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Abstract

The Wiener number of a graph G is defined as 3 Puwev(e) Uu,v),
d the distance function on G. The Wiener number has important appli-
cations in chemistry. We determine a formula for the Wiener number of
an important graph family, namely, the Mycielskians u(G) of graphs
G. Using this, we show that for k > 1, W(u(SF)) < W(u(TF)) <
W (u(PF)), where S,,, T, and P, denote a star, a general tree and
a path on n vertices respectively. We also obtain Nordhaus-Gaddum
type inequality for the Wiener number of u(G*).
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1. INTRODUCTION

Let G be a simple connected undirected graph with vertex set V(G) and
edge set F(G). Then G is of order |V(G)| and size |E(G)|. Given two
distinct vertices u,v of G, let d(u,v) denote the distance between u and v
(= number of edges in a shortest path between u and v in G). The Wiener
number (also called Wiener index) W(G) of the graph G is defined by

D

W(G):% > da, b)) = ip(i, G),

a,beV(G) i=1
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where p(i, G) denotes the number of pairs of vertices which are at distance
1 in G, and D is the diameter of G. The Wiener number is one of the oldest
molecular-graph based structure-descriptors, first proposed by the American
chemist Harold Wiener [13] as an aid to determine the boiling point of
paraffins. Some of the recent articles in this topic are ([1, 2, 3, 4, 5, 7] and
[14]).

In a search for triangle-free graphs with arbitrarily large chromatic
numbers, Mycielski [11] developed an interesting graph transformation as
follows. For a graph G = (V, E), the Mycielskian of G is the graph u(G)
with vertex set V.UV’ U {u}, where V' = {2/ : © € V}} and is disjoint from
V, and edge set EU{xy' : zy € E}U{y'u:y € V'}. The vertex z’ is called
the twin of the vertex x (and x the twin of z’) and the vertex w is the root
of u(G). In recent times, there has been an increasing interest in the study
of Mycielskians, especially, in the study of their circular chromatic numbers
(see, for instance, [9, 6, 8] and [10]).

Let H be a spanning connected subgraph of a (connected) graph G.
Then for any pair of vertices u,v of G, dg(u,v) < dg(u,v). The k-th power
of a graph G, denoted by G*, is the graph with the same vertex set as G
and in which two vertices are adjacent if and only if their distance in G is
at most k. Clearly, G! = G.

The complement G of a graph G is the graph with the same vertex
set as G and in which two verties u,v are adjacent if and only if u,v are
non-adjacent in G. In 1956, Nordhaus and Gaddum [12] gave bounds for
the sum of the chromatic number x(G) of a graph G and its complement G
as follows,

Theorem 1.1. For a graph G of order n, 2/n < x(G) + x(G) < n + 1.

Zhang and Wu [15] presented the corresponding Nordhaus-Gaddum (in short
NG) type inequality for the Wiener number as:

Theorem 1.2. Let G be a connected graph of order n > 5 with connected
complement G. Then 3(5) < W(G) + W(G) < %.

The bounds in Theorem 1.2 are sharp.
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2. WIENER NUMBER OF THE MYCIELSKIAN OF A GRAPH

We start this section by obtaining a formula for the Wiener number of the
Mycielskian of a graph.

Theorem 2.1. The Wiener number of the Mycielskian of a connected graph
G of order n and size m is given by W (u(G)) = 6n% —n — Tm — 4p(2,G) —
p(3,G).

Proof. By definition,

W@) =} = dab)
a,0eV (p

Hence W (u(G)) = a; d(a, b') + a; dla,b)+1 Y d(d, V)

eV’ beV o eV’
+1 3 dla,b)+ Y da, V)
a,beV acV,
bev’

= 21 +22+23+Z4+Z5 (say).

One can observe that, >, =n, >, =2n, 35 = 2(}). As distance between
any pair of vertices in V is atmost 4 in u(G), 3, = S0 ip(i, G) + 4[(3) —
25’:1 p(i,G)]. Now the maximum distance from any vertex in V to any
vertex in V' is 3. Note that if ab € E, then ab’,ba’ € E(u(G)), that is, each
edge of G will contribute two edges between V and V’. Also for every a € V,
d(a,a’) =2, and for every a,b € V such that d(a,b) = 2, we have d(a,b’)
d(b,a’) = 2. Thus >y = 2n + 237 ,ip(i, G) + 3[n? —n— 252 p(i,G
and therefore, W (u(G)) = 6n2 —n — Tm — 4p(2,G) — p(3, Q).

"l

This formula comes in handy when finding the Wiener number of u(G) for
which p(2, G) and p(3, G) are known even if the diameter of G is very large.

In [1], X. An et al. have shown that W (Sk) < W(TF) < W(P*), k > 1
where S,,, P, and T,, denotes a star, a path and a tree other than a star
and a path on n vertices. The formula mentioned in Theorem 2.1 helps
us in proving that W(u(Sk)) < W(u(TF)) < W(u(PF)) for any k > 1.
However, this cannot be deduced from X. An’s result mentioned above.
In fact, there are graphs G and H with same order and size such that
W(G) > W(H) and W (u(G)) < W(u(H)). For example, let G be Cg with
a pendant edge attached at a pair of opposite vertices and H be C7 with a
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single pendant edge, then W(G) = 62 and W (H) = 61 while W (u(G)) = 273
and W (u(H)) = 275.

Theorem 2.2. W (u(S¥)) < W (u(TF)) < W(u(P¥)), k> 1.

Proof. By virtue of Theorem 2.1, the result in Theorem 2.2 is equivalent to
A =Tp(1,85) +4p(2,SF) +p(3,55) > B = Tp(1, T¥)+4p(2, TF) +p(3,TF) >
C =17p(1, PF) +4p(2, P¥) + p(3, PY).

We first prove that A > B. If k > 2, then S*¥ = K, which implies
that p(1,SF) (%) > S22 p(i,TF) and this inequality implies A > B
(as 7 >4 > 1). If £ = 1, then diam(S,) = 2 and D = diam(T,) > 2.
This gives, p(2,5,) = ZfiQp(i,Tn), and therefore 7p(1,S,) + 4p(2,S,) >
p(1,T,) + 4p(2,T,,) + p(3,T5). Once again, A > B.

Next we prove that B > C by induction on n. B > C' is obvious for
n < 4. Let T,, be a tree of order n > 5 and let P, = vvy---v,_1 be a path
of order n. Let P = wuy ... uq be a longest path of T}, (d < n—1). u is then
a pendant vertex of T}, and T,, — {u} is a tree of order n — 1. By induction
hypothesis, B > C for T,, — {u} and P, — {v}. Let p(a,i,G) denote the
number of vertices in G that are at distance i from a. Clearly, p(i, T) =
p(i, TF — {u}) + p(u,i,TF). So it is enough to prove that 7p(u,1,TF) +
4p(u, 2, TF) + p(u, 3, TF) > Tp(v, 1, P*) + 4p(v,2, P*) + p(v, 3, P¥).

We know that p(v,i, P¥) < k for each i = 1 to D = diam(PF¥). If there
are k vertices of P¥ in TF adjacent to w, then p(u,1,TF) > p(v,1, P*). If
not, u will be a universal vertex of 7% (that is, a vertex adjacent to all the
other vertices of T). Thus in any case, p(u, 1, T¥) > p(v, 1, PF).

If p(u,2,TF) < p(v,2, P¥) < k, then diam(TF) < 2 (This is because if
diam(T¥) > 2, then along the longest path in T, there will be k vertices
which would be at distance 2 from u which is a contradiction). This gives
p(u, 1, TF) + p(u,2,TF) = (n — 1) > p(v,1, P*) + p(v,2, P¥) + p(v, 3, PF),
and as 7 >4 > 1, Tp(u, 1,TF) + 4p(u, 2, T*) > Tp(v, 1, P¥) + 4p(v,2, PF) +
p(v,3, Py).

Next if, p(u,2,TF) > p(v,2, P¥) and p(u,3,T%) > p(v,3, P*) then
clearly, B > C. Otherwise, diam(T*) < 3, (Same argument as above) which
shows that p(u, 1,T%) + p(u,2,T%) + p(u,3,TF) = (n — 1) > p(v,1, P¥) +
p(v,2, P¥) 4+ p(v,3, P¥) and hence 7p(u, 1, TF) 4 4p(u, 2, TF) + p(u, 3, TF) >
7p(v,1, P*) + 4p(v, 2, P¥) + p(v, 3, P¥). ]

It can easily be seen from the proof of Theorem 2.2 that when k = 1, we
have strict inequality for n > 5.
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Corollary 2.3. If G is a connected graph of order n, then W(u(G*)) <
W (u(Py)).

Proof. Let T be a spanning tree of G. In view of Theorem 2.2, it suffices
to prove that W (uu(G*)) < W (u(T*)). Any pair of vertices of T* at distance
i will be at distance at most i in G*. Therefore, 7p(1,G*) + 4p(2,G*) +
p(3,G*) > Tp(1,T%) +4p(2, T%) + p(3, T%). Thus W (u(G*)) < W(u(P¥)). m

3. NG TyYPE RESULTS FOR THE WIENER NUMBER OF MYCIELSKI
GRAPHS AND THEIR POWERS

When G (of order n and size m) has no isolated vertices, u(G) is connected
while 11(G) is connected always. It is easy to see that the diameter of u(G)
is 2 and one can establish that W(u(G)) = 2n? + 2n + 3m.

This shows that W (u(G))+W (u(G)) = 8n?+n—4m—4p(2,G)—p(3,G).

As in the proof of Theorem 2.2, one can prove the following.

Theorem 3.1. W(u(S) + W(u(SE) < W(uT) + W(uTF) <
W (u(By)) + W (u(PF)) for any k > 1.

Now W ((G))+W (u(G)) is maximum, when 4m+4p(2, G)+p(3, G) is least.
AsW(PF) = Y05 T4 1(n—i) (see [1]), p(i, PF) = 325 {n—(k(i—1)+)} for
i < D, the diameter of P* and thus we see that 4m + 4p(2, P¥) +p(3, P¥) is
least when k& = 1. From the proof of Corollary 2.3, W (u(G*))+W (u(GF)) <
W (u(T*)) + W (u(T*)) where T is a spanning tree of G. Hence, for n > 3,
we have W(u(GY)) + W(a(G)) < W (u(P¥) + W(u(EE) < W(u(Py)) +
W(u(P,)) = 8n% — 8n + 15. W (u(G)) + W (u(G) is minimum for graphs
with diameter at most two and for these graphs W(u(QG)) + W (u(G)) =
8n?+n—4(3) = 6n’+3n, and therefore, 6n*+3n < W (u(G*))+W (u(GF)) <
8n2 — 8n + 15. Zhang and Wu [15] presented the NG type inequality for the
Wiener number as given in Theorem 1.2. In our case, for Mycielski graphs
[V (u(@))| = 2n + 1. Thus the corresponding inequality of Zhang and Wu
[15] for graphs of order 2n + 1 is given by 6n2 + 3n < W(G) + W(G) <

w. We can easily see that our bound for W (u(G*)) + W (u(GF))

is better than the bound of Zhang and Wu for u(G*) as w -
(8n% —8n +15) > 0, n > 3.
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In a similar way, we might be tempted to obtain the NG type inequalities
for the following sums:

() W((G)F) + W(n(G)F),
(i) W (u(G)F) + W (u(G)"),
(i) W (u(GR)) + W (u(GF)),
(iv) W (u(GR) + W (u(@")).

Of these four, (i), (ii) and (iii) are uninteresting as G* is disconnected in

most of the choices for G while u(G)* (k > 2) is always disconnected (as u
becomes a universal vertex in (1(G))") and diameter of ;(G) and u(G) are
4 and 2 respectively. Thus NG type inequality seems interesting only for
(iv). For this, we need the following lemma due to Zhang and Wu [15].

Lemma 3.2. Let G be a connected graph with connected complement. Then
(1) if diam(G) > 3, then diam(G) = 2,

(2) if diam(G) = 3, then G has a spanning subgraph which is a double star
(see Figure 3.1).

Figure 3.1

Let G be a graph of order n > 5 with connected complement G. If diam(G)
= 2, we can observe the following.

(i) p(2,G) =p(1,G).

(ii) W(u(G)) = 6n*—n— 7(() —-p(2,G)) —4p(2,G) = 3n*+3n+3p(1,G).
(iit) W(p(@)+W(u(G)) = Fn’+3n—4p(1,G)~4p(2,G)—p(3,G). (3.1)
For k > 2, G'=B" = K,, which implies that (G ) w(Py, ) Therefore,

by virtue of Corollary 2.3, we get that W (u(G*))+W (u (Ek) W (u(PF)) +
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W(,u(P_nk)) for k > 2. The above inequality also holds for £ = 1. This could
be seen by arguments similar to those given in the proof of Theorem 2.2 and
Corollary 2.3. Thus we have,

Theorem 3.3. Let G be a connected graph of order n > 5 with connected

complement G. If diam(G) = 2, then W(M(Gk))—FW(u(@k)) < W(u(P¥)+
W ().

Lemma 3.4. Let G be a connected graph of order n > 5 with connected
complement G. Then W (u(G?)) + W(u(§2)) < W(u(P?)) + W(,u(P_nz))

Proof. As diam(P, = 2), by using Theorem 2.1,

=6n°—n— 7(3) = gn2+ gn
For n =5, W(u(P2)) =625—-5—-7(4+3)—4(2+1) = 84.
For n > 6, W(u(Py)) = 6n° —n—17p(1, Py) — 4p(2, P;) — p(3, P;)

=6n2—mn—14n+21—8n+28 — 2n + 11

= 6n% — 25n 4+ 60.
Hence, W (ju(P2)) + W (u(P5°)) = 159, and
— 17 45
(3.2)  W(u(P2)+W(uB,)) = 5’ = 5+ 60,for n > 6.

By virtue of Theorem 3.3, it is enough to consider the case when, diam(G) =
diam(G) = 3. For these G and G, p(1,G) = p(2,G) +p(3,G), p(1,G) =
p(2,G) +p(3,G) and p(1,G) + p(1,G) = (3). Now by Theorem 2.1,

W(u(G?)) = 6n* —n —Tp(1,G?) — 4p(2,G?)
=6n2 —n—"7(p(1,G) +p(2,G)) — 4p(3,G)
=6n> —n —7p(1,G) = 7(p(1, G) — p(3,G)) — 4p(3,G)
=6n*—n—"7(3) +3p(3,G).
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Thus, W (u(G?)) + W(u(@z)) =12n%2—2n— "%+ Tn+3(p(3,G) +p(3,Q)),
(3.3) W(u(G2)) + W (u(G?)) = 5n% + 5n + 3(p(3,G) + p(3,G)).

As diam(G) = diam(G) = 3, by Lemma 3.2 each of G and G contains a
double star, say, Sq, », and S, p, (see Figure 3.1) as spanning subgraphs of
G and G respectively. Hence p(3,G) < (a3 —1)(by — 1) = a;by — n+ 1 and
p(3,G) < (ag — 1)(by — 1) = agby — n + 1. Also, a;b; < L’Z—2J for i = 1,2.
Thus,

(3.4 W((G2) + W) < 5n* =+ 6] +56

It can be seen that 5n% —n + 6{%J +6 < n? — L+ 60, for n > 7. We
now consider the remaining cases, namely 5 and 6 separately.

Case (i). n =5.

When n = 5, by equations (3.2) and (3.3), W(u(G?)) + W(,u(§2)) =125+
25+ 3(p(3,G) +p(3,G)) < 162 and we have already seen that, W (u(P2)) +
W(M(EQ)) = 159. We show that W (u(G?)) + W(u(@z)) < 159. Suppose
W (u(G?)) + W(u(@2)) = 160, then p(3,G) + p(3,G) = %, which is a
contradiction. Similarly, we will have a contradiction when W (u(G?)) +
W (u(G”)) = 161. Finally, if W (1(G2)) + W (u(G?)) = 162; then, p(3,G) +
p(3,G) = 2 = 4. Since n = 5 and diam(G) = diam(G) = 3, p(3,G)
and p(3,G) cannot be greater than 2 and therefore p(3,G) = p(3,G) = 2.
There are only two graphs G of order 5 (see Figure 3.2) with the property
that n = 5, p(3,G) = 2. But for these two graphs p(3,G) = 0 which is a
contradiction.

5 5
G:o—o—oé o—o—A
1 2 3 1 2 3 4

5

3 1 4 2

N

\

w
—_
N
S}

Fig 3.2
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Case (ii). n = 6.
Here W(u(G2)) + W(u(G?) = 210 + 3(p(3,G) + p(3,G)) < 234 and
W (u(P2)) + W(u(P5)) = 231. Proving W (u(G2)) + W (u(G?)) < 231 is
similar to case(i). In this case the graphs with the required property are as
shown in Figure 3.3.

6 5 6 5 6 5

G :l_.éz M M

1 2 3 4 1 2 3 4 1 2 3 4

6 5 6 5 6 5
G

[ D [ D [ D

3 1 4 2 3 1 4 2 3 1 4 2

Fig 3.3
[ |

We now give the result for a general k.

Theorem 3.5. Let G be a connected graph of order n > 5 with connected
complement G. Then for any k > 1, 5n® + 5n < W (u(GF)) + W(M(Gk)) <

W(u(PE)) + W (u(Pn')) < W(n(P,) + W(u(Py)) = En? — Ln 4 15,

Proof. W(u(G*)) + W(,u(@k)) is minimum when G¥ and G are com-
plete. Thus 5n2 4 5n < W (u(G*)) + W(u(@k)) By equation 3.1 and argu-

ments similar to that in Theorem 2.2, W (1u(G)) + W(u(G)) < W (u(Py)) +
W (u(P,)). By virtue of Theorem 3.3 and Lemma 3.4, the only case left out

for the upper bound to be true is when diam(G) = diam(G) = 3 and k > 3.
In this case, G¥ = G = K, and we see that W (u(G¥)) is minimum for
G* = K,, and therefore W(u(Gk))—i-W(u(@k)) < W(/L(Pff))—l—W(u(P_nk)) <

W (u(Py)) + W (u(Py)) = ¥n? — Ln+ 15 (by using equation 3.1). |
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