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Abstract

Let D be a digraph, V (D) and A(D) will denote the sets of ver-
tices and arcs of D, respectively. We call the digraph D an m-coloured
digraph if each arc of D is coloured by an element of {1, 2, . . . , m}
where m ≥ 1. A directed path is called monochromatic if all of its
arcs are coloured alike. A set N of vertices of D is called a kernel by
monochromatic paths if there is no monochromatic path between two
vertices of N and if for every vertex v not in N there is a monochro-
matic path from v to some vertex in N . A digraph D is called a
quasi-transitive digraph if (u, v) ∈ A(D) and (v, w) ∈ A(D) implies
(u, w) ∈ A(D) or (w, u) ∈ A(D). We prove that if D is an m-coloured
quasi-transitive digraph such that for every vertex u of D the set of
arcs that have u as initial end point is monochromatic and D contains
no C3 (the 3-coloured directed cycle of length 3), then D has a kernel
by monochromatic paths.
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1. Introduction

For general concepts we refer the reader to [3]. A kernel N of a digraph D is
an independent set of vertices of D such that for every w ∈ V (D) \N there
exists an arc from w to N . A digraph D is called kernel perfect digraph
when every induced subdigraph of D has a kernel. We call the digraph
D an m-coloured digraph if each arc of D is coloured by an element of
{1, 2, . . . ,m} where m ≥ 1. A path is called monochromatic if all of its arcs
are coloured alike. If C is a path of D we denote its length by `(C). A set
N of vertices of D is called a kernel by monochromatic paths if for every
pair of vertices of N there is no monochromatic path between them and
for every vertex v not in N there is a monochromatic path from v to some
vertex in N . The closure of D, denoted by C(D), is the m-coloured digraph
defined as follows: V (C(D)) = V (D) and A(C(D)) is the set of the ordered
pairs (u, v) of distinct vertices of D such that there is a monochromatic
uv-path. Notice that for any digraph D, C(C(D)) ∼= C(D). The problem
of the existence of a kernel in a given digraph has been studied by several
authors in particular Richardson [19, 20]; Duchet and Meyniel [6]; Duchet
[4, 5]; Galeana-Sánchez and V. Neumann-Lara [9, 10]. The concept of kernel
by monochromatic paths is a generalization of the concept of kernel and it
was introduced by Galeana-Sánchez [7]. In that work she obtained some
sufficient conditions for the existence of a kernel by monochromatic paths in
an m-coloured tournament. More information about m-coloured digraphs
can be found in [7, 8, 21, 23, 24]. Another interesting generalization is the
concept of (k, l)-kernel introduced by M. Kwaśnik [17]. Other results about
(k, l)-kernels have been developed by M. Kucharska [15]; M. Kucharska and
M. Kwaśnik [16]; M. Kwaśnik [18]; and A. W loch and I. W loch [22].

A digraph D is called quasi-transitive if (u, v) ∈ A(D) and (v, w) ∈ A(D)
implies (u,w) ∈ A(D) or (w, u) ∈ A(D). The concept of quasi-transitive
digraph was introduced by Ghouilá-Houri [13] and has been studied by sev-
eral authors for example Bang-Jensen and Huang [1, 2]. Ghouilá-Houri [13]
proved that an undirected graph can be oriented as a quasi-transitive di-
graph if and only if it can be oriented as a transitive digraph, these graphs
are namely comparability graphs. More information about comparability
graphs can be found in [12, 14].

In [11] H. Galena-Sánchez and R. Rojas-Monroy proved that if D is a
digraph such that D = D1∪D2, where Di is a quasi-transitive digraph which
contains no asymmetrical infinite outward path (in Di) for i ∈ {1, 2}; and
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every directed cycle of length 3 contained in D has at least two symmetrical
arcs, then D has a kernel.

For a vertex u in an m-coloured digraph D we denote by A+(u) the set
of arcs that have u as initial end point. And we denote by C3 the directed
cycle of length 3 whose arcs are coloured with three distinct colours.

In this paper, we prove that if D is an m-coloured quasi-transitive di-
graph such that for every vertex u of D, A+(u) is monochromatic (all of its
elements have the same colour) and D contains no C3, then D has a kernel
by monochromatic paths.

We will need the following results.

Theorem 1.1 ([7]). D has a kernel by monochromatic paths if and only if

C(D) has a kernel.

Theorem 1.2 (Duchet [4]). If D is a digraph such that every directed cycle

has at least one symmetrical arc, then D is a kernel-perfect digraph.

We use the following notations where D denotes an m-coloured digraph;

given u 6= v ∈ V (D), u → v means (u, v) ∈ A(D), u
i
→ v means that the

arc (u, v) of D is coloured by i ∈ {1, . . . ,m}, u 6→ v means (u, v) /∈ A(D),
u ⇒ v means that there exists a monochromatic path from u to v and u 6⇒ v
means that there is no monochromatic path from u to v. Given u ∈ V (D),
N+(u) = {v ∈ V (D) : u → v}, N−(u) = {v ∈ V (D) : v → u} and c(u) = i
means that all the arcs of A+(u) are coloured by i where i ∈ {1, . . . ,m} (if
A+(u) = ∅, then c(u) = 1). Given u 6= v ∈ V (D) such that u ⇒ v, l(u, v)
denotes the minimal length of a monochromatic path from u to v.

2. Monochromatic Paths

We will establish some previous lemmas in order to prove the main theorem.

Lemma 2.1. Let D be an m-coloured quasi-transitive digraph such that for

every u ∈ V (D), A+(u) is monochromatic and let T = (u = u0, u1, . . . , un =
v) be a monochromatic uv-path of minimum length contained in D. Then

ui 6→ uj for every i, j ∈ {0, . . . , n} with j > i + 1. In particular, for every

i ∈ {0, . . . , n − 2}, ui+2 → ui.

Proof. The proof is straightforward.



548 H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala

Lemma 2.2. Let D be an m-coloured quasi-transitive digraph such that for

every u ∈ V (D), A+(u) is monochromatic and let T = (u = u0, u1, . . . , un =
v) be a monochromatic uv-path of minimum length contained in D. Then

uj → ui for every i, j ∈ {0, . . . , n} with j > i + 1, unless |V (T )| = 4, in

which case the arc (u3, u0) may be absent.

Proof. If | V (T ) |= 3, the result follows from Lemma 2.1.

When | V (T ) |= 4, let T = (u0, u1, u2, u3) be a monochromatic u0u3-
path. By Lemma 2.1 we have u3 → u1 and u2 → u0, and the arc (u3, u0)
may be absent.

Now, we proceed by induction on |V (T )|.
Suppose that | V (T ) |= 5. Let T = (u0, u1, u2, u3, u4) be a monochro-

matic u0u4-path of minimum length, then from Lemma 2.1 and since D is
a quasi-transitive digraph we have that u4 → u2, u3 → u1, u2 → u0 and
u4 → u0. Also, since u4 → u0, u0 → u1 and D is a quasi-transitive digraph
then u4 → u1 or u1 → u4. Lemma 2.1 implies that u1 6→ u4, then u4 → u1.
Since u3 → u4, u4 → u0 and D is a quasi-transitive digraph then u3 → u0

or u0 → u3. If u0 → u3, we have a contradiction with Lemma 2.1. Then
u3 → u0. We conclude uj → ui for every i, j ∈ {0, 1, 2, 3, 4} with j > i + 1.

Let T = (u0, u1, . . . , un) be a monochromatic path of minimum length
n with n ≥ 6.

Let T1 = (u0, u1, . . . , un−1) and T2 = (u1, . . . , un) then `(T1) ≥ 5 and
`(T2) ≥ 5, by the inductive hypothesis T1 and T2 satisfy that uj → ui for
every j > i + 1. Now, we need to prove that un → u0. Since u2 → u0 and
un → u2, and D is a quasi-transitive digraph then u0 → un or un → u0. By
Lemma 2.1 u0 6→ un, thus un → u0.

Lemma 2.3. Let D be an m-coloured quasi-transitive digraph such that for

every u ∈ V (D), A+(u) is monochromatic. Given u 6= v ∈ V (D) such

that v 6→ u, if u ⇒ v, then one and only one of the following conditions is

satisfied:

1. u → v.

2. u 6→ v and there exists a monochromatic path (u = u0, u1, u2, u3 = v) of

length 3 such that u2 → u0 and u3 → u1. Moreover, there exists no path

of length 2 between u and v.

Proof. Clearly the Lemma holds when l(u, v) = 1. So, assume that
l(u, v) ≥ 2.
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If l(u, v) ≥ 4, it follows from Lemma 2.2 that v → u, contradicting the
hypothesis. Hence l(u, v) ≤ 3. When l(u, v) = 3, let (u = u0, u1, u2, u3 = v)
be a monochromatic uv-path of minimum length, Lemma 2.1 implies that
u2 → u0 and u3 → u1.

Now, if T ′ is a path of length 2 from u to v or from v to u, since D is a
quasi-transitive digraph then u → v or v → u. The hypothesis implies that
v 6→ u, then u → v contradicting the assumption l(u, v) ≥ 2. We conclude
that there is no path of length 2 between u and v.

3. The Main Result

Lemma 3.1. Let D be an m-coloured quasi-transitive digraph such that for

every u ∈ V (D), A+(u) is monochromatic. Given distinct vertices u, v, w of

D, if u⇒v, v 6⇒ u, v⇒w and w 6⇒ v, then w→u or u⇒w.

Proof.Since u⇒v and v 6→ u, it follows from Lemma 2.3 that l(u, v) = 1
or 3. Similarly l(v, w) = 1 or 3. Assume that u 6→ w and w 6→ u. Since D
is quasi-transitive, we obtain that N+(u) ∩ N−(w) = N+(w) ∩ N−(u) = ∅.

Clearly u ⇒ w when c(u) = c(v). So assume that c(u) 6= c(v). To
begin we show that l(u, v) = 3. Otherwise l(u, v) = 1, that is, u → v. As
v /∈ N+(u) ∩ N−(w), v 6→ w. Hence l(v, w) = 3 and there are vertices

v = v0, v1, v2, v3 = w of D such that v
c(v)
−→ v1

c(v)
−→ v2

c(v)
−→ w. If v1 → u

(respectively, v2 → u), then we would have v ⇒ u by considering v
c(v)
−→

v1
c(v)
−→ u (respectively, v

c(v)
−→ v1

c(v)
−→ v2

c(v)
−→ u). Thus v1 6→ u and v2 6→ u.

As u → v → v1 and v1 6→ u, we obtain u → v1 because D is quasi-
transitive. Therefore u → v1 → v2. Since D is quasi-transitive and since
v2 6→ u, we have u → v2 and we would obtain v2 ∈ N+(u) ∩ N−(w).
Consequently, l(u, v) = 3 and there are vertices u = u0, u1, u2, u3 = v of D

such that u
c(u)
−→ u1

c(u)
−→ u2

c(u)
−→ v. As l(u, v) = 3, we get u2 → u.

Now, assume that l(v, w) = 1, that is, v → w. As u2 → v → w, we have
u2 → w or w → u2 because D is quasi-transitive. If w → u2, the we would
obtain u2 ∈ N+(w)∩N−(u). Thus u2 → w and hence u ⇒ w by considering

u
c(u)
−→ u1

c(u)
−→ u2

c(u)
−→ w.

Lastly, assume that l(v, w) = 3 and consider vertices v = v0, v1, v2, v3 =

w of D such that v
c(v)
−→ v1

c(v)
−→ v2

c(v)
−→ w. We still have v1 6→ u and

v2 6→ u because v 6⇒ u. Since D is quasi-transitive and since u2 → v → v1,
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u2 → v1 or v1 → u2. We prove that u2 → v1. Otherwise v1 → u2 and
hence v1 → u2 → u. As D is quasi-transitive and as v1 6→ u, we get u → v1

and so u → v1 → v2. Since D is quasi-transitive and since v2 6→ u, we
would obtain u → v2 so that v2 ∈ N+(u) ∩N−(w). It follows that u2 → v1.
We have u2 → v1 → v2. As D is quasi-transitive, u2 → v2 or v2 → u2.
We show that u2 → v2. Otherwise v2 → u2 and hence v2 → u2 → u.
Since D is quasi-transitive and since v2 6→ u, we would get u → v2 so that
v2 ∈ N+(u) ∩ N−(w). Consequently u2 → v2 and so u2 → v2 → w. As
D is quasi-transitive, we have u2 → w or w → u2. If w → u2, then we
would have u2 ∈ N+(w) ∩ N−(u). Thus u2 → w and u ⇒ w by considering

u
c(u)
−→ u1

c(u)
−→ u2

c(u)
−→ w.

Proposition 3.2. Let D be an m-coloured quasi-transitive digraph contain-

ing no C3 and such that A+(u) is monochromatic for every u ∈ V (D).
Given distinct vertices u, v, w of D, if u⇒v, v 6⇒ u, v⇒w and w 6⇒ v and

c(u) 6= c(v), then u⇒w and w 6⇒ u.

Proof.By the previous lemma, it suffices to establish that w 6⇒ u. Suppose,
for a contradiction, that w ⇒ u. There are vertices w = w0, . . . , wp = u such

that wq

c(w)
−→ wq+1 for 0 ≤ q ≤ p − 1. Clearly c(w) /∈ {c(u), c(v)} because

v 6⇒ u and w 6⇒ v. As observed at the beginning of the preceding proof,
l(u, v) = 1 or 3 and l(v, w) = 1 or 3.

Suppose that l(u, v) = 1, that is, u → v. As D is quasi-transitive and
wp−1 → u → v, we have wp−1 → v or v → wp−1. If wp−1 → v, then
w ⇒ v by considering the monochromatic path (w = w0, . . . , wp−1, v). If

v → wp−1, then u
c(u)
−→ v

c(v)
−→ wp−1

c(w)
−→ u and D would contain C3. Thus

u 6→ v and l(u, v) = 3. There are vertices u = u0, u1, u2, u3 = v of D such

that u
c(u)
−→ u1

c(u)
−→ u2

c(u)
−→ v. Since D is quasi-transitive and since u 6→ v

and v 6→ u, we obtain that N+(u) ∩ N−(v) = N+(v) ∩ N−(u) = ∅.
Suppose that l(v, w) = 1, that is, v → w. We get v → w0 and v 6→ wp.

Consider the largest q ∈ {0, . . . , p − 1} such that v → wq. As D is quasi-
transitive and as v → wq → wq+1, we have v → wq+1 or wq+1 → v. By
the maximality of q, v 6→ wq+1 and hence wq+1 → v. Since u 6→ v then
q + 1 < p. Therefore w ⇒ v by considering the monochromatic path (w =
w0, . . . , wq+1, v). Consequently v 6→ w and l(v, w) = 3. There are vertices

v = v0, v1, v2, v3 = w of D such that v
c(v)
−→ v1

c(v)
−→ v2

c(v)
−→ w. Since v 6⇒ u, we

have v1 6→ u and v2 6→ u. It follows that N+(u) ∩ N−(v2) = ∅. Otherwise
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there is x ∈ V (D) such that u → x → v2. As D is quasi-transitive and
v2 6→ u, we have u → v2. Since l(v, w) = 3, we have v2 → v and we would
get v2 ∈ N+(u)∩N−(v). Moreover (N+(v2)∩N−(u))∩{w0, . . . , wp−1} = ∅.
Otherwise there is i ∈ {0, . . . , p− 1} such that wi ∈ N+(v2) ∩N−(u). Thus

v2
c(v)
−→ wi

c(w)
−→ u

c(u)
−→ v2 and D would contain C3.

As v1 → v2, we have u 6→ v1 because N+(u)∩N−(v2) = ∅. Since v1 6→ u
and D is quasitransitive, we obtain that N+(u)∩N−(v1) = ∅. As l(v, w) = 3,
w = v3 → v1 and hence u 6→ w. We have also w 6→ u because v2 → w and
(N+(v2) ∩ N−(u)) ∩ {w0, . . . , wp−1} = ∅. By Lemma 2.3, l(w, u) = 3.

We have v2 → w → w1. Since D is quasi-transitive, v2 → w1 or w1 → v2.
As l(w, u) = 3, u → w1 and hence w1 6→ v2 because N+(u) ∩ N−(v2) =
∅. Therefore v2 → w1. So we get v2 → w1 → w2. Since D is quasi-
transitive, v2 → w2 or w2 → v2. But v2 6→ w2 because w2 → u and
(N+(v2)∩N−(u))∩{w0, w1, w2} = ∅. Consequently w2 → v2. As l(v, w) = 3,
v2 → v. Finally, we obtain w2 → v2 → v. Since D is quasi-transitive, w2 → v
or v → w2. As w2 → u and N+(v)∩N−(u) = ∅, we have v 6→ w2 and hence

w2 → v. We would obtain w ⇒ v by considering w
c(w)
−→ w1

c(w)
−→ w2

c(w)
−→ v.

Theorem 3.3. Let D be an m-coloured quasi-transitive digraph containing

no C3 and such that A+(u) is monochromatic for every u ∈ V (D). Then

C(D) is a kernel-perfect digraph.

Proof. We will prove that each cycle in C(D) possesses at least one sym-
metrical arc. Thus the assertion in Theorem 3.3 will follow from Theorem
1.2.

Suppose, for a contradiction, that there exists a cycle in C(D) which
has no symmetrical arc. Let C = (u0, u1, . . . , un = u0) be one of minimum
length. Note that n ≥ 2. Thus for each i ∈ {0, 1, . . . , n − 1} we have
ui ⇒ ui+1 and ui+1 6⇒ ui. Since C has no symmetrical arc (in C(D)), we
may assume w.l.o.g. that c(u0) 6= c(u1). The Proposition 2.3 implies that
u0 ⇒ u2 and u2 6⇒ u0. So, n ≥ 3. It follows that (u0, u2, u3, . . . , un = u0)
is a cycle in C(D) which has no symmetrical arc and its length is less than
`(C), contradicting our assumption about C.

The following is an immediate consequence of Theorems 1.1 and 3.3.

Corollary 3.4. Let D be an m-coloured quasi-transitive digraph containing

no C3 and such that A+(u) is monochromatic for every u ∈ V (D). Then D
has a kernel by monochromatic paths.



552 H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala

Acknowlegement

The authors would like to thank the anonymous referees for many sugges-
tions which substantially improved the rewriting of this paper.

References

[1] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20

(1995) 141–161.

[2] J. Bang-Jensen and J. Huang, Kings in quasi-transitive digraphs, Discrete
Math. 185 (1998) 19–27.

[3] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).

[4] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93–101.

[5] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on trian-

gulated and interval graphs, Ann. Discrete Math. 21 (1984) 67–96.

[6] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math.
33 (1981) 103–105.

[7] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in

edge coloured tournaments, Discrete Math. 156 (1996) 103–112.

[8] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184

(1998) 87–99.

[9] H. Galena-Sánchez and V. Neumann-Lara, On kernels and semikernels of di-

graphs, Discrete Math. 48 (1984) 67–76.

[10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs,
Discrete Math. 59 (1986) 257–265.

[11] H. Galeana-Sánchez and R. Rojas-Monroy, Kernels in quasi-transitive di-

graphs, Discrete Math. 306 (2006) 1969–1974.

[12] T. Gallai, Transitive orienterbare graphen, Acta Math. Sci. Hung. 18 (1967)
25–66.
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