MONOCHROMATIC PATHS AND MONOCHROMATIC SETS OF ARCS IN QUASI-TRANSITIVE DIGRAPHS

Hortensia Galeana-Sánchez ${ }^{1}$
R. Rojas-Monroy ${ }^{2}$ and B. Zavala ${ }^{1}$
${ }^{1}$ Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México, D.F. 04510
México
${ }^{2}$ Facultad de Ciencias
Universidad Autónoma del Estado de México
Instituto Literario, Centro 50000, Toluca, Edo. de México
México

Abstract

Let D be a digraph, $V(D)$ and $A(D)$ will denote the sets of vertices and arcs of D, respectively. We call the digraph D an m-coloured digraph if each arc of D is coloured by an element of $\{1,2, \ldots, m\}$ where $m \geq 1$. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if there is no monochromatic path between two vertices of N and if for every vertex v not in N there is a monochromatic path from v to some vertex in N. A digraph D is called a quasi-transitive digraph if $(u, v) \in A(D)$ and $(v, w) \in A(D)$ implies $(u, w) \in A(D)$ or $(w, u) \in A(D)$. We prove that if D is an m-coloured quasi-transitive digraph such that for every vertex u of D the set of arcs that have u as initial end point is monochromatic and D contains no C_{3} (the 3-coloured directed cycle of length 3), then D has a kernel by monochromatic paths.

Keywords: m-coloured quasi-transitive digraph, kernel by monochromatic paths.
2010 Mathematics Subject Classification: 05C15, 05C20.

1. Introduction

For general concepts we refer the reader to [3]. A kernel N of a digraph D is an independent set of vertices of D such that for every $w \in V(D) \backslash N$ there exists an arc from w to N. A digraph D is called kernel perfect digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if each arc of D is coloured by an element of $\{1,2, \ldots, m\}$ where $m \geq 1$. A path is called monochromatic if all of its arcs are coloured alike. If C is a path of D we denote its length by $\ell(C)$. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v not in N there is a monochromatic path from v to some vertex in N. The closure of D, denoted by $\mathfrak{C}(D)$, is the m-coloured digraph defined as follows: $V(\mathfrak{C}(D))=V(D)$ and $A(\mathfrak{C}(D))$ is the set of the ordered pairs (u, v) of distinct vertices of D such that there is a monochromatic $u v$-path. Notice that for any digraph $D, \mathfrak{C}(\mathfrak{C}(D)) \cong \mathfrak{C}(D)$. The problem of the existence of a kernel in a given digraph has been studied by several authors in particular Richardson [19, 20]; Duchet and Meyniel [6]; Duchet [4, 5]; Galeana-Sánchez and V. Neumann-Lara [9, 10]. The concept of kernel by monochromatic paths is a generalization of the concept of kernel and it was introduced by Galeana-Sánchez [7]. In that work she obtained some sufficient conditions for the existence of a kernel by monochromatic paths in an m-coloured tournament. More information about m-coloured digraphs can be found in $[7,8,21,23,24]$. Another interesting generalization is the concept of (k, l)-kernel introduced by M. Kwaśnik [17]. Other results about (k, l)-kernels have been developed by M. Kucharska [15]; M. Kucharska and M. Kwaśnik [16]; M. Kwaśnik [18]; and A. Włoch and I. Włoch [22].

A digraph D is called quasi-transitive if $(u, v) \in A(D)$ and $(v, w) \in A(D)$ implies $(u, w) \in A(D)$ or $(w, u) \in A(D)$. The concept of quasi-transitive digraph was introduced by Ghouilá-Houri [13] and has been studied by several authors for example Bang-Jensen and Huang [1, 2]. Ghouilá-Houri [13] proved that an undirected graph can be oriented as a quasi-transitive digraph if and only if it can be oriented as a transitive digraph, these graphs are namely comparability graphs. More information about comparability graphs can be found in $[12,14]$.

In [11] H. Galena-Sánchez and R. Rojas-Monroy proved that if D is a digraph such that $D=D_{1} \cup D_{2}$, where D_{i} is a quasi-transitive digraph which contains no asymmetrical infinite outward path (in D_{i}) for $i \in\{1,2\}$; and
every directed cycle of length 3 contained in D has at least two symmetrical arcs, then D has a kernel.

For a vertex u in an m-coloured digraph D we denote by $A^{+}(u)$ the set of arcs that have u as initial end point. And we denote by C_{3} the directed cycle of length 3 whose arcs are coloured with three distinct colours.

In this paper, we prove that if D is an m-coloured quasi-transitive digraph such that for every vertex u of $D, A^{+}(u)$ is monochromatic (all of its elements have the same colour) and D contains no C_{3}, then D has a kernel by monochromatic paths.

We will need the following results.
Theorem 1.1 ([7]). D has a kernel by monochromatic paths if and only if $\mathfrak{C}(D)$ has a kernel.

Theorem 1.2 (Duchet [4]). If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is a kernel-perfect digraph.

We use the following notations where D denotes an m-coloured digraph; given $u \neq v \in V(D), u \rightarrow v$ means $(u, v) \in A(D), u \xrightarrow{i} v$ means that the $\operatorname{arc}(u, v)$ of D is coloured by $i \in\{1, \ldots, m\}, u \nrightarrow v$ means $(u, v) \notin A(D)$, $u \Rightarrow v$ means that there exists a monochromatic path from u to v and $u \nRightarrow v$ means that there is no monochromatic path from u to v. Given $u \in V(D)$, $N^{+}(u)=\{v \in V(D): u \rightarrow v\}, N^{-}(u)=\{v \in V(D): v \rightarrow u\}$ and $c(u)=i$ means that all the arcs of $A^{+}(u)$ are coloured by i where $i \in\{1, \ldots, m\}$ (if $A^{+}(u)=\emptyset$, then $\left.c(u)=1\right)$. Given $u \neq v \in V(D)$ such that $u \Rightarrow v, l(u, v)$ denotes the minimal length of a monochromatic path from u to v.

2. Monochromatic Paths

We will establish some previous lemmas in order to prove the main theorem.
Lemma 2.1. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D), A^{+}(u)$ is monochromatic and let $T=\left(u=u_{0}, u_{1}, \ldots, u_{n}=\right.$ $v)$ be a monochromatic uv-path of minimum length contained in D. Then $u_{i} \nrightarrow u_{j}$ for every $i, j \in\{0, \ldots, n\}$ with $j>i+1$. In particular, for every $i \in\{0, \ldots, n-2\}, u_{i+2} \rightarrow u_{i}$.

Proof. The proof is straightforward.

Lemma 2.2. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D), A^{+}(u)$ is monochromatic and let $T=\left(u=u_{0}, u_{1}, \ldots, u_{n}=\right.$ $v)$ be a monochromatic uv-path of minimum length contained in D. Then $u_{j} \rightarrow u_{i}$ for every $i, j \in\{0, \ldots, n\}$ with $j>i+1$, unless $|V(T)|=4$, in which case the arc $\left(u_{3}, u_{0}\right)$ may be absent.

Proof. If $|V(T)|=3$, the result follows from Lemma 2.1.
When $|V(T)|=4$, let $T=\left(u_{0}, u_{1}, u_{2}, u_{3}\right)$ be a monochromatic $u_{0} u_{3^{-}}$ path. By Lemma 2.1 we have $u_{3} \rightarrow u_{1}$ and $u_{2} \rightarrow u_{0}$, and the arc $\left(u_{3}, u_{0}\right)$ may be absent.

Now, we proceed by induction on $|V(T)|$.
Suppose that $|V(T)|=5$. Let $T=\left(u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right)$ be a monochromatic $u_{0} u_{4}$-path of minimum length, then from Lemma 2.1 and since D is a quasi-transitive digraph we have that $u_{4} \rightarrow u_{2}, u_{3} \rightarrow u_{1}, u_{2} \rightarrow u_{0}$ and $u_{4} \rightarrow u_{0}$. Also, since $u_{4} \rightarrow u_{0}, u_{0} \rightarrow u_{1}$ and D is a quasi-transitive digraph then $u_{4} \rightarrow u_{1}$ or $u_{1} \rightarrow u_{4}$. Lemma 2.1 implies that $u_{1} \nrightarrow u_{4}$, then $u_{4} \rightarrow u_{1}$. Since $u_{3} \rightarrow u_{4}, u_{4} \rightarrow u_{0}$ and D is a quasi-transitive digraph then $u_{3} \rightarrow u_{0}$ or $u_{0} \rightarrow u_{3}$. If $u_{0} \rightarrow u_{3}$, we have a contradiction with Lemma 2.1. Then $u_{3} \rightarrow u_{0}$. We conclude $u_{j} \rightarrow u_{i}$ for every $i, j \in\{0,1,2,3,4\}$ with $j>i+1$.

Let $T=\left(u_{0}, u_{1}, \ldots, u_{n}\right)$ be a monochromatic path of minimum length n with $n \geq 6$.

Let $T_{1}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $T_{2}=\left(u_{1}, \ldots, u_{n}\right)$ then $\ell\left(T_{1}\right) \geq 5$ and $\ell\left(T_{2}\right) \geq 5$, by the inductive hypothesis T_{1} and T_{2} satisfy that $u_{j} \rightarrow u_{i}$ for every $j>i+1$. Now, we need to prove that $u_{n} \rightarrow u_{0}$. Since $u_{2} \rightarrow u_{0}$ and $u_{n} \rightarrow u_{2}$, and D is a quasi-transitive digraph then $u_{0} \rightarrow u_{n}$ or $u_{n} \rightarrow u_{0}$. By Lemma $2.1 u_{0} \nrightarrow u_{n}$, thus $u_{n} \rightarrow u_{0}$.

Lemma 2.3. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D), A^{+}(u)$ is monochromatic. Given $u \neq v \in V(D)$ such that $v \nrightarrow u$, if $u \Rightarrow v$, then one and only one of the following conditions is satisfied:

1. $u \rightarrow v$.
2. $u \nrightarrow v$ and there exists a monochromatic path $\left(u=u_{0}, u_{1}, u_{2}, u_{3}=v\right)$ of length 3 such that $u_{2} \rightarrow u_{0}$ and $u_{3} \rightarrow u_{1}$. Moreover, there exists no path of length 2 between u and v.

Proof. Clearly the Lemma holds when $l(u, v)=1$. So, assume that $l(u, v) \geq 2$.

If $l(u, v) \geq 4$, it follows from Lemma 2.2 that $v \rightarrow u$, contradicting the hypothesis. Hence $l(u, v) \leq 3$. When $l(u, v)=3$, let ($u=u_{0}, u_{1}, u_{2}, u_{3}=v$) be a monochromatic $u v$-path of minimum length, Lemma 2.1 implies that $u_{2} \rightarrow u_{0}$ and $u_{3} \rightarrow u_{1}$.

Now, if T^{\prime} is a path of length 2 from u to v or from v to u, since D is a quasi-transitive digraph then $u \rightarrow v$ or $v \rightarrow u$. The hypothesis implies that $v \nrightarrow u$, then $u \rightarrow v$ contradicting the assumption $l(u, v) \geq 2$. We conclude that there is no path of length 2 between u and v.

3. The Main Result

Lemma 3.1. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D), A^{+}(u)$ is monochromatic. Given distinct vertices u, v, w of D, if $u \Rightarrow v, v \nRightarrow u, v \Rightarrow w$ and $w \nRightarrow v$, then $w \rightarrow u$ or $u \Rightarrow w$.

Proof. Since $u \Rightarrow v$ and $v \nrightarrow u$, it follows from Lemma 2.3 that $l(u, v)=1$ or 3. Similarly $l(v, w)=1$ or 3 . Assume that $u \nrightarrow w$ and $w \nrightarrow u$. Since D is quasi-transitive, we obtain that $N^{+}(u) \cap N^{-}(w)=N^{+}(w) \cap N^{-}(u)=\emptyset$.

Clearly $u \Rightarrow w$ when $c(u)=c(v)$. So assume that $c(u) \neq c(v)$. To begin we show that $l(u, v)=3$. Otherwise $l(u, v)=1$, that is, $u \rightarrow v$. As $v \notin N^{+}(u) \cap N^{-}(w), v \nrightarrow w$. Hence $l(v, w)=3$ and there are vertices $v=v_{0}, v_{1}, v_{2}, v_{3}=w$ of D such that $v \xrightarrow{c(v)} v_{1} \xrightarrow{c(v)} v_{2} \xrightarrow{c(v)} w$. If $v_{1} \rightarrow u$ (respectively, $v_{2} \rightarrow u$), then we would have $v \Rightarrow u$ by considering $v \xrightarrow{c(v)}$ $v_{1} \xrightarrow{c(v)} u$ (respectively, $\left.v \xrightarrow{c(v)} v_{1} \xrightarrow{c(v)} v_{2} \xrightarrow{c(v)} u\right)$. Thus $v_{1} \nrightarrow u$ and $v_{2} \nrightarrow u$.

As $u \rightarrow v \rightarrow v_{1}$ and $v_{1} \nrightarrow u$, we obtain $u \rightarrow v_{1}$ because D is quasitransitive. Therefore $u \rightarrow v_{1} \rightarrow v_{2}$. Since D is quasi-transitive and since $v_{2} \nrightarrow u$, we have $u \rightarrow v_{2}$ and we would obtain $v_{2} \in N^{+}(u) \cap N^{-}(w)$. Consequently, $l(u, v)=3$ and there are vertices $u=u_{0}, u_{1}, u_{2}, u_{3}=v$ of D such that $u \xrightarrow{c(u)} u_{1} \xrightarrow{c(u)} u_{2} \xrightarrow{c(u)} v$. As $l(u, v)=3$, we get $u_{2} \rightarrow u$.

Now, assume that $l(v, w)=1$, that is, $v \rightarrow w$. As $u_{2} \rightarrow v \rightarrow w$, we have $u_{2} \rightarrow w$ or $w \rightarrow u_{2}$ because D is quasi-transitive. If $w \rightarrow u_{2}$, the we would obtain $u_{2} \in N^{+}(w) \cap N^{-}(u)$. Thus $u_{2} \rightarrow w$ and hence $u \Rightarrow w$ by considering $u \xrightarrow{c(u)} u_{1} \xrightarrow{c(u)} u_{2} \xrightarrow{c(u)} w$.

Lastly, assume that $l(v, w)=3$ and consider vertices $v=v_{0}, v_{1}, v_{2}, v_{3}=$ w of D such that $v \xrightarrow{c(v)} v_{1} \xrightarrow{c(v)} v_{2} \xrightarrow{c(v)} w$. We still have $v_{1} \nrightarrow u$ and $v_{2} \nRightarrow u$ because $v \nRightarrow u$. Since D is quasi-transitive and since $u_{2} \rightarrow v \rightarrow v_{1}$,
$u_{2} \rightarrow v_{1}$ or $v_{1} \rightarrow u_{2}$. We prove that $u_{2} \rightarrow v_{1}$. Otherwise $v_{1} \rightarrow u_{2}$ and hence $v_{1} \rightarrow u_{2} \rightarrow u$. As D is quasi-transitive and as $v_{1} \nrightarrow u$, we get $u \rightarrow v_{1}$ and so $u \rightarrow v_{1} \rightarrow v_{2}$. Since D is quasi-transitive and since $v_{2} \nrightarrow u$, we would obtain $u \rightarrow v_{2}$ so that $v_{2} \in N^{+}(u) \cap N^{-}(w)$. It follows that $u_{2} \rightarrow v_{1}$. We have $u_{2} \rightarrow v_{1} \rightarrow v_{2}$. As D is quasi-transitive, $u_{2} \rightarrow v_{2}$ or $v_{2} \rightarrow u_{2}$. We show that $u_{2} \rightarrow v_{2}$. Otherwise $v_{2} \rightarrow u_{2}$ and hence $v_{2} \rightarrow u_{2} \rightarrow u$. Since D is quasi-transitive and since $v_{2} \nrightarrow u$, we would get $u \rightarrow v_{2}$ so that $v_{2} \in N^{+}(u) \cap N^{-}(w)$. Consequently $u_{2} \rightarrow v_{2}$ and so $u_{2} \rightarrow v_{2} \rightarrow w$. As D is quasi-transitive, we have $u_{2} \rightarrow w$ or $w \rightarrow u_{2}$. If $w \rightarrow u_{2}$, then we would have $u_{2} \in N^{+}(w) \cap N^{-}(u)$. Thus $u_{2} \rightarrow w$ and $u \Rightarrow w$ by considering $u \xrightarrow{c(u)} u_{1} \xrightarrow{c(u)} u_{2} \xrightarrow{c(u)} w$.

Proposition 3.2. Let D be an m-coloured quasi-transitive digraph containing no C_{3} and such that $A^{+}(u)$ is monochromatic for every $u \in V(D)$. Given distinct vertices u, v, w of D, if $u \Rightarrow v, v \nRightarrow u, v \Rightarrow w$ and $w \nRightarrow v$ and $c(u) \neq c(v)$, then $u \Rightarrow w$ and $w \nRightarrow u$.
$\boldsymbol{P r o o f}$.By the previous lemma, it suffices to establish that $w \nRightarrow u$. Suppose, for a contradiction, that $w \Rightarrow u$. There are vertices $w=w_{0}, \ldots, w_{p}=u$ such that $w_{q} \xrightarrow{c(w)} w_{q+1}$ for $0 \leq q \leq p-1$. Clearly $c(w) \notin\{c(u), c(v)\}$ because $v \nRightarrow u$ and $w \nRightarrow v$. As observed at the beginning of the preceding proof, $l(u, v)=1$ or 3 and $l(v, w)=1$ or 3 .

Suppose that $l(u, v)=1$, that is, $u \rightarrow v$. As D is quasi-transitive and $w_{p-1} \rightarrow u \rightarrow v$, we have $w_{p-1} \rightarrow v$ or $v \rightarrow w_{p-1}$. If $w_{p-1} \rightarrow v$, then $w \Rightarrow v$ by considering the monochromatic path $\left(w=w_{0}, \ldots, w_{p-1}, v\right)$. If $v \rightarrow w_{p-1}$, then $u \xrightarrow{c(u)} v \xrightarrow{c(v)} w_{p-1} \xrightarrow{c(w)} u$ and D would contain C_{3}. Thus $u \nrightarrow v$ and $l(u, v)=3$. There are vertices $u=u_{0}, u_{1}, u_{2}, u_{3}=v$ of D such that $u \xrightarrow{c(u)} u_{1} \xrightarrow{c(u)} u_{2} \xrightarrow{c(u)} v$. Since D is quasi-transitive and since $u \nrightarrow v$ and $v \nrightarrow u$, we obtain that $N^{+}(u) \cap N^{-}(v)=N^{+}(v) \cap N^{-}(u)=\emptyset$.

Suppose that $l(v, w)=1$, that is, $v \rightarrow w$. We get $v \rightarrow w_{0}$ and $v \nrightarrow w_{p}$. Consider the largest $q \in\{0, \ldots, p-1\}$ such that $v \rightarrow w_{q}$. As D is quasitransitive and as $v \rightarrow w_{q} \rightarrow w_{q+1}$, we have $v \rightarrow w_{q+1}$ or $w_{q+1} \rightarrow v$. By the maximality of $q, v \nrightarrow w_{q+1}$ and hence $w_{q+1} \rightarrow v$. Since $u \nrightarrow v$ then $q+1<p$. Therefore $w \Rightarrow v$ by considering the monochromatic path $(w=$ $\left.w_{0}, \ldots, w_{q+1}, v\right)$. Consequently $v \nrightarrow w$ and $l(v, w)=3$. There are vertices $v=v_{0}, v_{1}, v_{2}, v_{3}=w$ of D such that $v \xrightarrow{c(v)} v_{1} \xrightarrow{c(v)} v_{2} \xrightarrow{c(v)} w$. Since $v \nRightarrow u$, we have $v_{1} \nrightarrow u$ and $v_{2} \nrightarrow u$. It follows that $N^{+}(u) \cap N^{-}\left(v_{2}\right)=\emptyset$. Otherwise
there is $x \in V(D)$ such that $u \rightarrow x \rightarrow v_{2}$. As D is quasi-transitive and $v_{2} \nrightarrow u$, we have $u \rightarrow v_{2}$. Since $l(v, w)=3$, we have $v_{2} \rightarrow v$ and we would get $v_{2} \in N^{+}(u) \cap N^{-}(v)$. Moreover $\left(N^{+}\left(v_{2}\right) \cap N^{-}(u)\right) \cap\left\{w_{0}, \ldots, w_{p-1}\right\}=\emptyset$. Otherwise there is $i \in\{0, \ldots, p-1\}$ such that $w_{i} \in N^{+}\left(v_{2}\right) \cap N^{-}(u)$. Thus $v_{2} \xrightarrow{c(v)} w_{i} \xrightarrow{c(w)} u \xrightarrow{c(u)} v_{2}$ and D would contain C_{3}.

As $v_{1} \rightarrow v_{2}$, we have $u \nrightarrow v_{1}$ because $N^{+}(u) \cap N^{-}\left(v_{2}\right)=\emptyset$. Since $v_{1} \nrightarrow u$ and D is quasitransitive, we obtain that $N^{+}(u) \cap N^{-}\left(v_{1}\right)=\emptyset$. As $l(v, w)=3$, $w=v_{3} \rightarrow v_{1}$ and hence $u \nrightarrow w$. We have also $w \nrightarrow u$ because $v_{2} \rightarrow w$ and $\left(N^{+}\left(v_{2}\right) \cap N^{-}(u)\right) \cap\left\{w_{0}, \ldots, w_{p-1}\right\}=\emptyset$. By Lemma 2.3, $l(w, u)=3$.

We have $v_{2} \rightarrow w \rightarrow w_{1}$. Since D is quasi-transitive, $v_{2} \rightarrow w_{1}$ or $w_{1} \rightarrow v_{2}$. As $l(w, u)=3, u \rightarrow w_{1}$ and hence $w_{1} \nrightarrow v_{2}$ because $N^{+}(u) \cap N^{-}\left(v_{2}\right)=$ \emptyset. Therefore $v_{2} \rightarrow w_{1}$. So we get $v_{2} \rightarrow w_{1} \rightarrow w_{2}$. Since D is quasitransitive, $v_{2} \rightarrow w_{2}$ or $w_{2} \rightarrow v_{2}$. But $v_{2} \nrightarrow w_{2}$ because $w_{2} \rightarrow u$ and $\left(N^{+}\left(v_{2}\right) \cap N^{-}(u)\right) \cap\left\{w_{0}, w_{1}, w_{2}\right\}=\emptyset$. Consequently $w_{2} \rightarrow v_{2}$. As $l(v, w)=3$, $v_{2} \rightarrow v$. Finally, we obtain $w_{2} \rightarrow v_{2} \rightarrow v$. Since D is quasi-transitive, $w_{2} \rightarrow v$ or $v \rightarrow w_{2}$. As $w_{2} \rightarrow u$ and $N^{+}(v) \cap N^{-}(u)=\emptyset$, we have $v \nrightarrow w_{2}$ and hence $w_{2} \rightarrow v$. We would obtain $w \Rightarrow v$ by considering $w \xrightarrow{c(w)} w_{1} \xrightarrow{c(w)} w_{2} \xrightarrow{c(w)} v$.

Theorem 3.3. Let D be an m-coloured quasi-transitive digraph containing no C_{3} and such that $A^{+}(u)$ is monochromatic for every $u \in V(D)$. Then $\mathfrak{C}(D)$ is a kernel-perfect digraph.

Proof. We will prove that each cycle in $\mathfrak{C}(D)$ possesses at least one symmetrical arc. Thus the assertion in Theorem 3.3 will follow from Theorem 1.2.

Suppose, for a contradiction, that there exists a cycle in $\mathfrak{C}(D)$ which has no symmetrical arc. Let $C=\left(u_{0}, u_{1}, \ldots, u_{n}=u_{0}\right)$ be one of minimum length. Note that $n \geq 2$. Thus for each $i \in\{0,1, \ldots, n-1\}$ we have $u_{i} \Rightarrow u_{i+1}$ and $u_{i+1} \nRightarrow u_{i}$. Since C has no symmetrical arc (in $\mathfrak{C}(D)$), we may assume w.l.o.g. that $c\left(u_{0}\right) \neq c\left(u_{1}\right)$. The Proposition 2.3 implies that $u_{0} \Rightarrow u_{2}$ and $u_{2} \nRightarrow u_{0}$. So, $n \geq 3$. It follows that ($u_{0}, u_{2}, u_{3}, \ldots, u_{n}=u_{0}$) is a cycle in $\mathfrak{C}(D)$ which has no symmetrical arc and its length is less than $\ell(C)$, contradicting our assumption about C.
The following is an immediate consequence of Theorems 1.1 and 3.3.
Corollary 3.4. Let D be an m-coloured quasi-transitive digraph containing no C_{3} and such that $A^{+}(u)$ is monochromatic for every $u \in V(D)$. Then D has a kernel by monochromatic paths.

Acknowlegement

The authors would like to thank the anonymous referees for many suggestions which substantially improved the rewriting of this paper.

References

[1] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161.
[2] J. Bang-Jensen and J. Huang, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 19-27.
[3] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
[4] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101.
[5] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96.
[6] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105.
[7] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112.
[8] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99.
[9] H. Galena-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76.
[10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265.
[11] H. Galeana-Sánchez and R. Rojas-Monroy, Kernels in quasi-transitive digraphs, Discrete Math. 306 (2006) 1969-1974.
[12] T. Gallai, Transitive orienterbare graphen, Acta Math. Sci. Hung. 18 (1967) 25-66.
[13] Ghouilá-Houri, Caractrisation des graphes non orients dont on peut orienter les arretes de maniere a obtenier le graphe d'un relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370-1371.
[14] D. Kelly, Comparability graphs, in graphs and order, (ed. I. Rival), Nato ASI Series C. Vol. 147, D. Reidel (1985) 3-40.
[15] M. Kucharska, On (k, l)-kernels of orientations of special graphs, Ars Combin. 60 (2001) 137-147.
[16] M. Kucharska and M. Kwaśnik, On (k, l)-kernels of superdigraphs of P_{m} and C_{m}, Discuss. Math. Graph Theory 21 (2001) 95-109.
[17] M. Kwaśnik, The generalization of Richardson's Theorem, Discuss. Math. IV (1981) 11-14.
[18] M. Kwaśnik, On (k, l)-kernels of exclusive disjunction, Cartesian sum and normal product of two directed graphs, Discuss. Math. V (1982) 29-34.
[19] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573.
[20] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953) 649.
[21] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275.
[22] A. Włoch and I. Włoch, On (k, l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301.
[23] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99.
[24] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542.

Received 21 May 2007
Revised 22 October 2009
Accepted 27 October 2009

