MONOCHROMATIC PATHS AND MONOCHROMATIC SETS OF ARCS IN QUASI-TRANSITIVE DIGRAPHS

HORTENSIA GALEANA-SÁNCHEZ¹

R. Rojas-Monroy² and B. Zavala¹

¹ Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México, D.F. 04510
México

²Facultad de Ciencias Universidad Autónoma del Estado de México Instituto Literario, Centro 50000, Toluca, Edo. de México México

Abstract

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. We call the digraph D an m-coloured digraph if each arc of D is coloured by an element of $\{1,2,\ldots,m\}$ where $m\geq 1$. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if there is no monochromatic path between two vertices of N and if for every vertex v not in N there is a monochromatic path from v to some vertex in N. A digraph D is called a quasi-transitive digraph if $(u,v)\in A(D)$ and $(v,w)\in A(D)$ implies $(u,w)\in A(D)$ or $(w,u)\in A(D)$. We prove that if D is an m-coloured quasi-transitive digraph such that for every vertex v of v the set of arcs that have v as initial end point is monochromatic and v contains no v (the 3-coloured directed cycle of length 3), then v has a kernel by monochromatic paths.

Keywords: m-coloured quasi-transitive digraph, kernel by monochromatic paths.

2010 Mathematics Subject Classification: 05C15, 05C20.

1. Introduction

For general concepts we refer the reader to [3]. A kernel N of a digraph D is an independent set of vertices of D such that for every $w \in V(D) \setminus N$ there exists an arc from w to N. A digraph D is called kernel perfect digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if each arc of D is coloured by an element of $\{1,2,\ldots,m\}$ where $m\geq 1$. A path is called monochromatic if all of its arcs are coloured alike. If C is a path of D we denote its length by $\ell(C)$. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v not in N there is a monochromatic path from v to some vertex in N. The closure of D, denoted by $\mathfrak{C}(D)$, is the m-coloured digraph defined as follows: $V(\mathfrak{C}(D)) = V(D)$ and $A(\mathfrak{C}(D))$ is the set of the ordered pairs (u, v) of distinct vertices of D such that there is a monochromatic uv-path. Notice that for any digraph $D, \mathfrak{C}(\mathfrak{C}(D)) \cong \mathfrak{C}(D)$. The problem of the existence of a kernel in a given digraph has been studied by several authors in particular Richardson [19, 20]; Duchet and Meyniel [6]; Duchet [4, 5]; Galeana-Sánchez and V. Neumann-Lara [9, 10]. The concept of kernel by monochromatic paths is a generalization of the concept of kernel and it was introduced by Galeana-Sánchez [7]. In that work she obtained some sufficient conditions for the existence of a kernel by monochromatic paths in an m-coloured tournament. More information about m-coloured digraphs can be found in [7, 8, 21, 23, 24]. Another interesting generalization is the concept of (k, l)-kernel introduced by M. Kwaśnik [17]. Other results about (k,l)-kernels have been developed by M. Kucharska [15]; M. Kucharska and M. Kwaśnik [16]; M. Kwaśnik [18]; and A. Włoch and I. Włoch [22].

A digraph D is called quasi-transitive if $(u,v) \in A(D)$ and $(v,w) \in A(D)$ implies $(u,w) \in A(D)$ or $(w,u) \in A(D)$. The concept of quasi-transitive digraph was introduced by Ghouilá-Houri [13] and has been studied by several authors for example Bang-Jensen and Huang [1, 2]. Ghouilá-Houri [13] proved that an undirected graph can be oriented as a quasi-transitive digraph if and only if it can be oriented as a transitive digraph, these graphs are namely comparability graphs. More information about comparability graphs can be found in [12, 14].

In [11] H. Galena-Sánchez and R. Rojas-Monroy proved that if D is a digraph such that $D = D_1 \cup D_2$, where D_i is a quasi-transitive digraph which contains no asymmetrical infinite outward path (in D_i) for $i \in \{1, 2\}$; and

every directed cycle of length 3 contained in D has at least two symmetrical arcs, then D has a kernel.

For a vertex u in an m-coloured digraph D we denote by $A^+(u)$ the set of arcs that have u as initial end point. And we denote by C_3 the directed cycle of length 3 whose arcs are coloured with three distinct colours.

In this paper, we prove that if D is an m-coloured quasi-transitive digraph such that for every vertex u of D, $A^+(u)$ is monochromatic (all of its elements have the same colour) and D contains no C_3 , then D has a kernel by monochromatic paths.

We will need the following results.

Theorem 1.1 ([7]). D has a kernel by monochromatic paths if and only if $\mathfrak{C}(D)$ has a kernel.

Theorem 1.2 (Duchet [4]). If D is a digraph such that every directed cycle has at least one symmetrical arc, then D is a kernel-perfect digraph.

We use the following notations where D denotes an m-coloured digraph; given $u \neq v \in V(D), u \to v$ means $(u,v) \in A(D), u \stackrel{i}{\to} v$ means that the arc (u,v) of D is coloured by $i \in \{1,\ldots,m\}, u \neq v$ means $(u,v) \notin A(D), u \Rightarrow v$ means that there exists a monochromatic path from u to v and $u \not\Rightarrow v$ means that there is no monochromatic path from u to v. Given $u \in V(D), N^+(u) = \{v \in V(D) : u \to v\}, N^-(u) = \{v \in V(D) : v \to u\} \text{ and } c(u) = i$ means that all the arcs of $A^+(u)$ are coloured by i where $i \in \{1,\ldots,m\}$ (if $A^+(u) = \emptyset$, then c(u) = 1). Given $u \neq v \in V(D)$ such that $u \Rightarrow v, l(u,v)$ denotes the minimal length of a monochromatic path from u to v.

2. Monochromatic Paths

We will establish some previous lemmas in order to prove the main theorem.

Lemma 2.1. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D)$, $A^+(u)$ is monochromatic and let $T = (u = u_0, u_1, \ldots, u_n = v)$ be a monochromatic uv-path of minimum length contained in D. Then $u_i \neq u_j$ for every $i, j \in \{0, \ldots, n\}$ with j > i + 1. In particular, for every $i \in \{0, \ldots, n-2\}$, $u_{i+2} \rightarrow u_i$.

Proof. The proof is straightforward.

Lemma 2.2. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D)$, $A^+(u)$ is monochromatic and let $T = (u = u_0, u_1, \ldots, u_n = v)$ be a monochromatic uv-path of minimum length contained in D. Then $u_j \to u_i$ for every $i, j \in \{0, \ldots, n\}$ with j > i + 1, unless |V(T)| = 4, in which case the arc (u_3, u_0) may be absent.

Proof. If |V(T)| = 3, the result follows from Lemma 2.1.

When |V(T)|=4, let $T=(u_0,u_1,u_2,u_3)$ be a monochromatic u_0u_3 -path. By Lemma 2.1 we have $u_3\to u_1$ and $u_2\to u_0$, and the arc (u_3,u_0) may be absent.

Now, we proceed by induction on |V(T)|.

Suppose that |V(T)| = 5. Let $T = (u_0, u_1, u_2, u_3, u_4)$ be a monochromatic u_0u_4 -path of minimum length, then from Lemma 2.1 and since D is a quasi-transitive digraph we have that $u_4 \to u_2$, $u_3 \to u_1$, $u_2 \to u_0$ and $u_4 \to u_0$. Also, since $u_4 \to u_0$, $u_0 \to u_1$ and D is a quasi-transitive digraph then $u_4 \to u_1$ or $u_1 \to u_4$. Lemma 2.1 implies that $u_1 \not\to u_4$, then $u_4 \to u_1$. Since $u_3 \to u_4$, $u_4 \to u_0$ and D is a quasi-transitive digraph then $u_3 \to u_0$ or $u_0 \to u_3$. If $u_0 \to u_3$, we have a contradiction with Lemma 2.1. Then $u_3 \to u_0$. We conclude $u_j \to u_i$ for every $i, j \in \{0, 1, 2, 3, 4\}$ with j > i + 1.

Let $T = (u_0, u_1, \dots, u_n)$ be a monochromatic path of minimum length n with $n \ge 6$.

Let $T_1 = (u_0, u_1, \dots, u_{n-1})$ and $T_2 = (u_1, \dots, u_n)$ then $\ell(T_1) \geq 5$ and $\ell(T_2) \geq 5$, by the inductive hypothesis T_1 and T_2 satisfy that $u_j \to u_i$ for every j > i + 1. Now, we need to prove that $u_n \to u_0$. Since $u_2 \to u_0$ and $u_n \to u_2$, and D is a quasi-transitive digraph then $u_0 \to u_n$ or $u_n \to u_0$. By Lemma 2.1 $u_0 \not\to u_n$, thus $u_n \to u_0$.

Lemma 2.3. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D)$, $A^+(u)$ is monochromatic. Given $u \neq v \in V(D)$ such that $v \not\to u$, if $u \Rightarrow v$, then one and only one of the following conditions is satisfied:

- 1. $u \rightarrow v$.
- 2. $u \neq v$ and there exists a monochromatic path $(u = u_0, u_1, u_2, u_3 = v)$ of length 3 such that $u_2 \rightarrow u_0$ and $u_3 \rightarrow u_1$. Moreover, there exists no path of length 2 between u and v.

Proof. Clearly the Lemma holds when l(u, v) = 1. So, assume that $l(u, v) \geq 2$.

If $l(u,v) \geq 4$, it follows from Lemma 2.2 that $v \to u$, contradicting the hypothesis. Hence $l(u,v) \leq 3$. When l(u,v) = 3, let $(u = u_0, u_1, u_2, u_3 = v)$ be a monochromatic uv-path of minimum length, Lemma 2.1 implies that $u_2 \to u_0$ and $u_3 \to u_1$.

Now, if T' is a path of length 2 from u to v or from v to u, since D is a quasi-transitive digraph then $u \to v$ or $v \to u$. The hypothesis implies that $v \not\to u$, then $u \to v$ contradicting the assumption $l(u,v) \ge 2$. We conclude that there is no path of length 2 between u and v.

3. The Main Result

Lemma 3.1. Let D be an m-coloured quasi-transitive digraph such that for every $u \in V(D)$, $A^+(u)$ is monochromatic. Given distinct vertices u, v, w of D, if $u \Rightarrow v, v \Rightarrow w$ and $w \not\Rightarrow v$, then $w \rightarrow u$ or $u \Rightarrow w$.

Proof. Since $u \Rightarrow v$ and $v \neq u$, it follows from Lemma 2.3 that l(u, v) = 1 or 3. Similarly l(v, w) = 1 or 3. Assume that $u \neq w$ and $w \neq u$. Since D is quasi-transitive, we obtain that $N^+(u) \cap N^-(w) = N^+(w) \cap N^-(u) = \emptyset$.

Clearly $u\Rightarrow w$ when c(u)=c(v). So assume that $c(u)\neq c(v)$. To begin we show that l(u,v)=3. Otherwise l(u,v)=1, that is, $u\to v$. As $v\notin N^+(u)\cap N^-(w),\ v\not\to w$. Hence l(v,w)=3 and there are vertices $v=v_0,v_1,v_2,v_3=w$ of D such that $v\xrightarrow{c(v)}v_1\xrightarrow{c(v)}v_2\xrightarrow{c(v)}w$. If $v_1\to u$ (respectively, $v_2\to u$), then we would have $v\Rightarrow u$ by considering $v\xrightarrow{c(v)}v_1\xrightarrow{c(v)}u$ (respectively, $v\xrightarrow{c(v)}v_1\xrightarrow{c(v)}v_2\xrightarrow{c(v)}u$). Thus $v_1\not\to u$ and $v_2\not\to u$.

As $u \to v \to v_1$ and $v_1 \not\to u$, we obtain $u \to v_1$ because D is quasi-transitive. Therefore $u \to v_1 \to v_2$. Since D is quasi-transitive and since $v_2 \not\to u$, we have $u \to v_2$ and we would obtain $v_2 \in N^+(u) \cap N^-(w)$. Consequently, l(u,v)=3 and there are vertices $u=u_0,u_1,u_2,u_3=v$ of D such that $u \xrightarrow{c(u)} u_1 \xrightarrow{c(u)} u_2 \xrightarrow{c(u)} v$. As l(u,v)=3, we get $u_2 \to u$.

Now, assume that l(v,w)=1, that is, $v\to w$. As $u_2\to v\to w$, we have $u_2\to w$ or $w\to u_2$ because D is quasi-transitive. If $w\to u_2$, the we would obtain $u_2\in N^+(w)\cap N^-(u)$. Thus $u_2\to w$ and hence $u\Rightarrow w$ by considering $u\stackrel{c(u)}{\longrightarrow} u_1\stackrel{c(u)}{\longrightarrow} u_2\stackrel{c(u)}{\longrightarrow} w$.

Lastly, assume that l(v,w)=3 and consider vertices $v=v_0,v_1,v_2,v_3=w$ of D such that $v\xrightarrow{c(v)}v_1\xrightarrow{c(v)}v_2\xrightarrow{c(v)}w$. We still have $v_1\not\to u$ and $v_2\not\to u$ because $v\not\Rightarrow u$. Since D is quasi-transitive and since $u_2\to v\to v_1$,

 $u_2 \to v_1$ or $v_1 \to u_2$. We prove that $u_2 \to v_1$. Otherwise $v_1 \to u_2$ and hence $v_1 \to u_2 \to u$. As D is quasi-transitive and as $v_1 \not\to u$, we get $u \to v_1$ and so $u \to v_1 \to v_2$. Since D is quasi-transitive and since $v_2 \not\to u$, we would obtain $u \to v_2$ so that $v_2 \in N^+(u) \cap N^-(w)$. It follows that $u_2 \to v_1$. We have $u_2 \to v_1 \to v_2$. As D is quasi-transitive, $u_2 \to v_2$ or $v_2 \to u_2$. We show that $u_2 \to v_2$. Otherwise $v_2 \to u_2$ and hence $v_2 \to u_2 \to u$. Since D is quasi-transitive and since $v_2 \not\to u$, we would get $u \to v_2$ so that $v_2 \in N^+(u) \cap N^-(w)$. Consequently $u_2 \to v_2$ and so $u_2 \to v_2 \to w$. As D is quasi-transitive, we have $u_2 \to w$ or $w \to u_2$. If $w \to u_2$, then we would have $u_2 \in N^+(w) \cap N^-(u)$. Thus $u_2 \to w$ and $u \to w$ by considering $u \xrightarrow{c(u)} u_1 \xrightarrow{c(u)} u_2 \xrightarrow{c(u)} w$.

Proposition 3.2. Let D be an m-coloured quasi-transitive digraph containing no C_3 and such that $A^+(u)$ is monochromatic for every $u \in V(D)$. Given distinct vertices u, v, w of D, if $u \Rightarrow v, v \not\Rightarrow u, v \Rightarrow w$ and $w \not\Rightarrow v$ and $c(u) \neq c(v)$, then $u \Rightarrow w$ and $w \not\Rightarrow u$.

Proof.By the previous lemma, it suffices to establish that $w \not\Rightarrow u$. Suppose, for a contradiction, that $w \Rightarrow u$. There are vertices $w = w_0, \ldots, w_p = u$ such that $w_q \xrightarrow{c(w)} w_{q+1}$ for $0 \le q \le p-1$. Clearly $c(w) \notin \{c(u), c(v)\}$ because $v \not\Rightarrow u$ and $w \not\Rightarrow v$. As observed at the beginning of the preceding proof, l(u, v) = 1 or 3 and l(v, w) = 1 or 3.

Suppose that l(u, v) = 1, that is, $u \to v$. As D is quasi-transitive and $w_{p-1} \to u \to v$, we have $w_{p-1} \to v$ or $v \to w_{p-1}$. If $w_{p-1} \to v$, then $w \Rightarrow v$ by considering the monochromatic path $(w = w_0, \ldots, w_{p-1}, v)$. If $v \to w_{p-1}$, then $u \xrightarrow{c(u)} v \xrightarrow{c(v)} w_{p-1} \xrightarrow{c(w)} u$ and D would contain C_3 . Thus $u \not\to v$ and l(u, v) = 3. There are vertices $u = u_0, u_1, u_2, u_3 = v$ of D such that $u \xrightarrow{c(u)} u_1 \xrightarrow{c(u)} u_2 \xrightarrow{c(u)} v$. Since D is quasi-transitive and since $u \not\to v$ and $v \not\to u$, we obtain that $N^+(u) \cap N^-(v) = N^+(v) \cap N^-(u) = \emptyset$.

Suppose that l(v,w)=1, that is, $v\to w$. We get $v\to w_0$ and $v\not\to w_p$. Consider the largest $q\in\{0,\ldots,p-1\}$ such that $v\to w_q$. As D is quasitransitive and as $v\to w_q\to w_{q+1}$, we have $v\to w_{q+1}$ or $w_{q+1}\to v$. By the maximality of $q,v\not\to w_{q+1}$ and hence $w_{q+1}\to v$. Since $u\not\to v$ then q+1< p. Therefore $w\Rightarrow v$ by considering the monochromatic path $(w=w_0,\ldots,w_{q+1},v)$. Consequently $v\not\to w$ and l(v,w)=3. There are vertices $v=v_0,v_1,v_2,v_3=w$ of D such that $v\xrightarrow{c(v)}v_1\xrightarrow{c(v)}v_2\xrightarrow{c(v)}w$. Since $v\not\to u$, we have $v_1\not\to u$ and $v_2\not\to u$. It follows that $N^+(u)\cap N^-(v_2)=\emptyset$. Otherwise

there is $x \in V(D)$ such that $u \to x \to v_2$. As D is quasi-transitive and $v_2 \not\to u$, we have $u \to v_2$. Since l(v,w)=3, we have $v_2 \to v$ and we would get $v_2 \in N^+(u) \cap N^-(v)$. Moreover $(N^+(v_2) \cap N^-(u)) \cap \{w_0, \ldots, w_{p-1}\} = \emptyset$. Otherwise there is $i \in \{0, \ldots, p-1\}$ such that $w_i \in N^+(v_2) \cap N^-(u)$. Thus $v_2 \xrightarrow{c(v)} w_i \xrightarrow{c(w)} u \xrightarrow{c(u)} v_2$ and D would contain C_3 .

As $v_1 \to v_2$, we have $u \neq v_1$ because $N^+(u) \cap N^-(v_2) = \emptyset$. Since $v_1 \neq u$ and D is quasitransitive, we obtain that $N^+(u) \cap N^-(v_1) = \emptyset$. As l(v, w) = 3, $w = v_3 \to v_1$ and hence $u \neq w$. We have also $w \neq u$ because $v_2 \to w$ and $(N^+(v_2) \cap N^-(u)) \cap \{w_0, \ldots, w_{p-1}\} = \emptyset$. By Lemma 2.3, l(w, u) = 3.

We have $v_2 \to w \to w_1$. Since D is quasi-transitive, $v_2 \to w_1$ or $w_1 \to v_2$. As l(w,u)=3, $u \to w_1$ and hence $w_1 \not\to v_2$ because $N^+(u) \cap N^-(v_2)=\emptyset$. Therefore $v_2 \to w_1$. So we get $v_2 \to w_1 \to w_2$. Since D is quasi-transitive, $v_2 \to w_2$ or $w_2 \to v_2$. But $v_2 \not\to w_2$ because $w_2 \to u$ and $(N^+(v_2)\cap N^-(u))\cap \{w_0,w_1,w_2\}=\emptyset$. Consequently $w_2 \to v_2$. As l(v,w)=3, $v_2 \to v$. Finally, we obtain $w_2 \to v_2 \to v$. Since D is quasi-transitive, $w_2 \to v$ or $v \to w_2$. As $w_2 \to u$ and $N^+(v) \cap N^-(u)=\emptyset$, we have $v \not\to w_2$ and hence $w_2 \to v$. We would obtain $w \Rightarrow v$ by considering $w \xrightarrow{c(w)} w_1 \xrightarrow{c(w)} w_2 \xrightarrow{c(w)} v$.

Theorem 3.3. Let D be an m-coloured quasi-transitive digraph containing no C_3 and such that $A^+(u)$ is monochromatic for every $u \in V(D)$. Then $\mathfrak{C}(D)$ is a kernel-perfect digraph.

Proof. We will prove that each cycle in $\mathfrak{C}(D)$ possesses at least one symmetrical arc. Thus the assertion in Theorem 3.3 will follow from Theorem 1.2.

Suppose, for a contradiction, that there exists a cycle in $\mathfrak{C}(D)$ which has no symmetrical arc. Let $C = (u_0, u_1, \ldots, u_n = u_0)$ be one of minimum length. Note that $n \geq 2$. Thus for each $i \in \{0, 1, \ldots, n-1\}$ we have $u_i \Rightarrow u_{i+1}$ and $u_{i+1} \not\Rightarrow u_i$. Since C has no symmetrical arc (in $\mathfrak{C}(D)$), we may assume w.l.o.g. that $c(u_0) \not= c(u_1)$. The Proposition 2.3 implies that $u_0 \Rightarrow u_2$ and $u_2 \not\Rightarrow u_0$. So, $n \geq 3$. It follows that $(u_0, u_2, u_3, \ldots, u_n = u_0)$ is a cycle in $\mathfrak{C}(D)$ which has no symmetrical arc and its length is less than $\ell(C)$, contradicting our assumption about C.

The following is an immediate consequence of Theorems 1.1 and 3.3.

Corollary 3.4. Let D be an m-coloured quasi-transitive digraph containing no C_3 and such that $A^+(u)$ is monochromatic for every $u \in V(D)$. Then D has a kernel by monochromatic paths.

Acknowlegement

The authors would like to thank the anonymous referees for many suggestions which substantially improved the rewriting of this paper.

References

- [1] J. Bang-Jensen and J. Huang, *Quasi-transitive digraphs*, J. Graph Theory **20** (1995) 141–161.
- [2] J. Bang-Jensen and J. Huang, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 19–27.
- [3] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
- [4] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93–101.
- [5] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67–96.
- [6] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103–105.
- [7] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. **156** (1996) 103–112.
- [8] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87–99.
- [9] H. Galena-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67–76.
- [10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257–265.
- [11] H. Galeana-Sánchez and R. Rojas-Monroy, Kernels in quasi-transitive digraphs, Discrete Math. **306** (2006) 1969–1974.
- [12] T. Gallai, Transitive orienterbare graphen, Acta Math. Sci. Hung. 18 (1967) 25–66.
- [13] Ghouilá-Houri, Caractrisation des graphes non orients dont on peut orienter les arretes de maniere a obtenier le graphe d'un relation d'ordre, C.R. Acad. Sci. Paris **254** (1962) 1370–1371.
- [14] D. Kelly, Comparability graphs, in graphs and order, (ed. I. Rival), Nato ASI Series C. Vol. 147, D. Reidel (1985) 3–40.
- [15] M. Kucharska, On(k, l)-kernels of orientations of special graphs, Ars Combin. **60** (2001) 137–147.

- [16] M. Kucharska and M. Kwaśnik, On(k,l)-kernels of superdigraphs of P_m and C_m , Discuss. Math. Graph Theory **21** (2001) 95–109.
- [17] M. Kwaśnik, The generalization of Richardson's Theorem, Discuss. Math. IV (1981) 11–14.
- [18] M. Kwaśnik, On (k,l)-kernels of exclusive disjunction, Cartesian sum and normal product of two directed graphs, Discuss. Math. V (1982) 29–34.
- [19] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573.
- [20] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953) 649.
- [21] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271–275.
- [22] A. Włoch and I. Włoch, On(k,l)-kernels in generalized products, Discrete Math. **164** (1997) 295–301.
- [23] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93–99.
- [24] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537–542.

Received 21 May 2007 Revised 22 October 2009 Accepted 27 October 2009