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Abstract

We investigate expressions of form A×C ∼= B×C involving direct
products of digraphs. Lovász gave exact conditions on C for which
it necessarily follows that A ∼= B. We are here concerned with a
different aspect of cancellation. We describe exact conditions on A for
which it necessarily follows that A ∼= B. In the process, we do the
following: Given an arbitrary digraph A and a digraph C that admits
a homomorphism onto an arc, we classify all digraphs B for which
A× C ∼= B × C.
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The article [2] describes the exact conditions a graph A must meet in order
that any expression A × C ∼= B × C necessarily implies A ∼= B. It also
classifies—given graphs A and C—all graphs B for which A× C ∼= B × C.
This paper generalizes these results to digraphs. Thus, given that a graph
is just a symmetric digraph, the current article implies the results of [2] but
is considerably more general. We begin by recalling the relevant definitions
and notation.
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1. Notation and Notions

For us, a digraph A is simply a binary relation E(A) on a vertex set V (A),
that is a subset E(A) ⊆ V (A)×V (A). For brevity, an ordered pair (a, a′) ∈
E(A) is denoted aa′, and is visualized as an arrow pointing from a to a′.
Elements of E(A) are called arcs. A reflexive arc aa is called a loop, and is
drawn as a closed curve beginning and ending at a. (We normally do not
embellish such a closed curve with an arrowhead.)

We denote by
−→
K2 the digraph with two vertices 0 and 1 and a single arc

01. (The digraph
−→
K2 plays a large role in this discussion.) Given a positive

integer n, we denote by
−→
Cn the digraph whose vertices are {0, 1, 2, . . . , n−1}

and whose edges are {01, 12, 23, . . . , (n− 1)0}. By convention we agree that
−→
C1 consists of a single vertex with a loop. Some of these digraphs are

illustrated in Figure 1. Notice that
−→
C1 and

−→
C2 are symmetric (as relations)

but
−→
K2 and

−→
Cn (n > 2) are not symmetric.

−→

K2

−→

C1

−→

C2

−→

C3

−→

C4

−→

C5

Figure 1. Examples of digraphs.

A symmetric digraph A (i.e., one satisfying aa′ ∈ E(A) if and only if a′a ∈
E(A) for all a, a′ ∈ V (A)) is called a graph. In drawing graphs it is common
to represent the two arcs aa′ and a′a as a single undirected edge joining a
and a′. As usual, Kn denotes the complete graph on n vertices. By K∗

n we
mean the graph obtained from Kn by adding a loop at each vertex.

If A and B are digraphs, then A + B denotes the disjoint union of A
and B. If n is a natural number, then nA denotes the digraph formed from
n disjoint copies of A.

The direct product of two digraphs A and B is the digraph A×B whose
vertex set is the Cartesian product V (A) × V (B) and whose arcs are the
pairs (a, b)(a′, b′) with aa′ ∈ E(A) and bb′ ∈ E(B). A homomorphism from
digraph A to digraph B is a map ϕ : V (A) → V (B) with the property
that aa′ ∈ E(A) implies ϕ(a)ϕ(a′) ∈ E(B). We assume the reader to be
familiar with direct products and homomorphisms. For standard references
see [4, 3].
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2. Cancellation Laws of Lovász

In his classic paper [5], Lovász defines a digraph C to be a zero divisor if
there exist non-isomorphic digraphs A and B for which A×C ∼= B×C. For

example, Figure 2 shows that
−→
C3 is a zero divisor: If A =

−→
C3 and B = 3

−→
C1,

then clearly A 6∼= B, yet A ×
−→
C3

∼= B ×
−→
C3. (Both products are isomorphic

to three copies of
−→
C3.)

A B

−→
C3

−→
C3A ×

−→
C3 B ×

−→
C3

Figure 2. Example of a zero divisor.

Here is the main result concerning zero divisors.

Theorem 1 (Lovász [5], Theorem 8). A digraph C is a zero divisor if and

only if there is a homomorphism ϕ : C →
−→
Cp1

+
−→
Cp2

+
−→
Cp3

+ · · · +
−−→
Cpk

for
prime numbers p1, p2, . . . , pk.

Thus, for instance,
−→
K2 is a zero divisor. Also any

−→
Cn with n > 1 is a

zero divisor. (Even if n is not prime, there is an n
p
-fold homomorphic cover

ϕ :
−→
Cn →

−→
Cp for any prime divisor p of n.) Theorem 1 becomes quite simple

if C is a graph with at least one edge, for in this case no homomorphism

ϕ can carry a (symmetric) edge of C to an (asymmetric) arc of
−→
Cn. As

−→
Cn

is symmetric only for n = 2, it follows that a graph C is a zero divisor if

an only if there is a homomorphism ϕ : C →
−→
C2, that is if and only if C is

bipartite.

Corollary 1. A graph C with at least one edge is a zero divisor if and only
if C is bipartite.
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Theorem 1 and its corollary can be regarded as cancellation laws for the
direct product. They give exact conditions on C (namely the absence of a

homomorphism ϕ : C →
−→
Cp1

+
−→
Cp2

+ · · ·+
−−→
Cpk

) under which A×C ∼= B×C
necessarily implies A ∼= B.

However, this does not fully resolve every question concerning cancel-
lation. One might ask what conditions on A (or B) might guarantee that

A × C ∼= B × C always implies A ∼= B. For example, if A =
−→
C1, then

A × C ∼= B × C implies A ∼= B whether or not C meets the hypothesis of
Theorem 1. It is reasonable to ask what other digraphs A have this prop-
erty. The answer to that question is the purpose of this paper. Along the
way we will describe a means of classifying—given digraphs A and C—all
digraphs B for which A×C ∼= B×C. Our methods will require the following
theorems due to Lovász.

Theorem 2 (Lovász [5], Theorem 6). Let A,B,C and D be digraphs. If
A×C ∼= B ×C and there is a homomorphism from D to C, then A×D ∼=
B ×D.

Theorem 3 (Lovász [5], Theorem 7). Let A,B and C be digraphs. If
A×C ∼= B ×C, then there is an isomorphism from A×C to B ×C of the
form (a, c) 7→ (ψ(a, c), c) for some homomorphism ψ : A× C → B.

3. An Arc as a Factor

This section addresses the equation A × C ∼= B × C where the common

factor C is the single arc
−→
K2. Given a digraph A we describe the structure

of all digraphs B having the property that A×
−→
K2

∼= B×
−→
K2. From this we

will obtain necessary conditions on B for which A × C ∼= B × C (where C
is arbitrary).

Given a digraph A, we denote the set of permutations of V (A) as
Perm(V (A)). The following definition is central to the remainder of this
paper.

Definition 1. Given a digraph A and a permutation π ∈ Perm(V (A)), we
define a digraph Aπ as V (Aπ) = V (A) and E(Aπ) = {aπ(a′) : aa′ ∈ E(A)}.
Thus aa′ ∈ E(A) if and only if aπ(a′) ∈ E(Aπ), and aa′ ∈ E(Aπ) if and only
if aπ−1(a′) ∈ E(A).
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Figure 3 shows examples. The upper-left displays a digraph A on vertices
{0, 1, 2}, and the digraphs Aπ for each of the six permutations of V (G)
are shown. (Note that Aid = A.) In this case the Aπ are six pairwise
nonisomorphic graphs.

A

A
(01)

A
(12 )

A
(02 )

A
(012 )

A
(02 1)

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

Figure 3. Examples of A and Aπ.

For another example, take A =
−→
C3 and let π = (021) permute the vertices

cyclicly in the direction opposite to the arcs. Then Aπ = 3
−→
C1. (Digraphs A

and B = Aπ appear as factors in Figure 2.)

It is perhaps a startling fact that even though A 6∼= Aπ in general, it is

nonetheless true that A ×
−→
K2

∼= Aπ ×
−→
K2 for any π. Before proving this,

observe that it is true for the digraphs A and Aπ from Figure 3: Figure 4

confirms that all the products Aπ ×
−→
K2 are isomorphic.

1 2 3

A

A
(12)

1 2 3

A
(23 )

1 2 3

A
(13 )

1 2 3

A
(123 )

1 2 3

A
(13 2)

0 1 2

Figure 4. Products with Aπ as a factor.



580 R.H. Hammack and K.E. Toman

In fact, a somewhat stronger statement can be proved.

Proposition 1. If A and B are digraphs, then A ×
−→
K2

∼= B ×
−→
K2 if and

only if B ∼= Aπ for some π ∈ Perm(V (A)).

Proof. Suppose B ∼= Aπ for some π ∈ Perm(V (A)). In showing A ×
−→
K2

∼= B ×
−→
K2, there is no harm in assuming further that B = Aπ. Thus

V (B) = V (A) and E(B) = {aπ(a′) : aa′ ∈ E(A)}. Define a map ϕ :

V (A×
−→
K2) → V (B ×

−→
K2) as follows.

ϕ(a, ε) =

{

(π(a), ε) if ε = 1,

(a, ε) if ε = 0.

Now, ϕ is clearly bijective. Consider a typical arc of A×
−→
K2, which necessar-

ily has the form (a, 0)(a′, 1) for some aa′ ∈ E(A). Observe that

ϕ(a, 0)ϕ(a′ , 1) = (a, 0)(π(a′), 1) is an arc of Aπ ×
−→
K2, so ϕ is a homo-

morphism. On the other hand, if (a, 0)(a′, 1) ∈ Aπ ×
−→
K2, then aa′ ∈

E(Aπ), so aπ−1(a′) ∈ E(A). Thus (a, 0)(π−1(a′), 1) ∈ E(A ×
−→
K2) and

ϕ(a, 0)ϕ(π−1(a′), 1) = (a, 0)(a′, 1). We therefore have an isomorphism ϕ :

A×
−→
K2 → B ×

−→
K2.

Conversely, suppose there exists an isomorphism ϕ : A×
−→
K2 → B×

−→
K2.

We will produce a π for which B ∼= Aπ. By Theorem 3 we may assume

that ϕ has the form ϕ(a, ε) = (ψ(a, ε), ε) for some map ψ : A ×
−→
K2 → B.

(Actually this can be deduced quickly in the present simple case where the

common factor C is
−→
K2: The vertices of A×

−→
K2 with positive out-degree all

belong to V (A)×{0}, so ϕ necessarily sends them to V (B)×{0}. Likewise

vertices of A ×
−→
K2 with positive in-degree all belong to V (A) × {1}, so ϕ

necessarily sends them to V (B)×{1}. Thus if (a, ε) is a non-isolated vertex

of A×
−→
K2, then ϕ does not alter its second coordinate. One quickly confirms

that the action of ϕ on the isolated vertices can be modified if necessary so
that it does not alter the second coordinates.)

Now consider maps µ0, µ1 : V (A) → V (B) defined as µ0(a) = ψ(a, 0)
and µ1(a) = ψ(a, 1). It is straightforward to verify that bijectivity of ϕ im-
plies that µ0 and µ1 are bijections too. Set π = µ−1

0 µ1, so π ∈ Perm(V (A)).
The proof is completed by showing that the bijection µ0 : V (Aπ) → V (B)
is an isomorphism. For this, consider the following chain of equivalences.
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aa′ ∈ E(Aπ)⇐⇒ a π−1(a′) ∈ E(A) (definition of Aπ)
⇐⇒ aµ−1

1
µ0(a

′) ∈ E(A) (definition of π)

⇐⇒ (a, 0)(µ−1

1
µ0(a

′), 1) ∈ E(A×
−→
K2) (definition of ×)

⇐⇒ ϕ(a, 0)ϕ(µ−1

1
µ0(a

′), 1) ∈ E(B ×
−→
K2) (ϕ is isomorphism)

⇐⇒ (ψ(a, 0), 0)(ψ(µ−1

1
µ0(a

′), 1), 1) ∈ E(B ×
−→
K2) (property of ϕ)

⇐⇒ (µ0(a), 0)(µ0(a
′), 1) ∈ E(B ×

−→
K2) (definition of µ0, µ1)

⇐⇒ µ0(a)µ0(a
′) ∈ E(B). (definition of ×)

Thus µ0 : Aπ → B is an isomorphism, and the proof is complete.

Digraph
−→
K2 in Proposition 1 can be replaced with the class of digraphs that

admit homomorphisms onto
−→
K2.

Corollary 2. Suppose A,B and C are digraphs, and there is a surjective

homomorphism C →
−→
K2. Then A × C ∼= B × C if and only if B ∼= Aπ for

some π ∈ Perm(V (A)).

Proof. Suppose A× C ∼= B × C. Since C has at least one arc, there is a

homomorphism
−→
K2 → C. Therefore Theorem 2 implies A ×

−→
K2

∼= B ×
−→
K2.

Proposition 1 now guarantees a permutation π ∈ Perm(V (A)) for which
B ∼= Aπ.

Conversely suppose B ∼= Aπ, so A ×
−→
K2

∼= B ×
−→
K2 by Proposition 1.

Since there is a homomorphism C →
−→
K2, Theorem 2 implies A×C ∼= B×C.

We can not expect to relax the conditions on C in Corollary 2. The reason

is that the existence of the homomorphism C →
−→
K2 means that C is a zero

divisor. Without such a homomorphsm C might not be a zero divisor, and
then we could only have A× C ∼= Aπ × C in the event that A ∼= Aπ. Still,
one direction of Corollary 2 can be generalized to an arbitrary C, as follows.

Corollary 3. Suppose A,B and C are digraphs and C has at least one arc.
If A× C ∼= B × C, then B ∼= Aπ for some π ∈ Perm(V (A)).

Proof. (First paragraph of the proof of Corollary 2.)

Taken together, Corollaries 2 and 3 tell us that the digraphs C which admit

homomorphisms onto
−→
K2 are the most “egregious” of all zero divisors. Corol-

lary 2 implies that if C is such a digraph, then for an arbitrary digraph A,
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there are potentially |V (A)|! different digraphs B for which A×C ∼= B×C.
By contrast, Corollary 3 suggests that if C does not admit such a homomor-
phism, then there are perhaps fewer such digraphs B.

We now continue our investigation of equations A×C ∼= B×C where C

is a zero divisor which admits a homomorphism onto
−→
K2. For a given digraph

A, Corollary 2 completely describes the structure of all digraphs B for which
A × C ∼= B × C. However, it does not adequately enumerate them, for it
is possible that Aπ ∼= Aµ for different permutations π, µ ∈ Perm(V (A)).
In order to resolve such redundancy, we introduce a factorial operations on
digraphs.

4. The Digraph Factorial

A version of the following definition was introduced in [2]. It is here modified
slightly and adapted to digraphs.

Definition 2. Given a digraph A, the factorial of A is another digraph,
denoted as A!, and defined as follows. The vertex set of A! is V (A!) =
Perm(V (A)). Given permutations α, β ∈ V (A!), there is an arc from α
to β provided that aa′ ∈ E(A) if and only if α(a)β(a′) ∈ E(A), for all
a, a′ ∈ V (A). We denote an arc from α to β as (α)(β) to avoid confusion
with composition.

We remark in passing that A! is a subgraph of the digraph exponential AA.
(See Section 2.4 of [3].) Observe that the definition implies that there is a
loop at a vertex α ∈ E(A!) if and only if α is an automorphism of A. In
particular any A! has a loop at the identity permutation id.

As our first example, consider the factorial of the graph K ∗

n, the com-
plete (symmetric) graph with a loop at each vertex. Here we have both
aa′ ∈ E(A) and α(a)β(a′) ∈ E(A) for all possible a, a′ ∈ V (K∗

n) and all
possible permutations α and β. Consequently any two α, β form an arc of
K∗

n!. Thus K∗

n! ∼= K∗

n!, which factors as

K∗

n! ∼= K∗

n ×K∗

n−1 ×K∗

n−2 × · · · ×K∗

3 ×K∗

2 ×K∗

1

and explains our choice of the word “factorial” for this operation.
Figure 5 shows further examples of digraph factorials. Each part (a),

(b) and (c), shows a digraph A on vertex set {0, 1, 2}, with its factorial on
the right.
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(a)

(b )

(c) A A!

A A!

A A!

0 1 2 id (012) (021)(12)(02) (01)

0 1 2 id (012) (021)(12)(02) (01)

0 1 2 id (012) (021)(12)(02) (01)

Figure 5. Examples of A and A!.

For a given graph A we define a relation ∼ on V (A!) by declaring µ ∼ λ
if and only if there is an arc (α)(β) ∈ E(A!) for which µ = α−1λβ. This
is an equivalence relation as follows. It is reflexive since µ = id−1µid and
(id)(id) ∈ E(A!). It is symmetric as follows. Suppose µ ∼ λ and take
(α)(β) ∈ E(A!) with µ = α−1λβ, so λ = (α−1)−1µβ−1. Then λ ∼ µ
provided (α−1)(β−1) ∈ E(A!). But this is clear: From (α)(β) ∈ E(A!) we
get aa′ ∈ E(A) if and only if α(a)β(a′) ∈ E(A) for all pairs a, a′ ∈ V (A).
Substituting a and a′ with α−1(a) and β−1(a′), produces α−1(a)β−1(a′) ∈
E(A) if and only if aa′ ∈ E(A) for all pairs a, a′ ∈ V (A), which means
(α−1)(β−1) ∈ E(A!). Finally we check transitivity. Suppose µ ∼ λ and
λ ∼ π, so A! has arcs (α)(β) and (γ)(δ) with µ = α−1λβ and λ = γ−1πδ.
Thus µ = (γα)−1π(δβ). It is immediate that (γα)(δβ) ∈ E(A!), so λ ∼ π.

Proposition 2. Suppose A is a digraph and µ, λ ∈ Perm(V (A)). Then
Aµ ∼= Aλ if and only if µ ∼ λ.

Proof. Suppose µ ∼ λ, so there is an arc (α)(β) ∈ E(A!) for which
µ = α−1λβ. The following chain of equivalences shows that α : Aµ → Aλ is
an isomorphism.

aa′ ∈ E(Aµ) ⇐⇒ aµ−1(a′) ∈ E(A) (definition of Aµ)
⇐⇒ α(a)βµ−1(a′) ∈ E(A) (since (α)(β) ∈ E(A!))
⇐⇒ α(a)λβµ−1(a′) ∈ E(Aλ) (definition of Aλ)
⇐⇒ α(a)αα−1λβµ−1(a′) ∈ E(Aλ)
⇐⇒ α(a)α(a′) ∈ E(Aλ). (α−1λβ = µ)
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Conversely, suppose ϕ : Aµ → Aλ is an isomorphism. Observe µ =
(ϕ−1)λ(λ−1ϕµ), so we will have µ ∼ λ as soon as we can show (ϕ)(λ−1ϕµ) ∈
E(A!). For this, consider the following reasoning.

aa′ ∈ E(A) ⇐⇒ aµ(a′) ∈ E(Aµ) (definition of Aµ)
⇐⇒ ϕ(a)ϕµ(a′) ∈ E(Aλ) (ϕ is isomorphism)
⇐⇒ ϕ(a)λ−1ϕµ(a′) ∈ E(A). (definition of Aλ)

From the definition of A! it now follows that (ϕ)(λ−1ϕµ) ∈ E(A!).

Combining Proposition 2 and Corollary 3 produces the following theorem

concerning zero divisors that admit homomorphisms onto
−→
K2. Given such a

zero divisor C and a digraph A, it classifies all B for which A×C ∼= B×C.

Theorem 4. Suppose A and C are digraphs and there is a surjective homo-

morphism C →
−→
K2. Let µ1, µ2, . . . , µk ∈ V (A!) be representatives from the

k equivalence classes of ∼. Then the digraphs B (up to isomorphism) for
which A× C ∼= B × C are exactly B = Aµ1 , Aµ2 , . . . , Aµk .

Let us look at several examples of this theorem. Consider the digraph A
from Figure 5(a). Here A! has only one arc (id)(id), so the equivalence class
containing any permutation π consists only of the element id−1π id = π.
Thus there are six equivalence classes, each one containing a single permu-
tation of {0, 1, 2}, and consequently six distinct digraphs B = Aπ for which
A× C ∼= B × C. These are listed in Figure 3.

Next consider A in Figure 5(b) The arcs of the factorial are (id)(id),
(02)(id), (id)(02) and (02)(02), so it is not hard to work out the ∼ equiva-
lence classes. The equivalence class containing id is

{id−1id id, (02)−1id id, id−1id(02), (02)−1id(02)} = {id, (02)},

and the class containing (01) is

{id−1(01)id, (02)−1(01)id, id−1(01)(02), (02)−1(01)(02)}

= {(01), (012), (021), (12)}.

These are the only equivalence classes. Taking representatives id and (01),
Theorem 4 tells us that there are only two digraphs B for which A × C ∼=
B × C, and they are B = Aid = A and B = A(01), drawn in Figure 6.
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A
id

A
(0 1 )

Figure 6. Two graphs B guaranteed by Theorem 4.

Figure 7 shows Aid×C and A(01)×C, for a particular graph C that admits a

homomorphism C →
−→
K2. It is clear that these products are both isomorphic

to A× C.

C C

Aid
A(0 1 )

Figure 7. A× C ∼= B × C.

5. Cancellation Digraphs

Let us call a digraph A a cancellation digraph if whenever A× C ∼= B × C
for digraphs B and C (where C has at least on edge) it is necessarily true
that A ∼= B. For example, K∗

1 is a cancellation digraph. The graph A = Aid

from Figure 6 is not a cancellation digraph, for there is a different graph
B = A(01) with A× C ∼= B × C, as illustrated in Figure 7.

This section presents a characterization of cancellation digraphs.

Observe that if A×C ∼= B×C, then Theorem 2 implies A×
−→
K2

∼= B×
−→
K2.

By Theorem 4, it must be the case that B ∼= Aπ for some permutation π
of V (A). Further, it follows that A is a cancellation digraph if and only
if Aπ ∼= A for all permutations π, that is if and only if ∼ has only one
equivalence class. This idea is repackaged in the next theorem.

Proposition 3. Given a digraph A, let Φ : E(A!) → V (A!) be defined as
Φ((α)(β)) = α−1β. Then A is a cancellation digraph if and only if Φ is
surjective.



586 R.H. Hammack and K.E. Toman

Proof. It suffices to prove that the image of Φ is {π ∈ V (A!) : π ∼ id},
for then Φ is surjective if and only if every π ∈ V (A!) is equivalent to the
identity, if and only if Aπ ∼= Aid = A for every π ∈ V (A!).

Indeed, any element in the image of Φ is of form α−1β for some arc
(α)(β) ∈ E(A!). As α−1β = α−1idβ, we have α−1β ∼ id. Conversely, if
id ∼ π then π = α−1idβ for some arc (α)(β) ∈ E(A!), so π = α−1β is in the
image of Φ.

We now construct two families of cancellation digraphs. Given non-negative
integersm and n, form a digraph V n

m as follows. Begin with the disjoint union
K∗

n +K∗

m, where the bar represents complementation. (So K ∗

m consists of m
isolated vertices, without loops.) Finally establish arcs pointing from each
vertex of K∗

n to every vertex of K∗

m. The digraph on the left side of Figure 8
is V 2

3 . We also construct a family of digraphs Λn
m by starting with K∗

n +K∗

m

and establishing arcs pointing from each vertex of K ∗

m to every vertex of K∗

n.
The digraph on the right side of Figure 8 is Λ2

3. Notice that V n
0 = Λn

0 = K∗

n

and V 0
m = Λ0

m = K∗

m, but these are the only cases where V n
m

∼= Λq
p.

V
2

3
Λ

2

3

Figure 8. Examples of cancellation digraphs.

We can use Proposition 3 to show that V n
m is a cancellation digraph. Our

strategy is to show (id)(π) ∈ E(V n
m!) for every permutation π ∈ V (V n

m!),
and then, as Φ((id)(π)) = π, it follows that map Φ is surjective. Therefore
we need to confirm that aa′ ∈ E(V n

m) ⇐⇒ id(a)π(a′) ∈ E(V n
m) for each

a, a′ ∈ V (V n
m). Thus consider a, a′ ∈ V (V n

m). Suppose aa′ ∈ E(V n
m). By

construction of V n
m, it must be that a ∈ V (K∗

n). But a ∈ V (K∗

n) implies
ab is an arc of V n

m for any b ∈ V (V n
m), so aπ(a′) = id(a)π(a′) ∈ E(V n

m).
Conversely, if aa′ /∈ E(V n

m) then it must be that a ∈ V (K∗

m), and this
means ab /∈ E(V n

m) for any b, whence id(a)π(a′) /∈ E(V n
m). It follows that

(id)(π) ∈ E(V n
m!), so V n

m is indeed a cancellation digraph.

Next we show that Λn
m is a cancellation digraph. Our strategy is the

same as for V n
m, except here we show (π−1)(id) ∈ E(Λn

m!) for any π ∈
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V (Λn
m!). Thus consider a, a′ ∈ V (Λn

m). By construction of Λn
m we have

aa′ ∈ E(Λn
m) implies a′ ∈ V (K∗

n). But a′ ∈ V (K∗

n) means ba′ is an arc
of Λn

m for any b, so π−1(a)id(a′) ∈ E(Λn
m). Conversely, if aa′ /∈ E(Λn

m)
then it must be that a′ ∈ V (K∗

m), and this means ba′ /∈ E(Λn
m) for any b,

whence π−1(a)id(a′) /∈ E(Λn
m). It follows that (π−1)(id) ∈ E(Λn

m!), so Λn
m

is a cancellation digraph.

Theorem 5. A digraph is a cancellation digraph if and only if it is isomor-
phic to some V n

m or Λn
m.

Proof. We have already noted that V n
m and Λn

m are cancellation digraphs.
Now consider any cancellation digraph A. We will make two observations
about its structure. Both observations rely on the following remark.

Remark. If τ ∈ V (A!) is the transposition that interchanges two vertices
a, a′ ∈ V (A), then A and Aτ have the same number of loops at a and a′.
(That is either A and Aτ each have loops at both a and a′, or neither has a
loop at a nor a′, or each has exactly one loop at a or a′.) To see this, observe
that if b ∈ V (A)−{a, a′}, then bb ∈ E(A) if and only if bb = bτ(b) ∈ E(Aτ ),
so A has a loop at such a b if and only if Aτ has a loop at b. But A ∼= Aτ

(because A is a cancellation digraph) so A and Aτ have the same number of
loops. It follows that A and Aτ have the same number of loops at a and a′.

Now we make two observations concerning pairs of vertices a, a′ ∈ V (A).

1. Note aa ∈ E(A) and a′a′ ∈ E(A) if and only if aa′ ∈ E(A) and a′a ∈
E(A). To see this, first suppose A has loops at both a and a′. By
the remark, aa ∈ E(Aτ ) and a′a′ ∈ E(Aτ ), and this means aτ−1(a) =
aa′ ∈ E(A) and a′τ−1(a′) = a′a ∈ E(A). Conversely, if aa′ ∈ E(A) and
a′a ∈ E(A) then aτ(a′) = aa ∈ E(Aτ ) and a′τ(a) = a′a′ ∈ E(Aτ ). The
remark implies that A has loops at a and a′.

2. Note aa /∈ E(A) and a′a′ /∈ E(A) if and only if aa′ /∈ E(A) and a′a /∈
E(A). To see this, first suppose aa /∈ E(A) and a′a′ /∈ E(A). By the
remark, aa /∈ E(Aτ ) and a′a′ /∈ E(Aτ ), and this means aτ−1(a) = aa′ /∈
E(A) and a′τ−1(a′) = a′a ∈ E(A). Conversely, if aa′ /∈ E(A) and
a′a /∈ E(A) then aτ(a′) = aa /∈ E(Aτ ) and a′τ(a) = a′a′ /∈ E(Aτ ). The
remark implies aa /∈ E(A) and a′a′ /∈ E(A).

At this point we can see why A ∼= V n
m or A ∼= Λn

m. Let L ⊆ V (A) be the
vertices of A with loops and let N ⊆ V (A) be the vertices without loops.
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Put n = |L| and m = |N |. By Observation 1, A has two arcs between any
two vertices in L. By Observation 2, A has no arcs between any two vertices
in N . Thus the subgraph 〈L〉 induced on L is K∗

n, and the subgraph 〈N〉
induced on N is K∗

m.
Moreover Observations 1 and 2 taken together imply that there is ex-

actly one arc between any two vertices a ∈ L and a′ ∈ N . We need to show
that either all such arcs are directed from L to N (in which case A ∼= V n

m)
or all are directed from N to L (in which case A ∼= Λn

m). Suppose to the
contrary that this is not the case. Then A must have one of the follow-
ing induced subgraphs, where the upper vertices are in L and the lower
are in N .

a

b

c
b

a c

Figure 9. Forbidden configurations in a cancellation digraph.

In either case consider the cyclic permutation π = (abc), and note that Aπ

has fewer loops on the vertices {a, b, c} than does A. Since π does not alter
vertices in V (A)−{a, b, c}, it follows that A has a loop at x ∈ V (A)−{a, b, c}
if and only if Aπ has a loop at x. ThusA has more loops than Aπ, so A 6∼= Aπ,
contradicting the fact that A is a cancellation digraph.

6. Conclusion

In summary, our main results are as follows, where A is a fixed digraph and
C is a digraph that has at least one edge.

1. (Corollary 2) If there is a surjective homomorphism C →
−→
K2, then

A×C ∼= B × C ⇐⇒ B ∼= Aπ for some π ∈ Perm(V (A)).

2. (Corollary 3) If C has at least one edge, then A × C ∼= B × C =⇒
B ∼= Aπ for some π ∈ Perm(V (A)).

3. (Proposition 2) If there is a surjective homomorphism C →
−→
K2, then

the graphs B for which A × C ∼= B × C are precisely B = Aµi , where
µ1, µ2, . . . , µk are representatives from the distinct ∼ equivalences classes
of V (A!).
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4. (Theorem 5) A digraph A satisfies A× C ∼= B × C =⇒ A ∼= B for all
C if and only if A ∼= Λn

m or A ∼= V n
m for some m,n.

In conclusion we mention two areas that merit future study. Our first remark
concerns Item 2, above. In the situations where C is a zero divisor but

there is no homomorphism C →
−→
K2, it remains to spell out precisely the

permutations π for which A × C ∼= B × C ⇐⇒ B ∼= Aπ. This will be the
subject of a future paper.

The second remark concerns a more satisfactory adaptation of these
ideas to graphs. In general, if A is a graph (symmetric digraph), then Aπ

need not be symmetric. In fact Aπ will be a graph if and only if π satisfies
aa′ ∈ E(A) ⇐⇒ π(a)π−1(a′) ∈ E(A) for all pairs a, a′ ∈ V (A). Such
a π is called an antiautomorphism in [2], where analogues of the present
Propositions 1 and 2, Corollaries 2 and 3, and Theorem 4 are derived for
graphs. However, it is not known if there is a version of Theorem 5 for
graphs.

Indeed the class of “cancellation graphs” appears to be far richer than
the cancellation digraphs described by Theorem 5. The reason is that a

graph C is a zero divisor only if there is a homomorphism C →
−→
C2 (Corol-

lary 1). Thus, roughly speaking, there are fewer zero divisors in the class
of graphs than in the class of digraphs. Consequently we expect the im-
plication A × C ∼= B × C =⇒ A ∼= B is less likely to fail in the class of
graphs than in the class of digraphs, so there should be a wider variety of
cancellation graphs than cancellation digraphs. Indeed, this is borne out in
[1], which proves that a bipartite graph is a cancellation graph if and only
if it has no automorphism that reverses the bipartition of one of its com-
ponents. (In this sense, “most” bipartite graphs are cancellation graphs.)
It would be interesting to find a similar characterization for nonbipartite
cancellation graphs.
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