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Abstract

An injective map from the vertex set of a graph G—its order may not
be finite—to the set of all natural numbers is called an arithmetic (a
geometric) labeling of G if the map from the edge set which assigns
to each edge the sum (product) of the numbers assigned to its ends
by the former map, is injective and the range of the latter map forms
an arithmetic (a geometric) progression. A graph is called arithmetic

(geometric) if it admits an arithmetic (a geometric) labeling. In this
article, we show that the two notions just mentioned are equivalent—
i.e., a graph is arithmetic if and only if it is geometric.
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All graphs considered in this article are countable and simple. The set of all
positive integers is denoted by N and N = {0} ∪ N. For basic information
about graph theory we rely on [7]. Let G = (V,E) be a graph and f be any
map from V to N; we associate with f two maps from E to N, denoted by
f+ and f×: for all uv ∈ E, f+(uv) = f(u)+f(v) and f×(uv) = f(u)×f(v).
If f and f+ are injective and the elements of f+(E) form an arithmetic
progression—i.e., if this set can be written as {k+nd : n ∈ N and n < |E|}—
then f is called an arithmetic labeling of G. (For information about this
labeling for finite graphs, see [1, 2].) If f and f× are injective and the
elements of f×(E) form a geometric progression—i.e., if this set can be
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written as {arn : n ∈ N and n < |E|} where r may not be an integer—
then f is called a geometric labeling of G. (For details about this labeling
for finite graphs, we refer the reader to [4, 5]; in this connection, see [3]
also.) If a graph admits an arithmetic (a geometric) labeling then it is
called arithmetic (geometric). If σ is an arithmetic labeling of a graph G,
then the map: v 7→ 2σ(v) where v ∈ V (G) is a geometric labeling of G.
Thus, if a graph is arithmetic then it is geometric also. The objective of this
article is to prove the converse; to this end, we begin with a simple result.

Lemma 1. Let f be a geometric labeling of a graph G = (V,E) and f×(E) =
{arn : n ∈ N and n < |E|}. Let H be a component of G and p, q be two

vertices of H. If the distance between p and q is odd, then for some n ∈ Z,

f(p)f(q) = arn; otherwise for some n ∈ Z, f(q) = f(p)rn. If H is not

a bipartite graph, then for each x ∈ V (H), there is some n ∈ Z such that

(f(x))2 = arn.

Proof. If x ∈ N(p), then for some n ∈ Z, f(p)f(x) = arn; if w is a vertex
of H such that d(w, p) = 2, then it is easy to verify that f(w) = f(p)rn for
some n ∈ Z. Thus continuing, we obtain the following: If d(p, q) is odd, then
for some n ∈ Z, f(p)f(q) = arn; otherwise for some n ∈ Z, f(q) = f(p)rn.

Now suppose that H is not bipartite. Then either A := {x ∈ V (H) :
d(x, p) is odd} or V (H) \A is not an independent set of H; therefore either
in A or in V (H) \ A, there exists a pair of adjacent vertices u, v. By the
hypothesis, for some k ∈ Z, f(u)f(v) = ark. If u, v ∈ A, then by what has
been derived above, for some m,n ∈ Z, f(p)f(u) = arm and f(p)f(v) = arn

whence by the preceding three equalities, it follows that (f(p))2 = ar` for
some ` ∈ Z; if u, v ∈ (V (H)\A) then for some m,n ∈ Z, f(u) = f(p)rm and
f(v) = f(p)rn whence for some ` ∈ Z, (f(p))2 = ar`. Since p is arbitrary,
the second part of the conclusion also holds.

Proposition 2. Let G = (V,E) be a graph such that the number of its

nontrivial components which are bipartite is finite. If G is geometric, then

it is arithmetic.

Proof. We can assume that G has no isolated vertices. Suppose that f is
a geometric labeling of G. Let U be the union of the vertex sets of all non-
bipartite components and (Ai, Bi), i = 1, 2, . . . , n− 1 be the bipartitions of
the remaining components. (see Definition 1.2.17 of [7].) Let f×(E) = {ark :
k ∈ N and k < |E|}. For each i ∈ {1, 2, . . . , n− 1}, choose a vertex xi ∈ Ai.
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Let v be a vertex in U . By Lemma 1, for some k ∈ Z, (f(v))2 = ark;
therefore 2 log f(v) − log a is an integer, viz., k. (In this proof, ‘r’ is the
base for every logarithm.) For any i ∈ {1, 2, . . . , n− 1}, let x and y be
vertices in Ai and Bi, respectively. Then by Lemma 1, for some j, k ∈ Z,
f(x) = f(xi)r

j and f(y)f(xi) = ark. Therefore [log f(x)−log f(xi)] = j ∈ Z

and [log f(y) + log f(xi) − log a] = k ∈ Z. Let

µ = dmax{2n log a + n, 2n log f(xi) : i = 1, . . . , n− 1}e.

Define a map g : V 7→ Z as follows.
For all x ∈ U , g(x) = n[2 log f(x) − log a] + µ; if i ∈ {1, 2, . . . , n− 1},

then for all x ∈ Ai, g(x) = 2n[log f(x)− log f(xi)]+ i+µ and for all x ∈ Bi,
g(x) = 2n[log f(x) + log f(xi) − log a] − i + µ.

It is easy to verify that if x ∈ W and y ∈ V \ W where W ∈ {U, Ai,
Bi : i = 1, . . . , n− 1}, then g(x) 6≡ g(y) (mod 2n); using this fact, we find
that g is injective. By the choice of µ, clearly for each v ∈ V (G), g(v) > 0.
For each e ∈ E, it can be verified that g+(e) = 2n log f×(e) + 2µ− 2n log a.
Therefore g+ is injective and the elements of g+(E) form an arithmetic
progression. Thus it follows that g is an arithmetic labeling.

Corollary 3. If a graph is finite and geometric, then it is arithmetic.

For another proof of Corollary 3, see [6]. It is easy to find the graphs—
finite and infinite—which are arithmetic; e.g., it can be verified that every
finite path, the infinite path with one leaf and every complete graph whose
order is less than 5 are arithmetic and it can be shown that every complete
graph with at least 5 vertices—it can be infinite—is not arithmetic. (For
more examples of finite arithmetic graphs, see [1, 5].) The next result which
yields a class of infinite graphs which are arithmetic, plays a decisive role in
settling the main result, viz., Theorem 5.

Theorem 4. Let G = (V,E) be a graph such that its order is countable and

the number of its nontrivial components which are bipartite is infinite. Then

G is arithmetic.

Proof. First consider the possibility that the number of components of
order 2 is infinite. Let H be the union of all other components. Let f be
an injective map from V (H) to {2n+3 : n ∈ N}. It can be verified that f+

is injective and J := {n ∈ N : 8n /∈ f+(E(H))} is infinite. We can take
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{Hj : j ∈ J} as the set of all components which are copies of K2. Let f be
extended to a map g : V 7→ N so that for each j ∈ J , g(V (Hj)) = {4j − 1,
4j + 1}. Then g and g+ are injective and g+(E) = {8n : n ∈ N}; i.e., g is
an arithmetic labeling of G.

So, let us assume that the number of components which are of order
2 is finite. Let V = {v1, v2, v3, . . .}. Let Z be the union of the vertex
sets of all components each of which is either non-bipartite or K2 or K1.
Inductively we construct for each n ∈ N, an induced subgraph Gn and a
map fn : V (Gn) 7→ N such that the conditions (a), (b), . . . , (f) and (g)
given below are fulfilled.

(a) For each x ∈ V (Gn), there exists an integer k ∈ {0, 1, 3, 5, 7} such that
fn(x) ≡ k. (8 is the modulus of every congruence occurred in this proof.)

(b) Xn ∩ Z = ∅ = Yn ∩ Z and Zn ⊂ Z where Xn = {x ∈ V (Gn) : fn(x) ≡
1 or 5}, Yn = {x ∈ V (Gn) : fn(x) ≡ 3 or 7} and Zn = {x ∈ V (Gn) :
fn(x) ≡ 0}.

(c) fn is injective and f+
n (E(Gn)) = {8k : k = 1, . . . , |E(Gn)|}.

(d) If n > 1, then V (Gn−1) ⊆ V (Gn) and fn is an extension of fn−1.

(e) There exist a vertex αn ∈ Xn and a vertex βn ∈ Yn, such that they
are adjacent and for each x ∈ Xn, fn(x) 6 fn(αn), for each x ∈ Yn,
fn(x) 6 fn(βn) and for each x ∈ Zn, fn(αn) > fn(x) < fn(βn).

(f) {v1, v2, . . . , vn} ⊆ V (Gn).

(g) If (A,B) is the bipartition of a component of G − Z and x, y belong to
V (Gm) ∩ (A ∪ B), then the following hold.

x, y ∈ A or x, y ∈ B ⇒ fn(x) ≡ fn(y) and

x ∈ A, y ∈ B ⇒ fn(x) + fn(y) ≡ 0.

We can assume that v1, v2, v3 /∈ Z and v1 is adjacent to both v2 and v3.
Let G1 = G[v1, v2, v3]. Set f1(v1) = 1, f1(v2) = 7 and f1(v3) = 15. Let
α1 = v1 and β1 = v3. Then (a), . . . , (f) and (g) are satisfied for n = 1. Now
suppose for some m ∈ N, there exists an induced subgraph Gm and a map
fm : V (Gm) 7→ N satisfying the conditions listed above. Let us construct the
subgraph Gm+1, the map fm+1 and set the vertices αm+1, βm+1 as described
below.
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Case 1. vm+1 ∈ V (Gm).
Let Gm+1 = Gm, fm+1 = fm, αm+1 = αm and βm+1 = βm.

Case 2. vm+1 ∈ (Z \ V (Gm)).
Let J = {j ∈ N : vj ∈ V (Gm)∩N(vm+1)}. (J may be empty.) Let L = {1, 2,
. . . , 2`− 1, 2`} \ { 1

8fm(vj) : j ∈ J} where ` = 1
8fm(αmβm). For each k ∈ L,

choose a distinct component Hk of G − Z so that V (Hk) ∩ V (Gm) = ∅
and let xk, yk be two adjacent vertices of Hk. Let V (Gm+1) = V (Gm) ∪
{vm+1, xj , yj : j ∈ L}. For each x ∈ V (Gm), let fm+1(x) = fm(x). Set
fm+1(vm+1) = f+

m(αmβm). For each k ∈ L, set fm+1(xk) = fm(αm) + 4k
and fm+1(yk) = fm(βm) + 4k. Note that Xm+1 = Xm ∪ {xk : k ∈ L},
Ym+1 = Ym ∪ {yk : k ∈ L} and Zm+1 = Zm ∪ {vm+1}. Let αm+1 = x2` and
βm+1 = y2`. It can be verified that |E(Gm+1) − E(Gm)| = |J | + |L| = 2`
and {f+

m+1(e) : e ∈ E(Gm+1) − E(Gm)} = {f+
m+1(vkvm+1) : k ∈ J} ∪

{f+
m+1(xjyj) : j ∈ L} = {f+

m(αmβm) + 8k : 1 6 k 6 2`}.

Case 3. vm+1 /∈ (Z ∪ V (Gm)).
Let (S, T ) be the bipartition of the component which contains vm+1. By
(g), we can assume that Xm ∩ T = Ym ∩ S = ∅. Assume that vm+1 ∈ S.
Let J = {j ∈ N : vj ∈ V (Gm) ∩ N(vm+1)}. (J may be empty.) Let the
number ρ be chosen in {0, 4} as follows: If V (Gm) ∩ (S ∪ T ) = ∅, ρ = 0.
Otherwise, let u ∈ V (Gm)∩ (S ∪T ); when u ∈ S, ρ+ fm(αm) ≡ f(u); when
u ∈ T , ρ + fm(αm) + f(u) ≡ 0. (Note that by (g), for all x ∈ S ∩ V (Gm),
ρ+fm(αm) ≡ fm(x) and for all x ∈ T∩V (Gm), ρ+fm(αm)+fm(x) ≡ 0.) Let
` = 1

4 [f+
m(αmβm)+ρ]−1. Note that for each j ∈ J , fm(αm)+fm(vj)+ρ < 8`.

Let L = {1, 2, . . . , `} \ { 1
8 [fm(αm) + fm(vj) + ρ] : j ∈ J}. For each k ∈ L,

choose a distinct component Hk of G − Z so that V (Hk) ∩ V (Gm) = ∅
and let xk, yk be two adjacent vertices in Hk. Let y` be chosen so that
deg y` > 2. Let x`+1 be a neighbour of y`, other than x`. Let V (Gm+1) =
V (Gm)∪{vm+1, x`+1}∪{xk, yk : k ∈ L}. For each x ∈ V (Gm), let fm+1(x) =
fm(x). Set fm+1(vm+1) = f+

m(αmβm) + fm(αm) + ρ. For each k ∈ L, set
fm+1(xk) = fm(αm) + 4k and fm+1(yk) = fm(βm) + 4k. Set fm+1(x`+1) =
fm+1(x`) + 8. Note that Xm+1 = Xm ∪ {xk : k ∈ L} ∪ {x`+1, vm+1},
Ym+1 = Ym ∪ {yk : k ∈ L} and Zm+1 = Zm. Let αm+1 = x`+1 and
βm+1 = y`. We find that |E(Gm+1) − E(Gm)| = |J | + |L| + 1 = ` + 1
and {f+

m+1(e) : e ∈ E(Gm+1) − E(Gm)} = {f+
m+1(vjvm+1) : j ∈ J} ∪

{f+
m+1(xkyk) : k ∈ L}∪{f+

m+1(y`x`+1)} = {f+
m(αmβm)+8k : 1 6 k 6 `+1}.

In each of the three cases, it can be routinely verified that the conditions
(a), . . . , (f) and (g) hold when n = m + 1. Since ∪∞

n=1V (Gn) = V (G) and
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for each n ∈ N, fn+1 is the extension of fn, we have an injective map
f : V 7→ N such that for each n ∈ N, fn is the restriction of f to V (Gn).
Since f+(E) = {8k : k ∈ N}, f is an arithmetic labeling of G.

Combining Proposition 2 and Theorem 4, we find that if a graph is geo-
metric, then it is arithmetic. We have already noted that every arithmetic
graph is geometric. Thus we obtain the following.

Theorem 5. A graph is arithmetic if and only if it is geometric.
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