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Elżbieta Sidorowicz

Faculty of Mathematics, Computer Science and Econometrics

University of Zielona Góra
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Abstract

For k ≥ 2 we define a class of graphs Hk = {G : every block
of G has at most k vertices}. The class Hk contains among other
graphs forests, Husimi trees, line graphs of forests, cactus graphs. We
consider the colouring game and the generalized colouring game on
graphs from Hk.
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1. Introduction

Every graph G = (V,E) considered in this paper is finite and simple, i.e.,
undirected, loopless and without multiple edges. For S ⊆ V (G), let N(S) =⋃

v∈V N(v), where N(v) denotes the neighbourhood of v and G − S be the
subgraph of G induced by V (G) \ S.

For undefined concepts we refer the reader to [6].

Let C = {1, 2, . . . , k}. Let G be a graph and S ⊆ V (G). A function
c : S → C is a k-colouring (colouring) of G. We say that a colour i is
admissible for an uncoloured vertex v, if i /∈ {c(u) : u ∈ N(v)}. The k-
colouring c is called proper if c(v) 6= c(u) whenever vu ∈ E(G) and for every
uncoloured vertex v there is an admissible colour. We say that a graph G is
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partially properly k-coloured if G is properly k-coloured and it has at least
one uncoloured vertex.

We consider the two-players k-colouring game defined as follows. Alice
and Bob are the two players which play alternatively. Furthermore Alice
has the first move. Given a graph G and a set of k colours, the players take
turns colouring G in such a way that two adjacent vertices are not coloured
with the same colour. If after |V (G)| moves the graph is properly k-coloured
then Alice wins. Bob wins whenever there is uncoloured vertex which has
no admissible colour.

The following lemma is an immediate consequence of definitions.

Lemma 1. If Alice has the strategy for k-colouring game such that the graph

G is properly k-coloured after the move of each player, then Alice wins the

k-colouring game.

A game chromatic number of a graph G, denoted by χg(G), is defined as
the smallest cardinality of C for which Alice has a winning strategy. For a
family of graphs P, let χg(P) = max{χg(G) : G ∈ P}.

In [2] Bodlaender studied computational complexity of the game chro-
matic number. He also showed that the chromatic number of a forest is at
most 5 and presented a tree T with χg(T ) = 4. Faigle et al. [11] improved
this bound and showed that the chromatic number of the class of forest
is 4. Since then, the game chromatic number of various classes of graphs
have been studied. Namely, the game chromatic number of interval graphs
[11, 15], outerplanar graphs [12], planar graphs [8, 14, 17, 22] and partial
k-trees [17, 15, 21] have been studied.

The edge-colouring version of the colouring game was introduced by Cai
and Zhu [5]. In this version in each move an uncoloured edge of G is being
coloured with a colour from C in such a way that the adjacent edges are not
coloured with the same colour. Alice wins if every edge is coloured at the
end of the game, otherwise wins Bob. The game chromatic index χ′

g(G) of
the graph G is the smallest cardinality of C for which Alice has a winning
strategy. The game chromatic index of forests with bounded degree was
studied by Erdös et al. [10] and Andres [1].

In [4] the concept of generalized colouring game was introduced. Let
P1,P2, . . . ,Pk be additive hereditary properties of graphs. Let G be a k-
coloured graph and v ∈ V (G). We say that the colour i is (P1,P2, . . . ,Pk)-
admissible for v if i ∈ {1, 2, . . . , k} and after colouring v with i the sub-
graph induced by the i-coloured vertices has the property Pi. If properties
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P1,P2, . . . ,Pk are clear from the context, we may omit them. A k-colouring
of a graph G is called a (P1,P2, . . . ,Pk)-colouring (generalized colouring) of
G if for every colour i, 1 ≤ i ≤ k, every monochromatic i-coloured subgraph
of G has the property Pi and for every uncoloured vertex there is an admis-
sible colour. If Pi is a set of totally disconnected graphs for every i, then
(P1,P2, . . . ,Pk)-colouring is the proper colouring. We say that a graph G is
partially (P1,P2, . . . ,Pk)-coloured if G is (P1,P2, . . . ,Pk)-coloured and has
at least one uncoloured vertex.

More details about hereditary properties and generalized colouring of
graphs can be found in [3].

The generalized colouring game is defined as follows. Let be given a
graph G and an ordered set of additive hereditary properties (P1,P2, . . . ,Pk).
The two players Alice and Bob play alternatively with Alice having the first
move. The players take turns colouring vertices of G with (P1,P2, . . . ,Pk)-
admissible colours. If after |V (G)| moves the graph G is (P1,P2, . . . ,Pk)-
coloured, then Alice wins. Bob wins whenever a vertex for which there is
no (P1,P2, . . . ,Pk)-admissible colour appears. The above defined game is
called a (P1,P2, . . . ,Pk)-game (generalized game).

From definitions it immediately follows.

Lemma 2. If Alice has on G the strategy for (P1,P2, . . . ,Pk)-game such

that after the move of each player the graph G is (P1,P2, . . . ,Pk)-coloured,

then Alice wins the (P1,P2, . . . ,Pk)-game.

The (k, d)-relaxed colouring game, introduced in [7], is the (P1,P2, . . . ,Pk)-
game such that Pi (i = 1, . . . , k) is a set of graphs with maximum degree

at most d. A d-relaxed game chromatic number, denoted by χ
(d)
g (G), is

the smallest k for which Alice has a winning strategy for the (k, d)-relaxed
colouring game. The d-relaxed game chromatic number for trees and outer-
planar graphs was studied in [7, 9, 13, 18].

In this paper, we are interested in generalized colouring games which
refer to two additive hereditary properties:

O = {G : G is totally disconnected},

Ok = {G : each component of G has at most k + 1 vertices}.

We consider the colouring game and the generalized game on a special class
of graphs Hk which includes line graphs of forests, cactus graphs and Husimi
trees.



502 E. Sidorowicz

The block B of a graph G is the maximal subgraph of G which does not
contain any cut-vertex. For k ≥ 2, let

Hk = {G : every block of G has at most k vertices}.

Then H2 is a set of forests. If G ∈ Hk and every block of G is a complete
graph then G is a Husimi tree. If G ∈ Hk and every block is a cycle or K2

then G is a cactus graph.

Proposition 3. A graph G is a line graph of a forest if and only if G ∈ Hk,

every block of G is a complete graph and every vertex of G is in at most two

blocks.

In [19] Yang and Kierstead studied the game on line graphs. The edge-
colouring game on a graph G one can see as the colouring game on a line
graph of the graph G. Erdös et al. [10] proved that there is a tree with
maximum degree ∆ for which the game chromatic index is equal to ∆ + 1.
Since a line graph of a tree with maximum degree ∆ belongs to H∆, we
obtain the lower bound for the game chromatic number of family Hk.

Proposition 4 [10]. Let k ≥ 2. Then χg(Hk) ≥ k + 1.

In Section 2 we find an upper bound and we show that χg(Hk) ≤ k + 2. In
Section 3 we generalize the result of Erdös et al. [10] which proved that the
game chromatic number of forest with maximum degree at least ∆ (∆ ≥ 6)
is at most ∆ + 1. We prove that χg(Hk) = k + 1 for k ≥ 6.

From the result of Bodlaender [2] and Faigle et al. [11] we have χg(H2) =
4. In [16] was presented a cactus G such that G ∈ H3 and χg(G) = 5,
thus χg(H3) = 5. For H4 and H5, the question whether χg(H4) = 5 or
χg(H4) = 6 and χg(H5) = 6 or χg(H5) = 7 remains open.

In Section 4 we investigate a generalized colouring game. We show
that if players colour vertices using k + 1 colours in such a way that every
vertex may have one neighbour coloured with its colour, then Alice can
win a game on every graph from Hk. Namely, we prove that Alice has a
winning strategy for an (O1,O1,O,O)-game on every graph from H3 and
for a (P1,P2, . . . ,Pk+1)-game on every graph from Hk (k ≥ 4) where P1 =
O1, Pi = O (i = 2, . . . , k + 1).

In general, the generalized colouring game is not monotone, i.e., from
the fact that Alice has a wining strategy for a (P1,P2, . . . ,Pk)-game does
not follows that Alice has a wining strategy for a (P ′

1,P
′

2, . . . ,P
′

k)-game,
where Pi ⊆ P ′

i (i = 1, 2, . . . , k). In Section 5 we discuss the monotonicity of
games considered in Sections 2, 3 and 4.
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2. Upper Bound for the Game Chromatic Number of Hk

One can see a partially properly coloured graph as a graph G obtained during
the colouring game after |C| moves of players, where C is a set of coloured
vertices of G. Thus, the players can continue the game and the first move
of this part of the game can be made by Alice or Bob. If Alice starts, we
say that the players play the colouring game on a partially properly coloured

graph. If Bob starts, we say that the players play the colouring game with

the first move of Bob on a partially properly coloured graph. Alice wins the
colouring game on a partially properly coloured graph when all vertices are
properly coloured.

Let G be a partially properly k-coloured graph and C be the set of
coloured vertices. Let G1, G2, . . . , Gp be components of G − C. A game

component of G is the subgraph induced by V (Gi) ∪ N(V (Gi)) (1 ≤ i ≤ p).
If p = 1 and G1 = G, then we say that G is a game component.

During the game players can see a graph G as a disconnected graph
whose components are game components of G.

Definition (k-game closed family). Let α be a family of partially properly
k-coloured graphs. We say that the family α is k-game closed if for every
G ∈ α the following conditions hold:

(i) Alice can colour a vertex of G with an admissible colour in such a
way that all game components of G are in α or all vertices of G are properly
coloured.

(ii) If Bob makes the first move (i.e., Bob colours a vertex x of G with
an admissible colour) and if after his move G has an uncoloured vertex, then
Alice can colour a vertex y with an admissible colour in such a way that all
game components of the graph G (G with coloured x and y) are in α or all
vertices of G are properly coloured.

Lemma 5. Let α be a k-game closed family. If G ∈ α, then Alice has a

winning strategy on G for the k-colouring game and for the k-colouring game

with the first move of Bob.

Proof. Let G ∈ α. The winning strategy of Alice is the following: she
colours vertices in such a way that after her move every game component
of G is in α or all vertices are coloured. We claim that she achieves this
goal. Suppose that for a certain time of the game every game component of
G is in α and it is Alice’s turn. Let Gi be an arbitrary game component of
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G, by Condition (i) of Definition 2 Alice can colour a vertex of Gi in such
a way that every game component of Gi will be in α. Hence, after Alice’s
move every game component of G is in α. Suppose that it is Bob’s turn.
Let G1, G2, . . . , Gp be game components of G before Bob’s move. Assume
that Bob colours a vertex of Gi. If there is uncoloured vertex in Gi, then
Condition (ii) of Definition 2 implies that after Bob’s move Alice can colour
a vertex of Gi in such a way that every game component of Gi will be in α.
If all vertices of Gi are coloured, then Alice colours an uncoloured vertex of
any other game component Gj in such a way that every game component
of Gj will be in α. If all vertices of G are coloured, then Alice wins. Since
α contains only properly k-coloured graphs, after every move of players the
graph G is properly k-coloured. Thus, by Lemma 1 Alice wins the game.

Before we prove our results let us introduce some definitions. Let Hr
k be a

family of partially r-coloured graphs from Hk:

Hr
k = {G : G is partially r-coloured and every block of G has at most

k vertices}.

Note that Hk ⊆ Hr
k, since every uncoloured graph is partially r-coloured.

Let G ∈ Hr
k. A pseudo-block P is a subgraph of G such that if we

add all edges to G which join non-adjacent vertices of P , then we obtain a
graph which is still in Hr

k. Let B be a block or a pseudo-block of G and
v ∈ V (B). A v-branch (branch) H of B is a connected subgraph of G such
that V (B)∩V (H) = {v}, and H is maximal with this property. The vertex
v is a root of the v-branch. Let G be partially coloured graph. A center S
of G is a block or a pseudo-block such that for every vertex v ∈ V (S) the
v-branch has at most one coloured vertex.

Note that if G has at most one coloured vertex, then every block of G is
a center of G. If G has two coloured vertices, then each block which contains
a coloured vertex is a center.

Let S1, S2 ⊆ V (G), S1 ∩ S2 = ∅. A separator of S1 and S2 is a vertex
x such that in G − x vertices of S1 and S2 are in distinct components. Let
X = {x : x is a separator of v and {u,w}} ∪ {v}. If in X there is a vertex
x such that u and w are in distinct components of G − x then we call x a
v-cut-vertex for the triple (v, u, w). Otherwise, a v-cut-vertex for the triple
(v, u, w) is a vertex x such that the component of G − x which contains u
and w is minimal. The cut-vertex for the triple will be used extensively
in this paper, since after colouring a cut-vertex for the triple with three
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coloured vertices the graph is split into the game components which have
less coloured vertices.

v1

v2

v6

v4

v11

v10

v7 v8

v12

v17

v18

v16

v15

v14

v13

v5

v9

v3

Figure 1

Example 6. Let G be a graph on Figure 1 and B be a block of G induced
by vertices {v3, v4, v6}. The v6-branch of B is a subgraph induced by the
vertices {v6, v7, . . . , v18}. The vertex v11 is the v6-cut-vertex for the triple
(v6, v16, v18). The vertex v12 is the v6-cut-vertex for the triple (v6, v14, v16).
The vertex v6 is the v6-cut-vertex for the triple (v6, v9, v11).

Now we define a family α1 which contains some special graphs of Hk+2
k .

Definition (Family α1). Let k ≥ 2.

α1 = {G : G ∈ Hk+2
k , and G is a partially properly (k + 2)-coloured game

component, and G has a center}.

Note that every graph from Hk is partially properly (k + 2)-coloured game
component and has a center, therefore Hk ⊆ α1. Moreover every graph
from α1 has at least one uncoloured vertex and if G ∈ α1 and v is a coloured
vertex of the center S of G, then v-branch of S has exactly one vertex v,
since G is a game component.

Lemma 7. Family α1 is (k + 2)-game closed.

Proof. Let G ∈ α1. We show that Conditions (i) and (ii) of Definition 2
hold. Since G has a center and it is a partially coloured game component, G
has at least one uncoloured vertex in the center. If Alice starts to colour ver-
tices, she colours a vertex of a center. If after her move G has an uncoloured
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vertex, then G might be split into smaller game components. All game com-
ponents will be in α1, hence the Condition (i) holds. Now we consider the
case when Bob starts. If after his move all game components of G are in
α1, then obviously Alice can colour a vertex in such a way that also after
her move all game components of G will be in α1. Thus, assume that after
Bob’s move there is a game component which is not in α1. It can happen
only if G had two or more coloured vertices. Since before Bob’s move G had
a center S, it follows that after Bob’s move there is a v-branch of S which
has two coloured vertices, say u,w. Alice colours a v-cut-vertex x for the
triple (v, u, w). Note that Alice always can find an admissible colour for the
vertex x, in the worst case when w and u are adjacent to x and x = v, the
vertex x has k + 1 coloured neighbours. After Alice’s move G will have the
following game components: First we consider the case when x 6= v. Then
G will have the game component which contains vertices of S (the v-branch
of S has one coloured vertex x), in this game component S will be still a
center. If the vertices u and w are in distinct components of G − x, then G
will also have two game components which have two coloured vertices u, x
and w, x. If the vertices u and w are in one component of G − x, then G
will have a game component which has three coloured vertices u,w, x and
the block which contains x will be a center of this game component. The
graph G might also have game components which have exactly one coloured
vertex. If x = v, then the game component which contains the vertices of S
will have a center or the vertices of S will be in distinct game components,
but in each of the game component they will be in a center. The other game
components are the same as above. Hence Condition (ii) of Definition 2
holds.

From Lemma 5 and Lemma 7 we have immediately:

Theorem 8. Let G ∈ Hk (k ≥ 2). Then χg(G) ≤ k + 2.

For k = 2 we obtain known result for forests.

Corollary 9 [11]. For every forest F we have χg(F ) ≤ 4.

3. Game Chromatic Number of Hk for k ≥ 6

From Proposition 4 and Theorem 8 we have that k + 1 ≤ χg(Hk) ≤ k + 2.
In this Section we prove that χg(Hk) = k + 1 for k ≥ 6. Let S be a center
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of a connected graph G, G ∈ Hr
k. We denote by T a graph T = G − S. Let

s = |V (S) ∩ C| and t = |V (T ) ∩ C|, where C is the set of coloured vertices
of G. Let us denote c(G) =

⋃
v∈C c(v), recall that c(v) is a colour of v. For

B ⊆ G and v ∈ V (G) \ V (B), we say that v is adjacent to B if v ∈ N(B).
Similarly as in the previous section we will define a family of graphs

which contains Hk (k ≥ 6) and next we will prove that this family is (k+1)-
game closed.

Definition (Family α2). G ∈ α2 if G ∈ Hk+1
k , k ≥ 6 and G is a partially

properly (k + 1)-coloured game component which has at least one of the
following properties:

1. G has a center S, such that

1.1. all coloured vertices of G are in S or

1.2. |V (S)| ≤ k − 1 or

1.3. |V (S)| = k, and

1.3.1. t = 3, s 6= 0, and all vertices of T are adjacent to S, and
they are coloured with colours from c(S) or

1.3.2. t = 2 and s = 1 or

1.3.3. t = 2, s = 2 and if both vertices of T are adjacent to S,
then at least one of them has a colour from c(S) or

1.3.4. t = 2, s ≥ 3 and if there is a coloured vertex of T which
is adjacent to S, then it has a colour from c(S) or

1.3.5. t = 1 and if s ≥ 4, and if the coloured vertex of T is
adjacent to S, then it has a colour from c(S).

2. There are three coloured vertices and there is an uncoloured vertex u
such that all coloured vertices are in blocks containing u.

Let G ∈ Hk+1
k (k ≥ 6). Note that if G has at most two coloured vertices,

then it always belongs to α2. If all vertices of G are uncoloured or there
is exactly one coloured vertex, then it has the property 1.1. If G has two
coloured vertices and they are in one block or pseudo-block, then G also has
the property 1.1. Otherwise, the block which has one coloured vertex may
be a center of G, so G has the property 1.2 or 1.3.5. Moreover, observe that
if G ∈ α1 and v is a coloured vertex of the center S (i.e., G has the property
1), then v-branch of S has exactly one vertex, since G is a game component.
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Lemma 10. Family α2 is (k + 1)-game closed.

Proof. Let G ∈ α2. First we will show that Alice can colour a vertex of
G in such a way that every game component will be in α2. If G has a
center S, then G has at least one uncoloured vertex in S. If G has the
property 1.1 or 1.2, then Alice colours a vertex v of S. If after such a move
G has uncoloured vertices, then it will have game components which are in
α2. Indeed, G will have a game component which contains all vertices of S
(this game component will have property 1.1 or 1.2) or the vertices of S will
be in distinct game components (all these game components will have the
property 1.2) and G might also have game components which have exactly
one coloured vertex v. If G has the property 1.3, then Alice colours a vertex
v ∈ V (S) such that the v-branch has a coloured vertex. After her move, G
will have the following game components: the game component which has
the center S (we will call it the main game component), the game component
which has two coloured vertices and G also may have the game components
which have exactly one coloured vertex v. If G has the property 1.3.1, then
after Alice’s move the main component of G will have the property 1.3.3 or
1.3.4. If G has one of the properties 1.3.2 – 1.3.4, then after Alice’s move the
main component of G will have the property 1.3.5. If G has the property
1.3.5, then the main component of G will have the property 1.1. It might
also happen that after Alice’s move vertices of S will be in distinct game
components which will have the property 1.2. If G has the property 2, Alice
colours the vertex u. After such a move every game component will have a
center and all coloured vertices will be in the center of the game component,
i.e, every game component will have the property 1.1. Hence Condition (i)
of Definition 2 holds. If after Bob’s move all game components of G are in
α2, then obviously Alice can colour a vertex in such a way that all game
components of G are in α2. Thus, assume that after Bob’s move there is
a game component which is not in α2. The proof falls naturally into two
cases:

Case 1. Before Bob’s move G had the property 1.

Subcase 1.1. Suppose that G had the property 1.1.
Since after Bob’s move G /∈ α2, it follows that |V (S)| = k, t = 1, s ≥ 4 and
the coloured vertex u ∈ T is adjacent to S, and c(u) /∈ c(S). Hence, Alice
colours a root u′ of a branch of S which contains u. After such a move,
G will have the following game components: a game component which has
the center S (or vertices of S are in distinct game components), a game
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component which has two coloured vertices u and u′ and G may also have
game components which have one coloured vertex u′. The game component
which contains S will have the property 1.1. If vertices of S are in distinct
game components, then these game components will have the property 1.2.

Subcase 1.2. Assume that G had the property 1.2.
Thus, after Bob’s move S is not a center. Therefore, there is a v-branch of
S which has two coloured vertices u,w. Then Alice colours a v-cut-vertex
x for the triple (v, u, w). After Alice’s move G will have the following game
components: a game component which contains vertices of S (the v-branch
of S has one coloured vertex x), in this game component S will be still a
center or the vertices of S will be in distinct game components which will
have the property 1.2. If the vertices u and w are in distinct components of
G−x, then G will also have two game components which have two coloured
vertices u, x and w, x. If the vertices u and w are in one component of
G − x, then G will have the game component which has three coloured
vertices u,w, x and the block S ′ which contains x will be a center of this
game component. If u,w ∈ S ′, then this component will have the property
1.1. If |V (S ′)| ≤ k − 1, then it will have the property 1.2. Otherwise, it
will have the property 1.3.2 or 1.3.5. The graph G might also have game
components which have exactly one coloured vertex x.

Subcase 1.3. Now assume that G had the property 1.3.

Subcase 1.3.1. Suppose that G had the property 1.3.1.
Since after Bob’s move G /∈ α2, Bob has coloured a vertex of T and now we
have t = 4. Let w be a vertex coloured by Bob and w′ be a root of a branch
of S which contains w. Then Alice colours w′. After such a move a game
component which has the vertices of S will have the property 1.3.1 or 1.2
(if vertices of S are in one game component, then it will have the property
1.3.1, otherwise game components will have the property 1.2).

Subcase 1.3.2. Suppose that G had the property 1.3.2.
First suppose that Bob has coloured a vertex of S. Thus, t = 2 and s = 2.
Since G is not in α2, there are two coloured vertices u,w in T which are
adjacent to S and they are coloured with colours which are not in c(S). If
c(u) = c(w) = i, then Alice colours a vertex of the center S with colour i.
A game component which contains the vertices of S will have the property
1.3.3 or 1.2. If c(u) 6= c(w), then Alice colours w′ with colour c(u), where
w′ is a root of a branch of S which contains w. A game component which
contains the vertices of S will have the property 1.3.5 or 1.2.
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Now suppose that Bob has coloured a vertex of T . Thus, t = 3 and s = 1.
Let u, v, w be coloured vertices of T . Suppose that vertices u, v, w are in three
distinct branches. If at least one vertex, say u, is not adjacent to S, then
Alice colours a root u′ of a branch of S which contains u. Suppose that the
vertices u, v, w are adjacent to S. If c(u) = c(w) = c(v) = i then c /∈ c(S),
since G does not have the property 1.3.1, thus Alice colours a vertex of S
with i. If c(u) 6= c(w) or c(u) 6= c(v), then Alice colours the vertex u′ (a root
of a branch containing u) in such a way that a game component of G which
contains S will have the property 1.3.3, i.e., she colours u′ with colours c(w)
or c(v) or with an arbitrary colour if c(w) = c(v) = i and i ∈ c(S). Now
suppose that u, v, w are not in three distinct branches. Let x be a vertex
such that a x-branch contains u and v. Then Alice colours a x-cut-vertex y
for the triple (x, v, u). After her move G will have a game component which
contains the vertices of S (or several game component which contains the
vertices of S), a game component which has three coloured vertices u, v, y
or two game components which have two coloured vertices u, y or v, y, and
also it might have components which have one coloured vertex. Observe
that similarly as in Subcase 1.2 every game component is in α2.

Subcase 1.3.3. Now, consider that case when G had the property 1.3.3.

First suppose that Bob has coloured a vertex of S. Thus, t = 2 and s = 3.
Since G is not in α2, at least one coloured vertex of T is adjacent to S and
it is coloured with a colour which is not in c(S). Assume that u is adjacent
to S and c(u) /∈ S and w is the second coloured vertex of T . Let u′ be a
root of a branch of S which contains u. Then Alice colours u′ with colour
c(w) or with an arbitrary colour when c(w) ∈ c(S). If she cannot make such
a move, i.e., c(u) = c(w) = i, then Alice colours a vertex of S with colour i.
Note that there is uncoloured vertex in S, since |V (S)| ≥ 6.

Now suppose that Bob has coloured a vertex of T . Thus, t = 3 and
s = 2. Let u, v, w be coloured vertices of T . Suppose that vertices u, v, w
are in three distinct branches. Let u′, v′, w′ be vertices such that u, v, w are
in a u′-branch, a v′-branch, a w′-branch, respectively. Alice colours a vertex
u′ or v′ or w′ in such a way that after her move the game component which
contains all vertices of S will have the property 1.3.4 (with s = 3) or will be
several game components which have the vertices of S and they will have the
property 1.2. Finally, suppose that u, v, w are not in three distinct branches.
Let x be a root of a branch which contains u and v. Alice try to colour a
x-cut-vertex y for the triple (x, v, u). If y is adjacent to S, she colour y with
a colour from c(S). If she cannot colour y, i.e., u, v are adjacent to y and
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c(S) = {c(u), c(v)}, then she colours x. After her move a game component
which contains the vertices of S will have the property 1.3.5 or 1.2 and the
game component which contains vertices u, v, x will have the property 2.

Subcase 1.3.4. Assume that G had the property 1.3.4.

Since after Bob’s move G is not in α2, it follows that Bob has coloured a
vertex w ∈ V (T ). Let w′ be a root of a branch of S which contains w. If w
is the only coloured vertex of the w′-branch, then Alice colours w′. After her
move a game component containing the vertices of S will have the property
1.3.4 (but with s ≥ 4) or 1.2. If w′-branch has two coloured vertices w
and u, then Alice colours a w′-cut-vertex y for the triple (w′, w, u). If y is
adjacent to S, she colours y with a colour from c(S). If in c(S) there is no
admissible colour for y, then similarly as in Subcase 1.3.3 Alice colours w ′.

Subcase 1.3.5. Finally assume that G had the property 1.3.5.

First suppose that Bob has coloured a vertex of S. Since G is not in α2,
we have s = 4, t = 1 and the coloured vertex u ∈ T is adjacent to S and
c(u) /∈ c(S). Alice colours a root of a branch containing u.

Now suppose that Bob has coloured a vertex w ∈ T . Let u,w be coloured
vertices of T . First assume that u and w are in one branch of S with a root
x. Alice colours a x-cut-vertex y for the triple (x,w, u). If y is adjacent
to S and s ≥ 4, then she must colour y with a colour from c(S), otherwise
she colours it with an arbitrary admissible colour. Suppose that she cannot
make such a move, i.e., y is adjacent to S and in c(S) there is no admissible
colour for y. Then Alice colours x, after her move the game component
which contains the vertices of S will have the property 1.1 and the game
component which contains the vertices u,w, x will have the property 2. Now
suppose that u and w are in distinct branches of S. Let w ′-branch be a
branch of S which contains w. If s ≥ 4 or 0 ≤ s ≤ 2, then Alice colours w ′.
Clearly after her move a game component which contains the vertices of S
will have the property 1.3.5 or 1.2. Assume that s = 3. Since G does not
have the property 1.3.4, at least one of vertices u,w, say u, is adjacent to S
and c(u) /∈ c(S). Alice colours w′ with colour c(u). Hence after her move
a game component which contains the vertices of S will have the property
1.3.5 or 1.2. If she cannot make such a move, i.e., w is adjacent to S and
c(w) = c(u) = i, then Alice colours a vertex of S with colour i. After her
move the game component which contains S will have the property 1.3.4.

Case 2. Before Bob’s move G had the property 2.

Since G /∈ α2, Bob has coloured a vertex w 6= u which is not adjacent to u.
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Alice colours the vertex u. After her move G will have the game components
which will have the property 1.1 and at most one game component which
will have the property 1.3.5.

From Lemma 5 and Lemma 10 and from the fact that Hk ⊆ α2 we have
immediately:

Theorem 11. If k ≥ 6, then χg(Hk) = k + 1.

The result obtained by Erdös et al. [10] follows from Proposition 3 and
Theorem 11.

Corollary 12 [10]. If F is a forest with maximum degree ∆ and ∆ ≥ 6,
then χ′

g(F ) ≤ ∆ + 1.

4. Generalized Colouring Game

In [4] it was proven that Alice has a winning strategy for an (O1,O,O)-game
on every forest. Thus, Alice can win a generalized game on every graph from
H2 if players use 3 colours. In this section we show that if players colour
vertices using k + 1 colours in such a way that every vertex can have one
neighbour coloured with its colour then Alice can win a game on every graph
from Hk (k ≥ 3).

Let C be a set of coloured vertices of G, C 6= V (G). One can see
the partially (P1,P2, . . . ,Pk)-coloured graph as a graph obtained during the
(P1,P2, . . . ,Pk)-game after |C| moves of players. Thus, the players can con-
tinue the game and the first move of this part of the game can be made by Al-
ice or Bob. If Alice starts, we say that the players play the (P1,P2, . . . ,Pk)-
game. If Bob starts, we say that the players play the (P1,P2, . . . ,Pk)-
game with the first move of Bob. Alice wins the (P1,P2, . . . ,Pk)-game on
a partially (P1,P2, . . . ,Pk)-coloured graph G when all vertices of G are
(P1,P2, . . . ,Pk)-coloured.

Let G1 and G2 be vertex disjoint subgraphs of G. We say that the graph
G1 is joined to G2 if there is a vertex v1 ∈ V (G1) and a vertex v2 ∈ V (G2)
such that v1v2 ∈ E(G).

Let G be a partially k-coloured graph and

M = {uv ∈ E(G) : (uv is bichromatic edge) or (u is coloured, and v is
uncoloured, and c(u) is not an admissible colour for v)}.
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Let G1, G2, . . . , Gp be components of G−M such that each of them contains
at least one uncoloured vertex. A (P1,P2, . . . ,Pk)-game component of G is
the subgraph induced by V (Gi) and vertices of every connected monochro-
matic subgraph which is joined to Gi − C (1 ≤ i ≤ p). If p = 1 and
G1 = G, then we say that G is a (P1,P2, . . . ,Pk)-game component. If prop-
erties P1,P2, . . . ,Pk are clear from the context, the (P1,P2, . . . ,Pk)-game
component will be called the game component, for short.

2

1
1

1 1 2
2

2 1

1 1
1 1

11

1 11

Figure 2. The graph G and its (O1,O)-game components. The labeled vertices

are coloured with colour 1 or 2.

Observe that a graph G can be split into its (P1,P2, . . . ,Pk)-game compo-
nents even if G is not (P1,P2, . . . ,Pk)-coloured, i.e., there is a monochro-
matic subgraph coloured with i which does not have the property Pi and
a (P1,P2, . . . ,Pk)-game component need not be (P1,P2, . . . ,Pk)-coloured.
We will use this property in Section 5. In other sections we will determine
(P1,P2, . . . ,Pk)-game components of graphs which are partially
(P1,P2, . . . ,Pk)-coloured.

Lemma 13. Every uncoloured vertex is in exactly one (P1,P2, . . . ,Pk)-game

component of G.

During the (P1,P2, . . . ,Pk)-game players can see a graph G as a discon-
nected graph whose components are (P1,P2, . . . ,Pk)-game components of
G. For an uncoloured vertex v the sets of admissible colours in G and
in the game component are the same. The graph G contains a forbidden
monochromatic subgraph if and only if one of its game components contains
such a subgraph.



514 E. Sidorowicz

Definition ((P1,P2, . . . ,Pk)-game closed family). Let β be a family of
partially (P1,P2, . . . ,Pk)-coloured graphs. We say that the family β is
(P1,P2, . . . ,Pk)-game closed if for every G ∈ β the following conditions
hold:

(i) Alice can colour a vertex of G with a (P1,P2, . . . ,Pk)-admissible
colour in such a way that all (P1,P2, . . . ,Pk)-game components of G are in
β or all vertices of G are (P1,P2, . . . ,Pk)-coloured.

(ii) If Bob colours a vertex with a (P1,P2, . . . ,Pk)-admissible colour
and if after his move G has an uncoloured vertex, then Alice can colour
a vertex with a (P1,P2, . . . ,Pk)-admissible colour in such a way that all
(P1,P2, . . . ,Pk)-game components of the graph G are in β or all vertices of
G are (P1,P2, . . . ,Pk)-coloured.

The next lemma follows from Lemma 2 (similarly as Lemma 5).

Lemma 14. Let β be a (P1,P2, . . . ,Pk)-game closed family. If G ∈ β, then

Alice has a winning strategy on G for the (P1,P2, . . . ,Pk)-game and for the

(P1,P2, . . . ,Pk)-game with the first move of Bob.

We use Lemma 14 to prove, that Alice has a winning strategy for
(O1,O1,O,O)-game on every graph from H3. Firstly we construct an
(O1,O1,O,O)-game closed family, which contains all uncoloured graphs
from H3.

Let G ∈ Hr
k and v ∈ V (G). Every component of G− v is called a steam

of v. Recall that a center of G is a block or a pseudo-block S such that
for every vertex v ∈ V (S) the v-branch has at most one coloured vertex.
Similarly as in the previous section, let us denote s = |V (S) ∩ C|, T =
G−S, t = |V (T )∩C|, where C is the set of the coloured vertices of G. We
say that two blocks (or block and pseudo-block) are adjacent if they have a
common vertex.

Example 15. Let G be a graph on Figure 1. The vertex v6 has three
steams: the subgraph induced by the vertices {v1, v2, . . . , v5}, the subgraph
induced by the vertices {v7, v8, v9} and the subgraph induced by the vertices
{v10, v11, . . . , v18}.

Observe that for a center S and v ∈ V (S) there is one v-branch of S and
v belongs to the v-branch. A graph G can have several steams of v and v
does not belong to any steam of v.
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Definition (Family β3). G ∈ β3 if G ∈ H4
3, and G is an (O1,O1,O,O)-game

component, and G is partially (O1,O1,O,O)-coloured, and has at least one
of the following properties:

1. G has a center S and if G has at least one coloured vertex, then the
center S has a coloured vertex.

2. There is a vertex v which is coloured with colour 1 (colour 2), such
that every steam of v has at most two coloured vertices. If a steam has
two coloured vertices, then one of them is adjacent to v. Moreover, if
a vertex u of a steam which has two coloured vertices is adjacent to v
and is coloured with 2 (with 1), then the second coloured vertex of this
steam is adjacent to u and is also coloured with 2 (with 1).

3. There is an uncoloured vertex u such that every coloured vertex is adja-
cent to u and is coloured with one of the colours {1, 3, 4} ({2, 3, 4}).

Note that if G ∈ H4
3 and G has at most two coloured vertices, then it always

belongs to β3 (it has the property 1). Moreover, from the fact that every
graph of β3 is a game component it follows: If G ∈ β3 and v is a cut-vertex
of G, then v can be coloured neither with colour 3 nor with colour 4. If there
is a block B such that |V (B)| = 3 and there are two 1-coloured (2-coloured)
vertices u,w in B, then the third vertex of B is uncoloured and the u-branch
and the w-branch of B have exactly one vertex. If there is a block B such
that |V (B)| = 2 and both vertices of B are 1-coloured (2-coloured), then at
most one branch of B has more than one vertex.

Lemma 16. Family β3 is (O1,O1,O,O)-game closed.

Proof. Let G ∈ β3. We will show that Condition (i) and (ii) of Definition 4
hold. Suppose that Alice colours first. First assume that G has the property
1 of Definition 4. Thus, G has a center S. Note that G has at most three
coloured vertices. If there is an uncoloured vertex v ∈ S which does not
have a 3-coloured neighbour or a 4-coloured neighbour, then Alice colours
v with colour 3 or 4. If after such a move all vertices of S are coloured,
then every game component of G will have at most two coloured vertices.
If after Alice’s move there is an uncoloured vertex in S, then the game
component which has the vertices of S will have the property 1 and all
other game component will have at most two coloured vertices. If there
is an uncoloured vertex v ∈ S but it has a 3-coloured neighbour and a 4-
coloured neighbour, then Alice colours v with colour 1 or 2. After such a
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move, G will have the property 2 or if all vertices of S are coloured, then
G will have game components which have at most two coloured vertices or
G might also have the game component which has three coloured vertices
such that it will have the property 2. If before Alice’s move all vertices of
S are coloured, then from the fact that G is a game component it follows
that S has exactly two 1-coloured (2-coloured) vertices and these vertices
are the only coloured vertices of G. Then Alice colours a vertex adjacent to
S. After such a move G will have the game component containing vertices
of S (it will have the property 2) and also it might have game components
which have exactly one coloured vertex.

Suppose that G has the property 2. If v has an uncoloured neighbours,
then Alice colours it. If after such a move v still have any uncoloured
neighbour, then the game component which contains v will have the property
2 the other game components of G have at most one coloured vertex. If after
Alice’s move all neighbours of v are coloured, then every game component
of G will have at most two coloured vertices. Now suppose that v has
no uncoloured neighbours. Since G is a game component, v has only one
neighbour w and c(v) = c(w). Hence w must have an uncoloured neighbour.
Then Alice colours the uncoloured neighbour of w, in such a way that after
her move the game component of G will have the property 2. If G has the
property 3, Alice colours the vertex u in such a way that G will have the
property 2. Thus, Condition (i) holds. Now we will show that Condition
(ii) also holds. Suppose that Bob has coloured a vertex of G and after his
move there is a game component of G which is not in β3.

Case 1. Before Bob’s move G had the property 1.

Suppose that Bob has coloured a vertex w ∈ S. Since G /∈ β3, the w-
branch of S has two coloured vertices and c(w) = 1 or 2, say c(w) = 1.
Observe that in S there is exactly one 1-coloured vertex, otherwise every
game component of G is in β3. Moreover S has exactly one uncoloured
vertex. Then Alice colours the vertex of S in such a way that after her move
every game component of G will have at most two coloured vertices.

Suppose that Bob has coloured a vertex of T . Thus, S has a branch
which contains two coloured vertices. Let w′ be a root of this branch. As-
sume that w′ is not coloured and w, u are the two coloured vertices of the
w′-branch. Alice try to colour a w′-cut-vertex x for the triple (w′, w, u). If
x = w′ and w′ is not adjacent to any 3-coloured vertex or to any 4-coloured,
then Alice colours w′ with 3 or 4, respectively. After such a move the game
component which contains all vertices S, will have the property 1 or the
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vertices of S are in distinct game components and every this game com-
ponent will have the property 1. If the vertices u and w are in distinct
components of G − x, then G will also have two game components which
have two coloured vertices u, x and w, x. If the vertices u and w are in one
component of G − x, then G will have a game component which has three
coloured vertices u,w, x. The block S ′ which contains x will be a center of
this game component. G might also have game components which have one
coloured vertex. If w′ is adjacent to a 3-coloured vertex and a 4-coloured
vertex, then Alice colours w′ with colour 1 (or with 2 whenever w′ has also
2-coloured neighbour). After such a move G will have the property 2. Now
assume that x 6= w′. If x is not adjacent to any 3-coloured vertex or to any
4-coloured vertex, then Alice colours x with 3 or 4. The game component
which contains the vertices of S will have the property 1. If the vertices u
and w are in distinct components of G− x, then G will also have two game
components which have two coloured vertices u, x and w, x. If the vertices u
and w are in one component of G − x, then G will have a game component
which has three coloured vertices u,w, x. The block S ′ which contains x
will be a center of this game component. If x is adjacent to a 3-coloured
vertex and a 4-coloured vertex, then Alice colours a neighbour y of x which
is a separator of x and w′. She colours y with colour 3 or 4, after such a
move a game component containing vertices y, w, u will have the property
3. If she cannot make such a move, i.e., w′ = y and c(S) = {3, 4}, then
Alice colours w′ with 1. After that a move the game component containing
vertices w′, w, u will have the property 3.

Finally, assume that w′ is coloured, say c(w′) = 1, and w is the second
coloured vertex of the w′-branch. Since G /∈ β3, in S there is exactly one
1-coloured vertex. Since G does not have the property 3, w ′ has a 2-coloured
neighbour u. Thus, Alice colours a common neighbour of w ′ and u. After
Alice’s move every game component of G will have at most two coloured
vertices.

Case 2. Before Bob’s move G had the property 2.

Let c(v) = 1. Since G /∈ β3, Bob has coloured a vertex in such a way that:

(a) there is a steam which has one 2-coloured vertex u which is adjacent to
v and a coloured vertex w such that c(w) 6= 2 or w is not adjacent to
u, or

(b) there is a steam which has two coloured vertices which are not adjacent
to v, or
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(c) there is a steam which has three coloured vertices.

First suppose that (a) holds. Note that w is not adjacent to v, otherwise
v, u, w are in three distinct game components which are in β3. Then Alice
colours the common neighbour of v and u with colour 3 or 4. After her move
the game component which contains v will have the property 2, the other
game components will have at most two coloured vertices. Next assume
that (b) holds. Let u,w be two coloured vertices of this steam. Then Alice
try to colour a v-cut-vertex x for a triple (v, u, w) with colour 3 or 4. After
such a move the game component which contains v will have the property
2. The game component which contains x, u, w will have the property 1
(or these vertices are in distinct game components which have at most two
coloured vertices). If neither colour 3 nor 4 is admissible for x, then Alice
colours a neighbours y of x which is a separator of x and v with colour 3
or 4. After such a move the game component which contains x, u, w will
have the property 3. If she cannot make such a move, i.e., the vertex y is
coloured (y = v), then Alice colours x with 1 or 2. After her move G will
have property 2, but now the central vertex is x or G may be split into game
components which will have the property 2. Now suppose that (c) holds.
Let u be the coloured vertex adjacent to v and w, z be the other coloured
vertices of this steam. If c(u) = 2 then Alice colours a common neighbour
of v and u. Since z is adjacent to u and c(z) = 2, every game component
will be in β3. Suppose that c(u) 6= 2. Then Alice colours a v-cut-vertex x
for a triple (v, z, w). If x is adjacent to v, she colours it with an arbitrary
admissible colour. Otherwise, she try to colour x with colour 3 or 4. If
neither colour 3 nor 4 is admissible for x, then Alice colours a neighbour y
of x which is a separator of x and v with colour 3 or 4.

Case 3. Before Bob’s move G had the property 3.

If Bob has coloured a vertex which is adjacent to v, then Alice colours v
with colour 1 or 2. After her move G will have property 2 or can be split
into game components which will have the property 2. Suppose that Bob
has coloured a vertex w which is in distance at least two to v. Alice try to
colour a neighbour x of w which is a separator of w and v with colour 3 or
4. If she cannot make such a move because x has a 3-coloured neighbour
and a 4-coloured neighbour, then Alice colours v with colour 1. After her
move G will have the property 2. If she cannot make such a move because x
is coloured, say with colour 1, then Alice colours a common neighbour of x
and v with 1. If there is no common uncoloured neighbour of x and v, then
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Alice colours v with colour 2.

From Lemma 14 and Lemma 16 and the fact that H3 ⊆ β3, we obtain the
following.

Theorem 17. If G ∈ H3, then Alice has a winning strategy for the

(O1,O1,O,O)-game on G.

Next we show that Alice has a winning strategy for (P1,P2, . . . ,Pk+1)-game
on every graph from Hk, k ≥ 4, where P1 = O1,Pi = O (2 ≤ i ≤ k + 1).

Let G ∈ Hr
k. A weak-center of G is a block or a pseudo-block W

such that for every uncoloured vertex v ∈ W a v-branch has at most one
coloured vertex and for every 1-coloured vertex w ∈ W , a w-branch has at
most two coloured vertices (the vertex w and the other vertex). A weak-

branch is a branch of a weak-center W which has two coloured vertices (the
root and the other vertex). By Q we denote the subgraph induced by the
vertices which are neither in the weak-center W nor in weak-branches. Let
w = |V (W ) ∩ C|, q = |V (Q) ∩ C|, where C is the set of coloured vertices
of G.

Definition (Family β4). G ∈ β4 if G ∈ Hk+1
k , k ≥ 4, and G is a (P1,P2, . . . ,

Pk+1)-game component, and G is partially (P1,P2, . . . ,Pk+1)-coloured,
where P1 = O1,Pi = O (2 ≤ i ≤ k + 1), and G has at least one of the
following properties:

1. G has a center S such that

1.1. |V (S)| ≤ k − 1 or

1.2. |V (S)| = k, and

1.2.1. t ≤ 1 or

1.2.2. t = 2 and s = 1 or

1.2.3. t = 2, s ≥ 2 and if in S there is exactly one 1-coloured
vertex x and both vertices of T are in distance two to x, then
at least one of them has a colour from c(S).

2. G has a weak-center W such that

2.1. |V (W )| ≤ k − 1 or

2.2. |V (W )| = k, and

2.2.1. q = 0 or
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2.2.2. q = 1 and w = 1 or

2.2.3. q = 1, w ≥ 2 and if in W there is exactly one 1-coloured
vertex x and a vertex of Q is in distance two to x, then it
has a colour from c(W ) or

2.2.4. q = 2, w ≥ 1 and two coloured vertices of Q are adjacent
to W and they are coloured with colours from c(W ).

3. There is an uncoloured vertex u such that all coloured vertices are in
blocks which contain u and are coloured with colour distinct from 1.

4. There is a 1-coloured vertex v such that all coloured vertices are in blocks
which contain v.

Let G ∈ Hk+1
k (k ≥ 4). Note that if G has at most two coloured vertices,

then it always belongs to β4 and it has the property 1.1 or 1.2.1. If G has
the property 1.2.3 (2.2.3), then the vertices which are in distance two to
x are adjacent to S (to W ) and roots of their branches are adjacent to x.
From the fact that every graph G ∈ β4 is a game component we have the
following properties: If v is a coloured with colour distinct from 1 and v
is in the center or the weak-center S, then the v-branch of S has only one
vertex (i.e., the vertex v). If all vertices of the center (the weak-center) S
are coloured, then |V (S)| = 2 and c(S) = 1 and there is at most one branch
(the weak-branch) of S which has uncoloured vertices. Moreover if v ∈ S
is the root of this branch, then v has two steams. If S is the center (the
weak-center) and |V (S)| ≥ 3 and S has two adjacent 1-coloured vertices
u1, u2, then the ui-branch (the weak ui-branch) of S, i ∈ {1, 2}, has exactly
one vertex. If v is an 1-coloured vertex and B1, B2, . . . , Bp are steams such
that v ∈ Bi and Bi has uncoloured vertices (1 ≤ i ≤ p, p ≥ 2), then in
every steam Bi (1 ≤ i ≤ p) there is a neighbour of v which can be coloured
with 1.

Lemma 18. The family β4 is (P1,P2, . . . ,Pk+1)-game closed, where P1 =
O1,Pi = O (2 ≤ i ≤ k + 1).

Proof. Let G ∈ β4. First we will show that Alice can colour a vertex of
G in such a way that every game component will be in β4. Suppose that
G has the property 1 of Definition 4, hence G has the center S. If all
vertices of S are coloured, then Alice colours a vertex which is adjacent to
the S with colour distinct from 1. If there is an uncoloured vertex v ∈ S
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and G has the property 1.1 or 1.2.1, then Alice colours v with a colour
distinct from 1. After such a move the game component which contains all
vertices of S will have the property 1.1 or 1.2.1 or the vertices of S are in
distinct game components which will have the property 1.1. The other game
components will have at most one coloured vertex or at most two coloured
vertices whenever the v-branch had a coloured vertex. Assume that there
is any uncoloured vertex in S and G has the property 1.2.2 or 1.2.3. Let v
be an uncoloured vertex of S such that the v-branch of S has one coloured
vertex. Then Alice colours v with a colour distinct from 1. After Alice’s
move the game component which contains the vertices of S will have the
property 1.2.1 or 1.1. Suppose that G has the property 2, hence G has the
weak-center W . Suppose that all vertices of W are coloured, i.e, |W | = 2
and c(W ) = {1}. Let B be the block adjacent to W . Since in G there is one
coloured vertex which does not belong to W , B is a weak-center and has
at least one uncoloured vertex. Hence we may assume that the weak-center
has at least one uncoloured vertex. If G has the property 2.1 or 2.2.1, then
Alice colours an uncoloured vertex v ∈ W with a colour distinct from 1.
After such a move the game component which contains the vertices of W ,
will have the property 2.1 or 2.2.1. The other game components will have
at most one coloured vertex or at most two coloured vertices whenever the
v-branch had a coloured vertex. If G has the property 2.2.2 or 2.2.3, or 2.2.4,
then Alice colours an uncoloured vertex v such that the v-branch of W has
one coloured vertex. After such a move the game component which contains
the vertices of W will have the property 2.2.1, 2.2.2 or 2.2.4 (also it might
have the property 2.1). Now assume that G has the property 3. Then Alice
colours u with 1, after her move G will have the property 4. If G has the
property 4, Alice colours an uncoloured neighbours of v. If she cannot make
such a move, i.e., all neighbours of v are coloured, then v has a neighbour
coloured with 1 and these are the only coloured vertices of G. But in this
case G has also the property 1.1, thus Alice can make the same move as
above. Thus, Condition (i) of Definition 4 holds. Next we will prove that
Condition (ii) of Definition 4 also holds. Suppose that Bob has coloured a
vertex of G and after his move there is a game component of G which is not
in β4. Let us consider the following cases.

Case 1. Before Bob’s move G had the property 1.

Subcase 1.1. Suppose that G had the property 1.1.

Thus, after Bob’s move S is not a center of G, hence there is a branch of
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S which has two coloured vertices u,w (u,w ∈ T ) (if Bob had coloured a
vertex of S, then G would have had a center of a weak-center). Let v be
a root of a branch which contains u,w. Alice colours a v-cut-vertex x for
the triple (v, u, w) with a colour distinct from 1 or with 1 if it is the only
admissible colour. Note that always there is an admissible colour for x,
since x has at most k coloured neighbours. After Alice’s move the game
component which contains the vertices of S will have the property 1.1. If in
G−x the vertices u,w are in distinct components, then G will also have two
game components which have two coloured vertices. If in G−x the vertices
u,w are in one component, then G will have the game component which has
three coloured vertices and has a center. All other game components will
have at most one coloured vertex.

Subcase 1.2. Now, assume that G had the property 1.2.

Subcase 1.2.1. First, let us consider the case when G had the property
1.2.1.

Since after Bob’s move G is not in β4, it follows that Bob has coloured a
vertex w ∈ T . Let w′ be a root of a branch of S which contains w. If w′ is
coloured (it must be coloured with 1), then Alice colours a root of a branch
which contains the second coloured vertex of T . If w ′ is uncoloured and w
is the only coloured vertex of the w′-branch, then Alice colours w′ with a
colour distinct from 1. After her move the game component which contains
vertices of S has the property 1.2.1 or the property 1.1. Suppose that the
w′-branch has two coloured vertices w and u (u 6= w′). Alice colours a w′-
cut-vertex x for the triple (w′, w, u) with a colour distinct from 1 or with
colour 1 when it is the only admissible colour for w ′. Note that always there
is an admissible colour for x, since x has at most k +1 coloured neighbours.
If |c(N(x))| = k + 1, then exactly one vertex is coloured with colour 1, so
Alice can colour x with colour 1.

Subcase 1.2.2. Suppose that G had the property 1.2.2.

First assume that Bob has coloured a vertex of S. Thus, t = 2 and s = 2.
Let v, u ∈ V (T )∩C and u′, v′ be vertices such that u, v are in a u′-branch and
a v′-branch, respectively. Since G is not in β4, it follows that S is the center
with exactly one 1-coloured vertex x and u, v are in distance two to x and
c(u) /∈ c(S), c(v) /∈ c(S) or S is the weak-center (u′ is a vertex which was
coloured by Bob, c(u′) = 1) and v is in distance two to x and c(v) /∈ c(S).
Alice colours an uncoloured root of a branch which has a coloured vertex
in such a way that the game component which contains vertices of S will
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have the property 1.2.1 (with t = 1) or the property 2.2.1 (with q = 0) or
the vertices of S will be in distinct game components which will have the
property 1.1 or 2.1.

Now assume that Bob has coloured a vertex of T . Thus, t = 3 and
s = 1. Let v, u, w ∈ V (T ) ∩ C. Suppose that coloured vertices of T are
in three distinct branches. Let u′, v′, w′ be such vertices that u, v, w are
in a u′-branch, a v′-branch and a w′-branch, respectively. If u′, v′, w′ are
uncoloured, then Alice colours the vertex u′ or v′ or w′, in such a way that
the game component which contains vertices of S will have the property
1.2.3 (if c(v) = c(u) = c(w) = c and S has exactly one 1-coloured vertex,
then she colours a root with colour 1) or the vertices of S will be in distinct
game components which have the property 1.1.

Suppose that one of the roots, say w′, is coloured with 1 and w has just
been coloured by Bob. Thus, Alice colours u′ with c(v′) or with arbitrary
colour whenever c(v) ∈ c(S) or v is not in distance two to w ′. After her move
the game component which contains vertices of S has the property 2.2.3 or
the property 1.1 or the property 2.1. If she cannot make such a move, i.e.,
c(u) = c(v) = i and c /∈ c(S) and u, v are in distance two to w ′, then Alice
colours uncoloured vertex of S with i. After that a game component which
contains the vertices of S will have the property 2.2.4 or 1.2 or 2.1.

Finally, suppose that u, v, w are not in three distinct branches. Let x
be a root of a branch which contains u and v. Alice colours a x-cut-vertex
for the triple (x, v, u) with a colour distinct from 1.

Subcase 1.2.3. Suppose that G had the property 1.2.3.
First assume that Bob has coloured a vertex of S. Since G /∈ β4, Bob has
coloured a vertex of S with colour 1. Alice colours an uncoloured root of a
branch which has a coloured vertex in such a way that a game component
which contains the vertices of S will have the property 1.2.1 or the property
2.2.1 (or the property 1.1, 2.1).

Now assume that Bob has coloured a vertex of T . Thus, t = 3 and s ≥ 2.
Let u, v, w be coloured vertices of T . Suppose that the vertices u, v, w are
in three distinct branches. Let u′, v′, w′ be such vertices that u, v, w are in
a u′-branch and a v′-branch and a w′-branch, respectively. If the vertices
u′, v′, w′ are uncoloured, then Alice colours one of them in such a way that
the game component which contains vertices of S will have the property
1.2.3 or 1.1. If one of vertices is coloured, say w ′, (w′ is coloured with 1
and w has just been coloured by Bob), then Alice colours u′ or v′. After
her move the game component which contains vertices of S has the property
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2.2.3 or the property 1.1 or 2.1.

Finally, suppose that u, v, w are not in three distinct branches. Let x be
a root of a branch which contains u and v. Then Alice colours a x-cut-vertex
y for the triple (x, v, u). If S has exactly one 1-coloured vertex and y and
w are in distance two to this vertex, then Alice colours y with colour from
c(S) \ {1}. If in c(S) \ {1} there is no admissible colour for y, then Alice
colours x. Otherwise, she colours y with a colour distinct from 1 or with
colour 1 when it is the only admissible colour. Note, that colour 1 is the
only admissible colour if x = y and k − 2 vertices of S are coloured with
distinct colours.

Case 2. Before Bob’s move G had the property 2.

Subcase 2.1. Assume that G had the property 2.1.

First suppose that |W | = 2 and two adjacent vertices of W are coloured with
1. Hence W has only one branch, say the v-branch (it is a weak-branch)
and v has only one steam which has uncoloured vertices. Since after Bob’s
move G /∈ β4, the v-branch has three coloured vertices, v, u, w. Let W ′ be
a block adjacent to W . If u and w are in two distinct branches of W ′, then
Alice colours a root of the branch containing the coloured vertex in such a
way that a game component which contains the vertices of W ′ will have the
property 2.2.1 or 2.2.3, or 2.1. She can also colour a vertex of W ′ in such
a way that a game component which contains W ′ will have the property
2.2.4. Now assume that u,w are in one branch of W ′. Let x be a root of
the branch of W ′ which contains u and w. Alice colours an x-cut-vertex for
the triple (x, u, w) with a colour distinct from 1.

Now assume that |W | ≥ 2 and W has an uncoloured vertex. Since after
Bob’s move W is not a weak-center of G, there is a branch of W which has
two coloured vertices or there is a weak-branch which has three coloured
vertices.

Suppose that there is a branch of W which has two coloured vertices.
Let v be a root of a branch of W which contains coloured vertices u,w (v
is uncoloured). Alice colours a v-cut-vertex for the triple (v, u, w) with a
colour distinct from 1.

Finally, suppose that there is a weak-branch which has three coloured
vertices. Let v be a coloured root of a weak-branch of W which contains
coloured vertices u,w (c(v) = 1). Note that since G is a game component
and there are at least two steams of v which have uncoloured vertices, in
every steam of v there is a neighbour of v which can be coloured with 1,
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particularly in W there is a vertex which can be coloured with 1. If u and
w are in two distinct steams of v, then Alice colours a vertex of W with 1.
Assume that u and w are in one steam of v and let W ′ be a block adjacent
to W which is in this steam. If u and w are in distinct branches of W ′, then
Alice colours a vertex of N(v) ∩ V (W ′) with 1. Otherwise, let x be a root
of a branch of W ′ containing u and w. Alice colours an x-cut-vertex for the
triple (x, u, w) with a colour distinct from 1.

Subcase 2.2. Suppose that G had the property 2.2.

Subcase 2.2.1. Now assume that G had the property 2.2.1.

Since G /∈ β4, Bob has coloured a vertex w /∈ W . If w is the only coloured
vertex of a branch of W , then Alice colours a root w ′ of this branch. Let w
and u be two coloured vertices of a weak-branch of W and u′ be a root of
this weak-branch and c(u′) = 1. If u and w are in two distinct steams of u′,
then Alice colours a vertex of W with 1. Note that in N(u′) ∩ V (W ) there
is a vertex which can be coloured with 1, since G is a game component and
there is more than one steam of u′ which has an uncoloured vertex. Assume
that u and w are in one steam of u′ and let W ′ be a block adjacent to W
which is in this steam. If u and w are in distinct branches of W ′, then Alice
colours a vertex of N(v) ∩ V (W ′) with 1. Otherwise, let x be a root of a
branch of W ′ containing u and w. Then Alice colours an x-cut-vertex for
the triple (x, u, w) with a colour distinct from 1.

Subcase 2.2.2. Suppose that G had the property 2.2.2.

Let u′ be a coloured vertex of W , so c(u′) = 1. First assume that Bob has
coloured a vertex of W . Since G /∈ β4, Bob has coloured a vertex which is
a root of an uncoloured branch of W . Thus, after Bob’s move q = 1 and
w = 2. Let v be a coloured vertex of Q. Thus, Alice colours a root of a
branch of W which contains v.

Next assume that Bob has coloured a vertex of Q. Note that the root
of a branch which contains the vertex which has just been coloured by Bob
is uncoloured, otherwise G ∈ β4. Thus, q = 2 and w = 1. Let v, w be
coloured vertices of Q. Suppose that v and w are in two distinct branches
of W . If one of vertices v, w, say v, is not in distance two to u′, then Alice
colours a root of a branch which contains v with an arbitrary admissible
colour. If both vertices are in distance two to u′, then Alice colours a root
of a branch containing v with colour c(w) or with an arbitrary colour when
c(w) ∈ c(W ). If she cannot make such a move, i.e., c(v) = c(w) = i, then
Alice colours a vertex of W with i. After such a move the game component
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which contains the vertices of W has the property 2.2.4 or 2.1, or 1.1. If v
and w are in one branch, say an x-branch, then Alice colours a x-cut-vertex
for the triple (x,w, v).

Finally, assume that Bob has coloured a vertex of the weak-branch. Let
u′ be a root of this weak-branch. Let u,w be the coloured vertices of the
u′-branch. If u and w are in two distinct steams of u′, then Alice colours
a vertex of W with 1. Assume that u and w are in one steam of u′ and
let W ′ be a block adjacent to W which is in this steam. If u and w are in
distinct branches of W ′ or one of them is in W ′, then Alice colours a vertex
of N(u′) ∩ V (W ′) with 1. Otherwise, let x be a root of a branch of W ′

containing u and w. Alice colours a x-cut-vertex for the triple (x, u, w) with
a colour distinct from 1.

Subcase 2.2.3. Assume that G had the property 2.2.3.

Since G /∈ β4, Bob has coloured a vertex which is not in W . Assume first
that Bob has coloured a vertex w ∈ Q. Note that a root w ′ of a branch
containing w is uncoloured, otherwise G ∈ β4. Thus, q = 2 and w ≥ 2. If
two coloured vertices of Q are in distinct branches, then Alice colours w ′

with a colour distinct from 1. If the w′-branch has two coloured vertices
w and u, then Alice colours a w′-cut-vertex y for the triple (w′, w, u). If Q
has exactly one 1-coloured vertex and y is in distance two to this vertex,
then Alice colours y with colour from c(Q) \ {1}. If in c(Q) \ {1} there is no
admissible colour for y, then Alice colours x. Otherwise, she colours y with
a colour distinct from 1 or with colour 1 if it is the only admissible colour.

Now assume that Bob has coloured a vertex of the weak-branch. Let
u′ be a root of this weak-branch. Let u,w be the coloured vertices of the
u′-branch. If u and w are in two distinct steams of u′, then Alice colours
a vertex of W with 1. Assume that u and w are in one steam of u′ and
let W ′ be a block adjacent to W which is in this steam. If u and w are in
distinct branches of W ′ or one of them is in W ′, then Alice colours a vertex
of N(u′) ∩ V (W ′) with 1. Otherwise, let x be a root of a branch of W ′

containing u and w. Alice colours a x-cut-vertex for the triple (x, u, w).

Subcase 2.2.4. Finally assume that G had the property 2.2.4.

Since G /∈ β4, Bob has coloured a vertex which is not in W . First assume
that Bob has coloured a vertex w ∈ Q. Then Alice colours a root of this
branch with a colour distinct from 1.

Now assume that Bob has coloured a vertex of the weak-branch. Let u′

be a root of this weak-branch and u,w be coloured vertices of u′-branch. If
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u and w are in two distinct steams of u′, then Alice colours a vertex of W
with 1. Assume that u and w are in one steam of u′ and let W ′ be a block
adjacent to W which is in this steam. If u and w are in distinct branches of
W ′ or one them is in W ′, then Alice colours a vertex of N(u′)∩V (W ′) with
1. Otherwise, let x be a root of a branch of W ′ containing u and w. Alice
colours an x-cut-vertex for the triple (x, u, w) with a colour distinct from 1
or with colour 1 when it is the only admissible colour.

Case 3. Before Bob’s move G had the property 3.
If Bob colours a vertex which is in a block containing u, then Alice colours u
with colour 1. If Bob colours a vertex w which is not in the block containing
u, then Alice colours a separator of u and w which is in the block containing
u. She colours this vertex a colour distinct from 1.

Case 4. Before Bob’s move G had the property 4.
Since G does not have the property 4, Bob colours a vertex w which is not
in the block containing v. Thus, Alice colours a separator of v and w which
is in the block containing v with colour distinct from 1.

Next theorem follows from Lemma 14 and Lemma 16 and the fact that
Hk ⊆ β4 for k ≥ 4.

Theorem 19. Let G ∈ Hk and k ≥ 4. Then Alice has a winning strategy for

a (P1,P2, . . . ,Pk+1)-game on G, where P1 = O1, Pi = O (i = 2, . . . , k + 1).

5. Monotonicity of Generalized Colouring Game

We begin this section with an example. Let Kn,n (n ≥ 4) be a complete bi-
partite graph. It is easy to see that χg(Kn,n) = 3. Hence Alice has a winning
strategy for the (O,O,O)-game (the proper colouring) on Kn,n. However
one can observe that Bob has a winning strategy for the (O1,O1,O1)-game
on Kn,n. Thus, in general the generalized colouring game is not monotone.
In this section we show that the generalized colouring games which were
discussed in previous sections on graphs from Hk are monotone.

Let G be a partially k-coloured graph. A subgraph G′ of G is a
(P1,P2, . . . ,Pk)-subgraph if it contains all uncoloured vertices of G and
the coloured vertices such that every uncoloured vertex v has the same
(P1,P2, . . . ,Pk)-admissible colours in G′ as it has in G. We say that the
(P1,P2, . . . ,Pk)-subgraph G′ is minimal if G′ does not contain any proper
(P1,P2, . . . ,Pk)-subgraph.
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Let G1, G2, . . . , Gp be (P1,P2, . . . ,Pk)-game components of G. The graphs
G′

1, G
′

2, . . . , G
′

p are minimal (P1,P2, . . . ,Pk)-game components of G if
G′

1, G
′

2, . . . , G
′

p are (P1,P2, . . . ,Pk)-minimal subgraphs of G1, G2, . . . , Gp, re-
spectively.

Let G be a partially k-coloured graph. Note that if Pi = O for 1 ≤ i ≤ k,
then the minimal (P1,P2, . . . ,Pk)-game components of G are (P1,P2, . . . ,
Pk)-coloured graphs.

2

1 1

1 1

2

2

2
1 1

1 1

11

1 11

1

2

Figure 3. The graph G and its minimal (O1,O)-game components

The labeled vertices are coloured with colour 1 or 2.

Definition (Monotone (P1,P2, . . . ,Pk)-game closed family). Let γ be a
family of partially k-coloured graphs. We say that the family γ is monotone

(P1,P2, . . . ,Pk)-game closed if for every G ∈ γ the following conditions hold:
(i) Alice can colour a vertex of G with a (P1,P2, . . . ,Pk)-admissible

colour in such a way that all minimal (P1,P2, . . . ,Pk)-game components of
G are in γ or all vertices of G are coloured.

(ii) If Bob colours a vertex with an arbitrary colour and if after his
move G has an uncoloured vertex, then Alice can colour a vertex with
a (P1,P2, . . . ,Pk)-admissible colour in such a way that all minimal
(P1,P2, . . . ,Pk)-game components of the graph G are in γ or all vertices
of G are coloured.

Lemma 20. Let γ be a monotone (P1,P2, . . . ,Pk)-game closed family, G ∈
γ and u ∈ V (G) be an uncoloured vertex. Then u has a (P1,P2, . . . ,Pk)-
admissible colour.

Proof. Assume that in γ there is a graph G such that G has an uncoloured
vertex u which has no (P1,P2, . . . ,Pk)-admissible colour and G has the
minimum number of uncoloured vertices. If u is the only uncoloured vertex,
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then G does not satisfy Condition (i) of Definition 5, a contradiction. If G
has more than one uncoloured vertex, then Bob can colour a vertex other
than u. By Condition (ii) of Definition 5 Alice can colour a vertex in such a
way that all minimal (P1,P2, . . . ,Pk)-game components of G are in γ. Thus
after her move there is a minimal game component which has less uncoloured
vertices than G and has a vertex which has no (P1,P2, . . . ,Pk)-admissible
colour, a contradiction.

Lemma 21. Let γ be a monotone (P1,P2, . . . ,Pk)-game closed family and

(P ′

1,P
′

2, . . . ,P
′

k) be additive hereditary properties such that Pi ⊆ P ′

i (1 ≤
i ≤ k). If G ∈ γ and G is partially (P ′

1,P
′

2, . . . ,P
′

k)-coloured, then Al-

ice has a winning strategy on G for the (P ′

1,P
′

2, . . . ,P
′

k)-game and for the

(P ′

1,P
′

2, . . . ,P
′

k)-game with the first move of Bob.

Proof. Let G ∈ γ. First note that if players play the (P ′

1,P
′

2, . . . ,P
′

k)-
game on G then Alice can see a graph G as a disconnected graph which
components are minimal (P1,P2, . . . ,Pk)-game components of G. If colour
i is (P1,P2, . . . ,Pk)-admissible for a vertex v in a minimal (P1,P2, . . . ,Pk)-
game component of G, then i is also (P1,P2, . . . ,Pk)-admissible for the
vertex v in G. If the player colours a vertex of a minimal game component
Gi, then in all other minimal game components the set of (P1,P2, . . . ,Pk)-
admissible colours for vertices do not change.

The winning strategy of Alice is the following: she colours the vertices
in such a way that every minimal (P1,P2, . . . ,Pk)-game component of G
is in γ or all vertices are coloured. From the definition of the monotone
(P1,P2, . . . ,Pk)-game closed family easy follows that she achieves this goal.

Note that Alice’s strategy implies that after every move of players ev-
ery uncoloured vertex has a (P1,P2, . . . ,Pk)-admissible colour. Indeed, af-
ter Alice’s move every minimal (P1,P2, . . . ,Pk)-game component is in γ,
hence every uncoloured vertex has a (P1,P2, . . . ,Pk)-admissible colour. Af-
ter Bob’s move there is a vertex which can be coloured by Alice in such
a way that all minimal (P1,P2, . . . ,Pk)-game components will be in γ.
Hence also after Bob’s move every uncoloured vertex has a (P1,P2, . . . ,Pk)-
admissible colour. If a colour is (P1,P2, . . . ,Pk)-admissible, then it is also
(P ′

1,P
′

2, . . . ,P
′

k)-admissible. Since during the game players never create a
forbidden monochromatic subgraph, after every move of players the graph
G is (P ′

1,P
′

2, . . . ,P
′

k)-coloured. Thus, Alice wins the game.
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Now we construct a family of forests which is monotone (O1,O,O)-game
closed, to show that Alice has a winning strategy for a (P1,P2,P3)-game on
every forest, where P1,P2,P3 are arbitrary additive hereditary properties
such that O1 ⊆ P1. This improve the result obtained in [4], which says that
Alice has a winning strategy for the (O1,O,O)-game on every forest.

Definition (Family γ2).

γ2 = {G : G ∈ H3
2 and G has at most two coloured vertices}.

Lemma 22. Family γ2 is monotone (O1,O,O)-game closed.

Proof. Let G ∈ γ2. It is easy to check that Alice always can colour a vertex
in such a way that all minimal (O1,O,O)-game components are in γ2 or
all vertices of G are (O1,O,O)-coloured. Suppose that after Bob’s move G
has a minimal (O1,O,O)-game component which is not in γ2. Hence before
Bob’s move G had two coloured vertices u, v. Let w be a vertex which has
just been coloured by Bob. If u and v are adjacent, c(u) = c(v) = 1 and
w is adjacent to u or v, then every minimal game component is in γ2 (even
if Bob has coloured w with 1). If w is adjacent neither to u nor to v, then
Alice colours with a colour distinct from 1 a neighbour of u or v which is a
separator of {u, v} and w. Now assume that u and v are not adjacent. If w
is adjacent to u and c(u) 6= 1, then w and u are in distinct minimal game
components which are in γ2 (even if Bob coloured w with c(u)). So, we may
assume that the vertices u, v, w form an independent set. Suppose that there
is a path which contains u, v, w and v is the middle vertex of this path. If
c(v) 6= 1, then every game component of G has two coloured vertices, hence
it is in γ2. So, c(v) = 1. Thus, Alice colours a neighbour of v which is on
this path with colour 2 or 3. Assume that there is no path which contains
u, v, w and let x be a vertex such that the vertices u, v, w are in distinct
steams of x. Alice colours x with colour 2 or 3. If she cannot make such a
move, i.e, the vertices u, v, w are adjacent to x and coloured with distinct
colours, then Alice colour x with 1. After such a move the vertices u, v, w
are in distinct minimal game components which are in γ2.

Theorem 23. Let P1,P2,P3 be additive hereditary properties such that

O1 ⊆ P1. Then Alice has a winning strategy for a (P1,P2,P3)-game on

every forest.

One can observe that game closed families discussed in previous sections
can be easily extended to monotone game closed. In families α1, α2 it is
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enough to replace the condition which says that a graph is partially properly
(k+2)-coloured ((k+1)-coloured) with the condition that a graph is partially
(k +2)-coloured ((k +1)-coloured). In families β3, β4 it is enough to replace
the condition which says that a graph is partially (P1,P2, . . . ,Pk+1)-coloured
with the condition that a graph is partially (k + 1)-coloured. From proofs
of these theorems it follows that if we allow Bob to colour a vertex with an
arbitrary colour (no necessary admissible), then Alice can colour a vertex in
the same way as in case when Bob colours a vertex with an admissible color.
After Alice’s move the game components are in the corresponding family.
Thus, from Lemmas 7, 10, 16 and 18 we obtain the new results.

Theorem 24. Let k ≥ 2, G ∈ Hk and P1,P2, . . . ,Pk+2 be additive heredi-

tary properties. Then Alice has a winning strategy for a (P1,P2, . . . ,Pk+2)-
game on G.

Theorem 25. Let k ≥ 6, G ∈ Hk and P1,P2, . . . ,Pk+1 be additive heredi-

tary properties. Then Alice has a winning strategy for a (P1,P2, . . . ,Pk+1)-
game on G.

Theorem 26. Let G ∈ H3 and P1,P2,P3,P4 be additive hereditary proper-

ties such that O1 ⊆ Pi (i ∈ {1, 2}). Then Alice has a winning strategy for a

(P1,P2,P3,P4)-game on G.

Theorem 27. Let k ∈ {4, 5}, G ∈ Hk and P1,P2, . . . ,Pk+1 be additive

hereditary properties such that O1 ⊆ P1. Then Alice has a winning strategy

for a (P1,P2, . . . ,Pk+1)-game on G.

In [20] Zhu suggested that if χg(G) = k, then Alice has a winning strategy
for the t-colouring game on G for any t ≥ k. Our results confirm this
hypothesis. By Lemma 5 and Lemma 7, Alice has a winning strategy for
the (k+2)-colouring game on G ∈ Hk (k ≥ 2). If G ∈ Hk, then also G ∈ Hp

for any p ≥ k. Hence Alice has a winning strategy for the t-colouring game
on G ∈ Hk (k ≥ 2) for any t ≥ k + 2. Similarly, from Lemma 5 and Lemma
10 it follows that Alice has a winning strategy for the t-colouring game on
G ∈ Hk (k ≥ 6) for any t ≥ k + 1. So, also in this sense the colouring game
number for graphs from Hk is monotone.
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