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1. Introduction

We consider finite, simple, and undirected graphs G with vertex set V (G)
and edge set E(G). For a vertex u in G, the neighourhood is denoted by
NG(u), the closed neighourhood is denoted by NG[u] = NG(u) ∪ {u}, and
the degree is denoted by dG(u) = |NG(u)|. A set D of vertices of G is
dominating if every vertex in V (G) \ D has a neighbour in D. Similarly,
a set T of vertices of G is total dominating if every vertex in V (G) has a
neighbour in T [5, 6].

A simple yet fundamental observation made by Ore [13] is that every
graph of minimum degree at least one contains two disjoint dominating sets,
i.e., the trivial necessary minimum degree condition for the existence of two
disjoint dominating sets is also sufficient. In contrast to that, Zelinka [14, 15]
observed that no minimum degree condition is sufficient for the existence of
three disjoint dominating sets or of two disjoint total dominating sets. In [9]
Henning and Southey proved the following result which is somehow located
between Ore’s positive and Zelinka’s negative observation.

Theorem 1 (Henning and Southey [9]). If G is a graph of minimum degree

at least 2 such that no component of G is a chordless cycle of length 5, then

V (G) can be partitioned into a dominating set D and a total dominating

set T .

A characterization of graphs with disjoint dominating and total dominating
sets is given in [10]. Recently, several authors studied the cardinalities of
pairs of disjoint dominating sets in graph [2, 7, 8, 11, 12]. The context of this
research motivates the question for which graphs Theorem 1 is best-possible
in the sense that the union D ∪ T of the two sets necessarily contains all
vertices of the graph G. Our following main result gives a partial answer to
this question.

Theorem 2. If G is a graph of minimum degree at least 3 with at least one

component different from the Petersen graph, then G contains a dominating

set D and a total dominating set T which are disjoint and satisfy |D|+ |T | <
|V (G)|.

Clearly, if the domatic number [15] of a graph G is at least 2k, then, by
definition, G contains 2k disjoint dominating sets and hence also k disjoint
total dominating sets. Therefore, the results of Calkin et al. [1] and Feige
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et al. [3] imply that a sufficiently large minimum degree and a sufficiently
small maximum degree together imply the existence of arbitrarily many
disjoint (total) dominating sets.

The rest of the paper is devoted to the proof of Theorem 2.

2. Proof of Theorem 2

A DT-pair of a graph G is a pair (D,T ) of disjoint sets of vertices of G such
that D is a dominating set and T is a total dominating set of G. A DT-pair
(D,T ) in G is exhaustive if |D|+ |T | = |V (G)|. Thus a DT-pair (D,T ) in G
is non-exhaustive if |D| + |T | < |V (G)|. Note that Theorem 1 implies that
every graph with minimum degree at least 2 and with no component that is
a chordless 5-cycle, has an exhaustive DT-pair.
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Figure 1. The encircled vertices belong to D and the framed vertices belong to T .

Our first lemma collects some useful observations about the Petersen graph.

Lemma 3. The following properties hold for the Petersen graph.

(a) If G is the union of disjoint Petersen graphs, then every DT-pair in G
is exhaustive.

(b) If G arises from the Petersen graph by adding an edge between two

non-adjacent vertices, then G has a non-exhaustive DT-pair.
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(c) If G arises from the union of two disjoint Petersen graphs by adding

an edge between the two Petersen graphs, then G has a non-exhaustive

DT-pair.

Proof. In order to reduce the number of cases which we have to consider,
we will use the known facts that the Petersen graph is 3-arc transitive,
distance-transitive, and vertex-transitive (see Sections 4.4 and 4.5 of [4]).

Let P denote the Petersen graph where (see Figure 1(a))

V (P ) = {v1, v2, . . . , v10},

E(P ) = {v1v2, v2v3, v3v4, v4v5, v5v1}

∪ {v1v6, v2v7, v3v8, v4v9, v5v10}

∪ {v6v8, v8v10, v10v7, v7v9, v9v6}.

Let (D,T ) be an DT-pair of P . Since P is 3-arc transitive, we may assume,
by symmetry, that v2, v3 ∈ T and v1, v4 ∈ D. Since |NP (v5)∩T | ≥ 1, v10 ∈ T
(see Figure 1(b)). Suppose no vertex in {v7, v8} belongs to D ∪ T . Then,
v5 ∈ T to totally dominate v10, while {v6, v9} ⊂ D to dominate {v7, v8}.
But then no vertex of T totally dominates v6 or v9. Hence, at least one
vertex in {v7, v8} belongs to D ∪ T . We may assume, by symmetry, that
v7 ∈ D ∪ T .
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Figure 2. The encircled vertices belong to D and the framed vertices belong to T .
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First, we assume v7 ∈ D. Since |NP (v9) ∩ T | ≥ 1, v6 ∈ T . Since |NP [v8] ∩
D| ≥ 1, v8 ∈ D. Since |NP (v6) ∩ T | ≥ 1, v9 ∈ T . Since |NP (v10) ∩ T | ≥ 1,
v5 ∈ T (see Figure 2(a)). Now, |D| + |T | = |V (P )|.

Next, we assume v7 ∈ T . Since |NP [v7] ∩ D| ≥ 1, v9 ∈ D. Since
|NP (v6) ∩ T | ≥ 1, v8 ∈ T . Since |NP [v8] ∩ D| ≥ 1, v6 ∈ D. Since |NP [v10] ∩
D| ≥ 1, v5 ∈ D (see Figure 2(a)). Again, |D| + |T | = |V (P )|.

Since in both cases (D,T ) is exhaustive, the proof of (a) is complete.
Since the Petersen graph is distance-transitive, Figure 3(a) proves (b).
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Figure 3. The encircled vertices constitute a dominating set and the framed

vertices constitute a total dominating set.

Finally, since the Petersen graph is vertex-transitive, Figure 3(b) proves (c).

The next lemma contains the core of our argument.

Lemma 4. If G is a graph such that

(i) the minimum degree of G is at least 3,

(ii) G is not the union of disjoint Petersen graphs, and

(iii) the set of vertices of degree at least 4 is independent,

then G has a non-exhaustive DT-pair.

Proof. For sake of contradiction, we assume that G is a counterexample
of minimum order. Hence G satisfies condition (i), (ii) and (iii), but does
not have a non-exhaustive DT-pair.

By (i) and Theorem 1, G has a non-exhaustive DT-pair if and only if
some component of G has a non-exhaustive DT-pair. Hence, by the mini-
mality of G, the graph G is connected.

We establish a series of claims concerning G.
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Claim A. For u ∈ V (G), the subgraph G−{u} of G induced by V (G)\{u}
has no C5-component.

Proof of Claim A. For contradiction, we assume that for some vertex u
of G, the graph G′ = G−{u} has at least one C5-component. Let V5 denote
the set of vertices of all C5-components of G′. By the minimum degree
condition (i) in G, we note that u is adjacent to every vertex of V5 in G. If
V5∪{u} = V (G), then letting v ∈ V5, we have that (D,T ) = ({u}, V5 \{v}))
is a non-exhaustive DT-pair of G, a contradiction. Hence, V5∪{u} 6= V (G).
Let G′′ = G− ({u}∪V5). Then, G′′ has no C5-component and has minimum
degree at least 2. Thus, by Theorem 1, G′′ has an exhaustive DT-pair
(D′′, T ′′). If v ∈ V5, then (D,T ) = (D′′ ∪ {u}, T ′′ ∪ (V5 \ {v})) is a non-
exhaustive DT-pair of G, a contradiction. 2

Claim B. For a 5-cycle C in G, the graph G − V (C) either has a C5-
component or is of minimum degree less than 2.

Proof of Claim B. For contradiction, we assume that C : v1v2v3v4v5v1 is
a 5-cycle in G such that G′ = G−V (C) has minimum degree at least 2 and
no C5-component. By Theorem 1, G′ has an exhaustive DT-pair (D′, T ′).
If a vertex in T ′ is adjacent to a vertex of C, say to v1, then (D,T ) =
(D′∪{v2, v5}, T

′∪{v3, v4}) is a non-exhaustive DT-pair of G, a contradiction.
Hence, by condition (i), every vertex of C has a neighbour in D ′. But then
(D,T ) = (D′, T ′∪{v1, v2, v3}) is a non-exhaustive DT-pair of G, once again
producing a contradiction. 2

Claim C. G contains no 3-cycle.

Proof of Claim C. For contradiction, we assume that C : v1v2v3v1 is a
3-cycle in G. First, we assume that there is a vertex v4 ∈ V (G) \ V (C)
which is adjacent to at least two vertices of C, say to v1 and to v2. By (iii),
at least one of the vertices v1 and v2 has degree exactly 3, say v2. Now
the graph G′ = G − {v1} has minimum degree at least 2 and, by Claim A,
has no C5-component. Thus, by Theorem 1, G′ has an exhaustive DT-pair
(D′, T ′). Since dG′(v2) = 2, |D′ ∪ {v2, v3, v4}| > 0 and |T ′ ∪ {v3, v4}| > 0.
Thus (D,T ) = (D′, T ′) is a non-exhaustive DT-pair of G, a contradiction.
Hence, every vertex in V (G) \ V (C) is adjacent to at most one vertex of
C. Thus the graph G′ = G − V (C) has minimum degree at least 2. If G′

has a C5-component G5, then G − V (G5) has no C5-component and is of
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minimum degree at least 2 which contradicts Claim B. Hence, G′ has no
C5-component. Applying Theorem 1 to G′, the graph G′ has an exhaustive
DT-pair (D′, T ′). If a vertex in T ′ is adjacent to a vertex of C, say to v1,
then (D,T ) = (D′ ∪ {v3}, T

′ ∪ {v1}) is a non-exhaustive DT-pair of G, a
contradition. Hence, every vertex of C has a neighbour in D ′. But then
(D,T ) = (D′, T ′ ∪ {v1, v2}) is a non-exhaustive DT-pair of G, once again
producing a contradiction. 2

Claim D. G contains no K3,3 as a subgraph.

Proof of Claim D. For contradiction, we assume that G contains a K3,3-
subgraph with partite sets Vv = {v1, v2, v3} and Vw = {w1, w2, w3}. Note
that, by Claim C, every K3,3-subgraph of G is induced. By (iii), we may
assume that all vertices in Vv have degree exactly 3. Since K3,3 has a
non-exhaustive DT-pair, we may assume that w1 has degree more than
3. Now the graph G′ = G − {w1} is of minimum degree at least 2 and,
by Claim A, has no C5-component. By Theorem 1, G′ has an exhaus-
tive DT-pair (D′, T ′). Since |NG′(v1) ∩ T ′| ≥ 1, |D′ ∩ {w2, w3}| is either
0 or 1. If |D′ ∩ {w2, w3}| = 0, then {v1, v2, v3} ⊆ D′, {w2, w3} ⊂ T ′,
and (D,T ) = ((D′ \ {v1, v2}) ∪ {w1}, T

′ ∪ {v2}) is a non-exhaustive DT-
pair of G, a contradiction. Hence, |D ′ ∩ {w2, w3}| = 1. But then (D,T ) =
((D′ \ Vv) ∪ {v1}, (T

′ \ Vv) ∪ {v2}) is a non-exhaustive DT-pair of G, once
again producing a contradiction. 2

Claim E. G contains no K3,3 − e as a subgraph.

Proof of Claim E. For contradiction, we assume that G contains a (K3,3−
e)-subgraph, i.e., there is a subset {v1, v2, v3, w1, w2, w3} of vertices in G such
that {v1w1, v1w2, v1w3, v2w1, v2w2, v2w3, v3w1, v3w2} ⊆ E(G) and v3w3 /∈
E(G). By Claim C, {v1, v2, v3} and {w1, w2, w3} are independent sets.

If dG(v3) > 3 and dG(w3) > 3, then, by (iii), dG(v1) = dG(w1) =
dG(v2) = dG(w2) = 3. The graph G′ = G − {v1, v2, w1, w2} has minimum
degree at least 2. Since dG′(u) ≥ 3 for all u ∈ V (G′) \ {v3, w3}, G′ contains
no C5-component. Therefore, by Theorem 1, G′ has an exhaustive DT-pair
(D′, T ′). If v3 ∈ D′, let (D,T ) = (D′ ∪ {w1}, T

′ ∪ {v2, w2}). If v3 ∈ T ′,
let (D,T ) = (D′ ∪ {v1, w1}, T

′ ∪ {w2}). In both cases, (D,T ) is a non-
exhaustive DT-pair of G, a contradiction. Hence, dG(v3) = 3 or dG(w3) = 3.
By symmetry and (iii), we may assume that dG(v1) = dG(v2) = dG(v3) = 3.
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Suppose that dG(w3) > 3. If at least one vertex in {w1, w2} is of de-
gree more than 3, say w2, then G′ = G − {v1, v2, w1} has minimum de-
gree at least 2. By Claim C, at most two neighbours of w1 can belong
to a possible C5-component of G′. Since w2, w3, and the three neigh-
bours of w1 are the only vertices which can have degree exactly 2 in G′,
G′ contains no C5-component. Thus, by Theorem 1, G′ has an exhaus-
tive DT-pair (D′, T ′). If {v3, w2} ⊂ D′, let (D,T ) = (D′, T ′ ∪ {v1, w1}).
If {v3, w2} ⊂ T ′, let (D,T ) = (D′ ∪ {v1, w1}, T

′). If v3 ∈ D′ and w2 ∈
T ′, let (D,T ) = (D′ ∪ {w1}, T

′ ∪ {v1}). If v3 ∈ T ′ and w2 ∈ D′, let
(D,T ) = (D′ ∪ {v1}, T

′ ∪ {w1}). In all cases, (D,T ) is a non-exhaustive
DT-pair of G, a contradiction. Hence, dG(w1) = dG(w2) = 3. Thus,
G′ = G − {v1, v2, v3, w1, w2} has minimum degree at least 2. Let N(v3) =
{w1, w2, v

′

3
}. Since dG′(u) ≥ 3 for all u ∈ V (G′) \ {w3, v

′

3
}, G′ contains no

C5-component. Thus, by Theorem 1, G′ has an exhaustive DT-pair (D′, T ′).
Now, (D,T ) = (D′ ∪ {v1, w1}, T

′ ∪ {v2, w2}) is a non-exhaustive DT-pair of
G, a contradiction. Hence, dG(w3) = 3.

Suppose that at least one vertex in {w1, w2} is of degree more than 3,
say w2. Then, G′ = G − {v2, v3, w1} has minimum degree at least 2. Let
N(v3) = {w1, w2, v

′

3
} and let w′

2
∈ V (G) \ {v1, v2, v3} be a neighbour of w2.

By Claim C, v′
3
6= w′

2
.

First, we assume that G′ contains a C5-component C. By Claim C,
at most two neighbours of w1 can belong to C. Since w2 and w3 are the
only neighbours of v1 in G′, either |V (C) ∩ {w2, v1, w3}| = 0 or |V (C) ∩
{w2, v1, w3}| = 3. Since w2, w3, v′

3
, and the neighbours of w1 are the

only vertices which can have degree exactly 2 in G′, we have that V (C) =
{v1, v

′

3
, w2, w

′

2
, w3} implying that dG(v′

3
) = dG(w′

2
) = 3, dG(w2) = 4, and

{w1w
′

2
, v′

3
w3, v

′

3
w′

2
} ⊂ E(G). Thus the graph F shown in Figure 4 is a sub-

graph of G. We note that the degree of every vertex in the subgraph F ,
except possibly for the vertex w1, is the same as its degree in the graph G;
that is, dF (v) = dG(v) for all v ∈ V (F ) \ {w1}.

If G = F , then (D,T ) = ({v1, w1, w
′

2
}, {v2, v

′

3
, w2}) is a non-exhaustive

DT-pair of G, a contradiction. Hence, G 6= F . We now consider the graph
G′′ = G − V (F ). Every vertex in G′′ has degree at least 3, except possibly
for vertices in NG(w1) \ V (F ) which have degree at least 2 in G′′. By
Claim A, the graph G′′ has no C5-component. Thus, by Theorem 1, G′′ has
an exhaustive DT-pair (D′′, T ′′). Now, (D,T ) = (D′′ ∪ {v2, w2, w

′

2
}, T ′′ ∪

{v3, v
′

3
, w3}) is a non-exhaustive DT-pair of G, a contradiction. We deduce,

therefore, that G′ has no C5-component.
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Figure 4. Configuration in the proof of Claim E.

By Theorem 1, G′ has an exhaustive DT-pair (D′, T ′). If w2 ∈ T ′, let (D,T )
= (D′ ∪ {w1}, T

′ ∪ {v2}). If {v1, w2} ⊂ D′, let (D,T ) = (D′, T ′ ∪ {v2, w1}).
If w2 ∈ D′ and v1 ∈ T ′, let (D,T ) = (D′ ∪ {v2}, T

′ ∪ {w1}). In all cases,
(D,T ) is a non-exhaustive DT-pair of G, a contradiction. We deduce, there-
fore, that the vertices v1, v2, v3, w1, w2, w3 are all of degree 3 in G.

Let N(v3) = {w1, w2, v
′

3
}. We now consider the graph G′ obtained from

G − {v2, v3, w1} by adding the edge w2v
′

3
. Then, G′ has minimum degree

at least 2. Since dG′(u) ≥ 3 for all u ∈ V (G′) \ {v1, w2, w3}, the graph
G′ contains no C5-component. Thus, by Theorem 1, G′ has an exhaustive
DT-pair (D′, T ′).

If {v1, w2} ⊆ D′, then {w3, v
′

3
} ⊆ T ′, and let (D,T ) = (D′ ∪ {v3},

T ′ ∪ {v2}). If v1 ∈ D′ and w2 ∈ T ′, then v′
3

∈ T ′ and let (D,T ) =
(D′ ∪ {w1}, T

′ ∪ {v3}). If v1 ∈ T ′ and w2 ∈ D′, then w3 ∈ T ′ and let
(D,T ) = (D′ ∪ {v3}, T

′ ∪ {w1}). Finally, if {v1, w2} ⊆ T ′, then {w3, v
′

3
} ⊆

D′, and let (D,T ) = (D′ ∪ {v2}, T
′ ∪ {v3}). In all cases, (D,T ) is a non-

exhaustive DT-pair of G, a contradiction which completes the proof of the
claim. 2

Claim F. G contains no K2,3 as a subgraph.

Proof of Claim F. For contradiction, we assume that G contains a K2,3-
subgraph, i.e., there are two vertices v1 and v2 that have ` ≥ 3 common
neighbours w1, w2, . . . , w`. By Claim C, {v1, v2} and {w1, w2, . . . , wl} are in-
dependent sets. We now consider the graph G′ = G−{v1, v2, w1, w2, . . . , w`}.
By Claims C, D and E, every vertex in V (G′) is adjacent in G to at most
one vertex in V (G) \ V (G′). Hence, G′ has minimum degree at least 2. By
Claim B, G′ therefore has no C5-component. Hence, by Theorem 1, G′ has
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an exhaustive DT-pair (D′, T ′). Now, (D,T ) = (D′∪{v1, w1}, T
′∪{v2, w2})

is a non-exhaustive DT-pair of G, a contradiction. 2

Claim G. G contains no 4-cycle.

Proof of Claim G. For contradiction, we assume that C : v1v2v3v4v1 is a 4-
cycle in G. Let G′ = G−V (C). By Claim C and F, every vertex in V (G′) is
adjacent in G to at most one vertex in V (G)\V (G′). Hence, G′ has minimum
degree at least 2. By Claim B, G′ therefore has no C5-component. Hence,
by Theorem 1, G′ has an exhaustive DT-pair (D′, T ′). If a vertex in D′ is
adjacent to a vertex of C, say to v1, then (D,T ) = (D′ ∪ {v3}, T

′ ∪ {v1, v2})
is a non-exhaustive DT-pair of G, a contradiction. Hence, no vertex in D ′

is adjacent to a vertex of C ′. Thus, every vertex of C has a neighbour in
T ′. But then (D,T ) = (D′ ∪ {v1, v2}, T

′) is a non-exhaustive DT-pair of G,
a contradiction. 2

Claim H. G contains no 5-cycle.

Proof of Claim H. For contradiction, we assume that C : v1v2v3v4v5v1 is
a 5-cycle in G. Let G′ = G − V (C). By Claim C and G, every vertex in
V (G′) is adjacent in G to at most one vertex in V (G)\V (G′). Hence, G′ has
minimum degree at least 2. By Claim B, G′ therefore has a C5-component
C ′ : v6v8v10v7v9v6 and, again by Claim B, V (G) = V (C) ∪ V (C ′). We may
assume that v1v6 ∈ E(G). By (i), symmetry, and Claims C and G, we may
assume that v2v7 ∈ E(G) and v3v8 ∈ E(G). Now Claims C and G imply
v5v10 ∈ E(G), v2v7 ∈ E(G), and v4v9 ∈ E(G), i.e., G is the Petersen graph,
a contradiction. 2

We now return to our proof of Lemma 4. By Claims C, G, and H, the graph
G contains no 3-cycle, 4-cycle, or 5-cycle. Let P : v1v2v3v4 be a path in G and
let v′

1
∈ V (G)\{v1, v3} be a neighbour of v2. Let G′ = G−{v1, v2, v3, v4, v

′

1
}.

Since G has girth at least 6, the graph G′ has minimum degree at least 2
and contains no C5-component. Hence, by Theorem 1, G′ has an exhaustive
DT-pair (D′, T ′).

If a vertex in D′ is adjacent to a vertex in {v1, v
′

1
}, say to v′

1
, let (D,T ) =

(D′ ∪ {v1, v4}, T
′ ∪ {v2, v3}). If every vertex in {v1, v4, v

′

1
} has a neighbour

in T ′, let (D,T ) = (D′ ∪ {v2, v3}, T
′ ∪ {v1, v4}). If every vertex of {v1, v

′

1
}

has a neighbour in T ′ and v4 has a neighbour in D′, then (D,T ) = (D′ ∪
{v2}, T

′ ∪ {v3, v4}). In all cases, (D,T ) is a non-exhaustive DT-pair of G, a
contradiction which completes the proof of the lemma.
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With the help of Lemma 4, the proof of Theorem 2 follows readily. Recall the
statement of Theorem 2: If G is a graph of minimum degree at least 3 with

at least one component different from the Petersen graph, then G contains

a dominating set D and a total dominating set T which are disjoint and

satisfy |D| + |T | < |V (G)|.

Proof of Theorem 2. We prove the result by induction on the number of
edges between vertices of degree at least 4. If there is no such edge, then the
result follows immediately from Lemma 4. Hence, we assume that e ∈ E(G)
is such an edge. If e is a bridge, then deleting e results in two components
G1 and G2. If both of G1 and G2 are the Petersen graph, then the result
follows from Lemma 3(c). If at least one of G1 or G2 is not the Petersen
graph, then the result follows by induction. Hence, we may assume that e
is no bridge. If G′ = G − e is the Petersen graph, then the result follows
from Lemma 3(b). If G′ is not the Petersen graph, then the result follows
by induction. This completes the proof of the theorem.
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