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Abstract

A subgraph of an edge-colored graph is rainbow if all of its edges
have different colors. For a graph H and a positive integer n, the
anti-Ramsey number f(n, H) is the maximum number of colors in an
edge-coloring of Kn with no rainbow copy of H . The rainbow number

rb(n, H) is the minimum number of colors such that any edge-coloring
of Kn with rb(n, H) number of colors contains a rainbow copy of H .
Certainly rb(n, H) = f(n, H) + 1. Anti-Ramsey numbers were intro-
duced by Erdös et al. [5] and studied in numerous papers.

We show that rb(n, K1,4 + e) = n + 2 in all nontrivial cases.
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1. Introduction

A subgraph of an edge-colored graph is rainbow if all of its edges have differ-
ent colors. For a graph H and a positive integer n, the anti-Ramsey number

f(n,H) is the maximum number of colors in an edge-coloring of Kn with no
rainbow copy of H. The rainbow number rb(n,H) is the minimum number
of colors such that any edge-coloring of Kn with rb(n,H) number of colors
contains a rainbow copy of H. Certainly rb(n,H) = f(n,H) + 1. Anti-
Ramsey numbers were introduced by Erdös et al. [5]. They showed that
these are closely related to Turán numbers. The Turán number ex(n,H) of
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H is the maximum number of edges of an n-vertex simple graph having no
member of H as a subgraph.

For a given graph H let H = {H−e : e ∈ E(H)}. Erdös et al. [5] showed
f(n,H)−ex(n,H) = o(n2), as n → ∞. If d = min{χ(G) : G ∈ H} ≥ 3, then
by an earlier result of Erdös and Simonovits [4], we have ex(n,H) = d−2

d−1

(

n
2

)

+

o(n2). So the above theorem determines rainbow numbers asymptotically
in that case. If d ≤ 2, however, we have ex(n,H) = o(n2) and the above
theorem says little about rainbow numbers. Therefore it was suggested by
Erdös et al. [5] to study Ramsey numbers for graphs that contain an edge
whose delection leaves a bipartite subgraph and put forward two conjectures
about paths and cycles.

Simonovits and Sós proved the conjecture for paths determining f(n, Pk)
for n large enough [15]. As for the conjecture for cycles, they proved it for
C3 by themselves. For C4 it was proved by Alon [1] and for C5 and C6

independently by Jiang and West [9] and by Schiermeyer [13] and completely
solved by Montellano–Ballesteros and Neuman-Lara [12].

Moreover rainbow numbers were studied for complete bipartite graphs
by Axenovich and Jiang [2], for trees by Jiang and West [10], for subdi-
vided graphs by Jiang [7] and for complete graphs and matchings by Schier-
meyer [14]. Recently cycles with an edge added were studied by Montellano-
Ballesteros [11] and Gorgol [6].

The aim of the paper is to prove Theorem 4 which says that we need
n + 2 colors to be sure that in any coloring of the edges of Kn with this
number of colors we always obtain a rainbow K1,4 + e.

2. Preliminaries

Graphs considered below will always be simple. Throughout the paper we
use the standard graph theory notation (see, e.g., [3]). In particular, G∪H,
Kn and K1,r stand, respectively, for disjoint sum of graphs G and H, the
complete graph on n vertices and a star with r rays. A graph K3 we call
a triangle. For a graph G and its subgraph H by G − H we mean a graph
obtained from G by deleting all vertices of H. For a set S by |S| we denote
the cardinality of S.

We will need the following theorems.

Theorem 1 [5]. rb(n,K3) = n for n ≥ 3.
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Theorem 2 [8]. Given positive integers n and r, where r ≤ n − 2,
rb(n,K1,r+1) = b1

2
n(r − 1)c + b n

n−r+1
c + ε, where ε = 1 or 2 if n is odd, r

is even and b 2n
n−r+1

c is odd; ε = 1 otherwise.

We will also need some lemmas to conduct the inductive proof of Theorem 4.
Throughout all proofs we use the following notation. C(G) is a set of colors
used on the edges of a graph G; C(G,H) is a set of colors used on the
edges with one endvertex in the vertex-set of a graph G and the other in the
vertex-set of a graph H; C(v) is a set of colors used on the edges incident
to a vertex v and c(e) denotes the color of the edge e.

In a graph K1,4 + e a vertex of degree 4 we call a center.

A vertex v is called monochromatic if |C(v)| = 1.

We call a color c private for a vertex v if all edges of color c are incident
to v.

Claim 1. If a color c is private for two vertices v and w then an edge vw is
the only edge of color c.

Proof. It follows immediately from the definition of a private vertex. �

Claim 2. An arbitrary color can be private for at most two vertices.

Proof. It is a straightforward consequence of Claim 1. �

For a fixed coloring of the edges of Kn = K we construct a bipartite graph
B with bipartition sets V and C as follows. Let V = V (K) and C = C(K).
We put an edge between v ∈ V and c ∈ C if and only if c is private for v.
Note that by Claim 2 each vertex from C has degree at most 2.

Note that by Claim 1, B cannot contain C4.

Lemma 1. rb(n,K1,4 + e) = n + 2 for n ∈ {5, 6}.

Proof. The lower bound follows from Theorem 2. So we have to prove the
upper bound. We color the edges of Kn = K with n + 2 colors arbitrarily
and show that there exists a rainbow K1,4 + e. By Theorem 2 there exists
a rainbow K1,4 = S. The existence of a rainbow K1,4 + e is obvious for
n ∈ {5, 6}.
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3. Main Results

Although the next theorem is proved in a more general case in [6], we state
it here with a proof to make the paper self-contained.

Theorem 3. rb(n,K1,3 + e) = n for n ≥ 4.

Proof. By Theorem 1 we have rb(n,K1,3 + e) ≥ n for n ≥ 4. So we have
to prove the opposite inequality. It is easy to check it for n ∈ {4, 5, 6}.
Therefore let n ≥ 7. We color the edges of Kn = K with n colors. By
Theorem 1 there exists a rainbow triangle T with the set of colors C(T ). If
the condition C(T,Kn − T ) ∩ (C(K) − C(T )) 6= ∅ holds then there exists a
rainbow K1,3 + e. Otherwise |V (Kn − T )| = n− 3 and |C(Kn − T )| ≥ n− 3
and we have a rainbow copy of K1,3 + e in Kn − T by induction.

Theorem 4. rb(n,K1,4 + e) = n + 2 for n ≥ 5.

Proof. The lower bound follows from Theorem 2. So we have to prove
the upper bound. The proof will be conducted by induction with respect to
n. For n ∈ {5, 6} it is Lemma 1.

Therefore let n ≥ 7. We color the edges of Kn = K with n + 2 colors
arbitrarily and construct an appropriate bipartite graph B.

If there exists a vertex v such that |C(Kn)−C(v)| ≥ n+1 then Kn − v

is a Kn−1 colored with at least n + 1 colors, so a rainbow K1,4 + e exists by
induction. A contradiction. Therefore for each vertex v ∈ V (Kn) there exist
at least two private colors. So each vertex from V has degree at least 2.

Before the next part of the proof we will show the following two facts.

Fact 1. If there is an isolated vertex c0 ∈ C in B then K contains a rainbow
K1,4 + e.

Proof of Fact 1. Assume there is an isolated vertex c0 ∈ C in B, but there
is not any rainbow K1,4 + e in K.

By Claim 2 each vertex from C has degree at most 2. By Claim 1 it
means that in coloring of K the respective colors appear exactly once. Hence
at least n − 1 vertices from C have degree exactly 2.

For each v ∈ V choose exactly two private colors at v, and consider a
subgraph B ′ of B with V (B ′) = V (B) − {c0}, but with an edge between
v ∈ V and c ∈ C if c is one of the two chosen private colors at v. Thus



Rainbow Numbers for Small Stars with One Edge Added 559

E(B′) ⊂ E(B), |E(B ′)| = 2n ≤ |E(B)| ≤ 2n + 2 and the maximal degree in
B′ is 2.

The above degree conditions determine the structure of B ′. Namely B ′

consists of a path with an odd number ≥ 1 of vertices, starting and ending
in C, and of zero or more cycle components. Without loss of generality
this path could be assumed to be crvrcr+1 . . . vncn+1, where 1 ≤ r ≤ n + 1
(r = n + 1 if and only if cn+1 is an isolated vertex in B ′).

Note that the graph on V (K) consisting only of the edges colored in
the three or two colors c0, cr, cn+1 is connected. Thus there is some vertex
vi with at least two or three colors occurring among its edges: it is easy to
see that we may choose vi 6∈ {vr, vn}, if r ≤ n. Hence, in fact, either vi

belongs to a 6-cycle vi−1civici+1vi+1c
′ or to a path vi−1ci−1vicivi+1ci+1vi+2

in B′. In either case, |C(vi)| ≥ 4. In the case of C6, vi would be a center of
a rainbow K1,4 + e, where e would be colored with c′. Similarly in the case
of the path, vi would be a center of a rainbow K1,4 + e, where e = vivi+2.
Indeed, let c(vivi+2) = c′′ be the color of the edge vivi+2. It can be c0 or
cn+1 (if i + 2 = n) and by the choice of vi there is another edge coming out
of it of color from {c0, cr, cn+1} \ {c

′′}. �

Fact 2. If K contains two disjoint rainbow triangles, then K contains a
rainbow K1,4 + e.

Proof of Fact 2. Let T1 and T2 be these triangles. Note that if there is
c ∈ C(T1) ∩C(T2) then indeed c is not private at any vertex in K and thus
is isolated in B, whence then Fact 1 applies. Therefore we have to consider
the case when T1 ∪ T2 is a rainbow 2K3.

Let V (T1) = {x, y, z}, V (T2) = {a, b, c}, C(T1) = {c1, c2, c3} and
C(T2) = {c4, c5, c6}.

If |C(T1)∪C(T2)∪C(T1, T2)| ≥ 8 then Fact 2 follows from Lemma 1 so
we can assume that |C(T1)∪C(T2)∪C(T1, T2)| ≤ 7 which means that there
can be at most one color in C(T1, T2) not belonging to C(T1) ∪ C(T2). Let
K ′ = K − (T1 ∪ T2).

Suppose that there exists an edge e between the triangles T1 and T2 of
the color not belonging to C(T1)∪C(T2). Without loss of generality we can
assume that e = xa and c(e) = c. Let CR = C(K)− (C(T1) ∪ C(T2) ∪ {c}).
Note that either we have a rainbow K1,4 + e or c(xv) ∈ C(T1) ∪ {c} for all
vertices v ∈ V (K−T1) and c(av) ∈ C(T2)∪{c} for all vertices v ∈ V (K−T2).
If there is at least one edge between T1 ∪ T2 and K ′ of color from CR, say
yw, where w ∈ V (K ′), then we obtain a rainbow K1,4 + e. It is the triangle
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T1 with edges ya and yw. Note that surely it is the case for n = 9 since
|CR| = 4 and |E(K ′)| = 3. If such an edge does not exist it means that
n ≥ 10, C(T1 ∪ T2,K

′) ⊂ (C(T1) ∪ C(T2) ∪ {c}) and all colors from CR

are used on edges of K ′. If there is a rainbow K1,3 + e in K ′ then it gives
a rainbow K1,4 + e together with one edge coming to T1 ∪ T2. Note that
obviously it is the case for n = 10 and for n ≥ 11 and C(K ′) = CR it follows
from Theorem 3. If |C(K ′)| > |CR| for n ≥ 11 we obtain a rainbow K1,4 + e

by induction.

Therefore we assume that C(T1, T2) ⊂ C(T1) ∪ C(T2). Let CR = C −
(C(T1)∪C(T2)). If there is at least one edge between T1∪T2 and K ′ of color
from CR, say xw, where w ∈ V (K ′), then all edges coming from x to T2

are of colors from C(T1) otherwise we get a rainbow K1,4 + e. As a further
consequence we get that either there is a rainbow K1,4 + e in K or all edges
coming out from T2 are of colors from C(T1)∪C(T2). In the latter case the
graph K −T2 is colored with at least n−1 colors so the induction completes
the proof. Note that surely it is the case for n ∈ {7, 8, 9}. So we can assume
that n ≥ 10, C(T1 ∪ T2,K

′) ⊂ (C(T1) ∪ C(T2)) and all colors from CR are
used on edges of K ′. Repeating the arguments from the previous part of the
proof we prove the fact. �

Now we are ready to finish the proof of Theorem 4.

By Theorem 1 there exists a rainbow triangle T1 with the vertex-set
{x, y, z} and the set of colors C(T1).

Let K ′ = K − T1. Note that if K ′ contains a rainbow triangle then K

contains a rainbow K1,4 +e by Fact 2. Assume then it is not the case. Then
|C(K ′)| ≤ n − 4 by Theorem 1.

Let CR = C(K) − C(T1). Note that if there is a vertex v in T1 with
|C(v)∩CR| ≥ 2, then there is a rainbow K1,4+e with center v and containing
T1. Hence the converse can be assumed.

So we are to consider only the case |C(K ′)| = n − 4, |C(v) ∩ CR| = 1
and the colors C(v) ∩ CR are distinct for each v ∈ {x, y, z}.

Then certainly |C(T1,K
′)∩CR| = 3 and C(K ′)∩(C(T1)∪C(T1,K

′)) = ∅.
Now either we have a rainbow K1,4 + e or each edge between T1 and K ′ of
the color from CR comes out from a different vertex of T1. If such an edge
of color c comes out, say from x, to a vertex a which is not monochromatic
in K ′ then c(ay) = c(xy) and c(za) = c(xz) or we have a rainbow K1,4 + e.
But in this case we also get a rainbow K1,4 + e. It is a rainbow triangle ayz

with two edges coming out from the vertex a.
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It is easy to note that there can be at most one monochromatic vertex in
K ′. If there would be at least two such vertices a and b then C(a)∩C(K ′) =
C(b)∩C(K ′) = {c(ab)} and so K ′−{a, b} would be Kn−5 colored with n−5
colors, against the assumption for K ′.

Hence the vertex a is monochromatic in K ′ and all edges between T1

and K ′ of the three colors in C(T1,K
′) ∩ CR have a as an endpoint. Thus

|C(a)| = 4 and there is a rainbow K1,4 + e with the center a and containing
an edge from T1.
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