq 7}$; using Result $1, P$ cannot end in w either. If P ends in u, then it has length 1 and, since $s \neq \alpha$, this contradicts Result 3. Therefore, P ends in t, and it has length 1: s and t are neighbours, which again contradicts the choice of s.

The sets $\{x, t\}$ and $\{z, w\}$ cannot be separated.
The assumption that no $\mathcal{C} \geq 7$ is a subgraph of H led to a contradiction, and Lemma 2 is proved.

Figure 10. The graph K in Lemma 3.
Lemma 3. Consider the graph K given in Figure 10 and assume that, if α exists, then $\alpha=u$ or $\alpha=v$. If K is a subgraph of H, then $\mathcal{C}_{\geq 7}$ is a subgraph of H.

Proof. Denote by Y the set of the 8 vertices in K and assume that we are in the conditions of Lemma 3 . Since G is $(1, \leq 2)$-twin-free, the sets $\{x, t\}$ and $\{y, p\}$ are separated. By symmetry between $\{x, y\}$ and $\{p, t\}$, then between x and y, it suffices to assume that x has a neighbour not in $B(\{y, p\})$. Now $B(\{y, p\}) \supseteq\{x, y, z, p, t, w\}$, and we have the following possibilities:

- x is adjacent to $s \in X \backslash Y, s \neq \alpha$. Since $x \neq \alpha$, there is a (H, s, Y, x) path P. If P ends in w, y, p, t, v, or u, then we have a $\mathcal{C}_{\geq 7}$; and if P ends in z, then either we directly obtain a $\mathcal{C}_{\geq 7}$, or P has length 1 , which means that the edges $\{x, s\}$ and $\{s, z\}$ exist, with $y \neq \alpha, s \neq \alpha$, and Lemma 2 can be applied.
- $\{x, v\}$ is an edge or $\{x, u\}$ is an edge. In both cases, there is a $\mathcal{C}_{\geq 7}$.

In all the above cases, there is a $\mathcal{C}_{\geq 7}$, and Lemma 3 is proved.

Lemma 4. Consider the graph K^{\prime} given in Figure 11 and assume that, if α exists, then $\alpha=u$ or $\alpha=v$. If K^{\prime} is a subgraph of H, then $\mathcal{C}_{\geq 7}$ is a subgraph of H.

Figure 11. The graph K^{\prime} in Lemma 4.

Proof. Denote by Y the set of the 7 vertices in K^{\prime} and assume that we are in the conditions of Lemma 4. Since G is $(1, \leq 2)$-twin-free, the sets $\{p, x\}$ and $\{p, y\}$, whose balls both contain x, y, z, w, and p, are separated; without loss of generality, we can assume that x has a neighbour not in $B(\{p, y\})$. Then we have the following possibilities:

- (a) x is adjacent to $s \in X \backslash Y, s \neq \alpha$. Since $x \neq \alpha$, there is a (H, s, Y, x) path P. If P ends in w, y, p, v, or u, then there is a $\mathcal{C}_{\geq 7}$; and if P ends in z, then either we have a $\mathcal{C}_{\geq 7}$ directly, or P has length 1 , and we can apply Lemma 2 , see the proof of Lemma 3.
- (b) $\{x, u\}$ is an edge; then there is a $\mathcal{C}_{\geq 7}$.
- (c) $\{x, v\}$ is an edge, see Figure 12; the sets $\{z, x\}$ and $\{z, w\}$, whose balls contain Y, being separated, w or x must have a neighbour not in Y. If it is x, we can use case (a) above. Therefore we study the vertex w, a neighbour $s \in X \backslash Y$ of w which is adjacent neither to x nor to z, and a (H, s, Y, w)-path P. If P yields a path of length 3 between w and z with only its ends, w and z, in Y, we apply Lemma 3 ; all other cases directly give a $\mathcal{C}_{\geq 7}$.

In all possible cases, we are led to the existence of a $\mathcal{C}_{\geq 7}$: Lemma 4 is proved.

Figure 12. Illustration for the proof of Lemma 4, with the edge $\{x, v\}$.
We can now prove the following result.
Lemma 5. The length of the longest cycle in H is not 6 .
Proof. Assume on the contrary that the longest cycle in H has length 6 . If H admits a \mathcal{C}_{6} containing α, we choose this cycle, otherwise we pick any \mathcal{C}_{6}, whose vertices we name a, b, c, d, e, and f, and we set $Y=\{a, b, c, d, e, f\}$. If the cycle contains α, we assume that $\alpha=f$ (see Figure 13). Lemmas 2, 3, and 4 as well as the nonexistence of a $\mathcal{C}_{\geq 7}$ show that the only paths with length at least 2 with their ends in Y and their other vertices outside Y are:

- a possible path of length 2 between a and e;
- a possible path of length 2 or 3 between c and f.

Figure 13. The length- 6 cycle for Lemma 5.

Indeed, if a path links two consecutive vertices of the cycle, it gives a $\mathcal{C}_{\geq 7}$; if it links two vertices at distance 2 , other than a and e, either there is a $\mathcal{C}_{\geq 7}$ or Lemma 2 applies; if it links two opposite vertices, other than c and f, either it gives a $\mathcal{C}_{\geq 7}$, or Lemma 3 or 4 applies; finally, if it has length at least 4 between c and f, then there is a $\mathcal{C}_{\geq 7}$ in H.

Now the balls of the sets $\{a, d\}$ and $\{b, e\}$ contain Y; these sets are not separated, since we have just seen that b and d have no neighbour outside Y, and that a and e either have no neighbour outside Y, or have exactly one neighbour outside Y, which they share.

4. The Length of the Longest Cycle in H is Not 5

Lemma 6. If the graph M given in Figure 14 is a subgraph of H, with $x \neq \alpha$ and $y \neq \alpha$, then $\mathcal{C}_{\geq 6}$ is a subgraph of H.

Figure 14. The graph M in Lemma 6.
Proof. Assume that M is a subgraph of H, with $x \neq \alpha, y \neq \alpha$. The sets $\{z, x\}$ and $\{z, y\}$ being separated, x or y must have a neighbour s performing the separation. Assume, without loss of generality, that it is x. If there is an edge between x and v or w, we have a $\mathcal{C}_{\geq 6}$; if not, x has a neighbour s outside M. Since $x \neq \alpha$, there is a (H, s, M, x)-path which in all cases will yield a $\mathcal{C}_{\geq 6}$.

Lemma 7. The length of the longest cycle in H is not 5 .
Proof. Assume on the contrary that the longest cycle in H has length 5 . If H admits a \mathcal{C}_{5} containing α, we choose this cycle, otherwise we pick any \mathcal{C}_{5},
whose vertices we name a, b, c, d, and e, and we set $Y=\{a, b, c, d, e\}$. If the cycle contains α, we assume that $\alpha=e$ (see Figure 15).

Figure 15. The length- 5 cycle for Lemma 7.
As previously, the nonexistence of a $\mathcal{C}_{\geq 6}$ and Lemma 6 show that the only path with length at least 2 whose ends are in Y and other vertices are not in Y, is a path of length 2 between a and d. This however does not separate the sets $\{a, c\}$ and $\{b, d\}$, which, together with the fact that a, c, b, d are not the cut-vertex, ends the proof of Lemma 7 .

5. The Length of the Longest Cycle in H is Not 4 or 3

Lemma 8. The length of the longest cycle in H is not 4 .
Proof. Assume on the contrary that the longest cycle in H has length 4. Pick such a cycle, name its vertices a, b, c, d and assume, without loss of generality, that the cut-vertex is not a, b, or c (see Figure 16).

Figure 16. The length- 4 cycle for Lemma 8.

The sets $\{b, a\}$ and $\{b, c\}$ being separated, there is a path of length at least 2 whose first end is a or c, whose second end, different from the first one, is on the cycle, and whose other vertices are not on the cycle. The only possibility, in order not to have a $\mathcal{C}_{\geq 5}$, is a path a, s, c where s does not belong to the cycle, but then s does not separate the sets $\{b, a\}$ and $\{b, c\}$, which proves Lemma 8.

Lemma 9. The length of the longest cycle in H is not 3 .
Proof. Assume on the contrary that the longest cycle in H has length 3. Pick such a cycle, name its vertices a, b, c and assume, without loss of generality, that the cut-vertex is not a or b. Then it is impossible to separate the sets $\{c, a\}$ and $\{c, b\}$ without creating a $\mathcal{C}_{\geq 4}$.

6. Existence of a Cycle of Length at Least 7

Theorem 1. Any undirected connected $(1, \leq 2)$-twin-free graph of order at least 2 admits an elementary cycle of length at least 7 as a subgraph.

Proof. We have seen before Section 3 that the graph H admits a cycle; by Lemmas 5, 7-9, its longest cycle cannot have length $6,5,4$, or 3 : the longest cycle in H, hence the longest cycle in G, has length at least 7 .

7. Conclusion: Remarks and Open Issues

We already mentioned in the introduction the parallel between the result we just proved and the fact that any connected ($r, \leq 1$)-twin-free graph of order at least 2 admits the path with $2 r+1$ vertices as an induced subgraph [1]. We could wonder whether our result for $(1, \leq 2)$-twin-free graphs could be extended to the existence of an induced cycle with length at least seven. But considering the two graphs in Figure 17, one can see, in a straightforward if not clever way, that they are $(1, \leq 2)$-twin-free and have no chordless $\mathcal{C} \geq 7$ as an induced subgraph. Thus in Theorem 1, one cannot add the property "as an induced subgraph". Also observe that the shortest possible cycle, \mathcal{C}_{3}, can be contained in a $(1, \leq 2)$-twin-free graph, as shown, for instance, by the second graph in Figure 17.

Figure 17. Two $(1, \leq 2)$-twin-free graphs with no chordless $\mathcal{C}_{\geq 7}$ as induced subgraph.

Next, we state the following conjecture:
Conjecture 1. For all $r \geq 2$, the smallest connected ($r, \leq 2$)-twin-free graph with at least two vertices is the cycle on $4 r+3$ vertices and all connected ($r, \leq 2$)-twin-free graphs with at least two vertices contain a cycle of length at least $4 r+3$.

For $\ell=3$, T . Laihonen gives in [9] an example of a connected $(1, \leq 3)$ -twin-free cubic graph with 16 vertices. It is, as far as we know, the smallest example of a nontrivial $(1, \leq 3)$-twin-free graph, but is remains unknown if these graphs always contain particular subgraphs. We do not dare for now to conjecture on this issue.

References

[1] D. Auger, Induced paths in twin-free graphs, Electron. J. Combinatorics 15 (2008) N17.
[2] C. Berge, Graphes (Gauthier-Villars, 1983).
[3] C. Berge, Graphs (North-Holland, 1985).
[4] I. Charon, I. Honkala, O. Hudry and A. Lobstein, Structural properties of twin-free graphs, Electron. J. Combinatorics 14 (2007) R16.
[5] I. Charon, O. Hudry and A. Lobstein, On the structure of identifiable graphs: results, conjectures, and open problems, in: Proceedings 29th Australasian Conference in Combinatorial Mathematics and Combinatorial Computing (Taupo, New Zealand, 2004) 37-38.
[6] R. Diestel, Graph Theory (Springer, 3rd edition, 2005).
[7] S. Gravier and J. Moncel, Construction of codes identifying sets of vertices, Electron. J. Combinatorics 12 (2005) R13.
[8] I. Honkala, T. Laihonen and S. Ranto, On codes identifying sets of vertices in Hamming spaces, Designs, Codes and Cryptography 24 (2001) 193-204.
[9] T. Laihonen, On cages admitting identifying codes, European J. Combinatorics 29 (2008) 737-741.
[10] T. Laihonen and J. Moncel, On graphs admitting codes identifying sets of vertices, Australasian J. Combinatorics 41 (2008) 81-91.
[11] T. Laihonen and S. Ranto, Codes identifying sets of vertices, in: Lecture Notes in Computer Science, No. 2227 (Springer-Verlag, 2001) 82-91.
[12] A. Lobstein, Bibliography on identifying, locating-dominating and discriminating codes in graphs, http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf.
[13] J. Moncel, Codes identifiants dans les graphes, Thèse de Doctorat, Université de Grenoble, France, 165 pages, June 2005.

Received 27 July 2009
Revised 14 December 2009
Accepted 14 December 2009

