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Abstract

The Wiener number of a graph G is defined as 1
2

∑

u,v∈V (G) d(u, v),
d the distance function on G. The Wiener number has important appli-
cations in chemistry. We determine a formula for the Wiener number of
an important graph family, namely, the Mycielskians µ(G) of graphs
G. Using this, we show that for k ≥ 1, W (µ(Sk

n)) ≤ W (µ(T k
n )) ≤

W (µ(P k
n )), where Sn, Tn and Pn denote a star, a general tree and

a path on n vertices respectively. We also obtain Nordhaus-Gaddum
type inequality for the Wiener number of µ(Gk).
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1. Introduction

Let G be a simple connected undirected graph with vertex set V (G) and
edge set E(G). Then G is of order |V (G)| and size |E(G)|. Given two
distinct vertices u, v of G, let d(u, v) denote the distance between u and v

(= number of edges in a shortest path between u and v in G). The Wiener
number (also called Wiener index) W (G) of the graph G is defined by

W (G) =
1

2

∑

a,b∈V (G)

d(a, b) =
D

∑

i=1

ip(i, G),
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where p(i, G) denotes the number of pairs of vertices which are at distance
i in G, and D is the diameter of G. The Wiener number is one of the oldest
molecular-graph based structure-descriptors, first proposed by the American
chemist Harold Wiener [13] as an aid to determine the boiling point of
paraffins. Some of the recent articles in this topic are ([1, 2, 3, 4, 5, 7] and
[14]).

In a search for triangle-free graphs with arbitrarily large chromatic
numbers, Mycielski [11] developed an interesting graph transformation as
follows. For a graph G = (V,E), the Mycielskian of G is the graph µ(G)
with vertex set V ∪ V ′ ∪ {u}, where V ′ = {x′ : x ∈ V } and is disjoint from
V , and edge set E ∪ {xy′ : xy ∈ E} ∪ {y′u : y′ ∈ V ′}. The vertex x′ is called
the twin of the vertex x (and x the twin of x′) and the vertex u is the root
of µ(G). In recent times, there has been an increasing interest in the study
of Mycielskians, especially, in the study of their circular chromatic numbers
(see, for instance, [9, 6, 8] and [10]).

Let H be a spanning connected subgraph of a (connected) graph G.
Then for any pair of vertices u, v of G, dG(u, v) ≤ dH(u, v). The k-th power
of a graph G, denoted by Gk, is the graph with the same vertex set as G

and in which two vertices are adjacent if and only if their distance in G is
at most k. Clearly, G1 = G.

The complement G of a graph G is the graph with the same vertex
set as G and in which two verties u, v are adjacent if and only if u, v are
non-adjacent in G. In 1956, Nordhaus and Gaddum [12] gave bounds for
the sum of the chromatic number χ(G) of a graph G and its complement G

as follows,

Theorem 1.1. For a graph G of order n, 2
√

n ≤ χ(G) + χ(G) ≤ n + 1.

Zhang and Wu [15] presented the corresponding Nordhaus-Gaddum (in short
NG) type inequality for the Wiener number as:

Theorem 1.2. Let G be a connected graph of order n ≥ 5 with connected

complement G. Then 3
(

n
2

)

≤ W (G) + W (G) ≤ n3+3n2+2n−6
6 .

The bounds in Theorem 1.2 are sharp.
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2. Wiener Number of the Mycielskian of a Graph

We start this section by obtaining a formula for the Wiener number of the
Mycielskian of a graph.

Theorem 2.1. The Wiener number of the Mycielskian of a connected graph

G of order n and size m is given by W (µ(G)) = 6n2 − n − 7m − 4p(2, G) −
p(3, G).

Proof. By definition,

W (µ(G)) = 1
2

∑

a,b∈V (µ(G))

d(a, b).

Hence W (µ(G)) =
∑

a=u,
b′
∈V ′

d(a, b′) +
∑

a=u,
b∈V

d(a, b) + 1
2

∑

a′,b′
∈V ′

d(a′, b′)

+ 1
2

∑

a,b∈V

d(a, b) +
∑

a∈V,
b′
∈V ′

d(a, b′)

=
∑

1 +
∑

2 +
∑

3 +
∑

4 +
∑

5 (say).

One can observe that,
∑

1 = n,
∑

2 = 2n,
∑

3 = 2
(

n
2

)

. As distance between

any pair of vertices in V is atmost 4 in µ(G),
∑

4 =
∑3

i=1 ip(i, G)+ 4
[(

n
2

)

−
∑3

i=1 p(i, G)
]

. Now the maximum distance from any vertex in V to any
vertex in V ′ is 3. Note that if ab ∈ E, then ab′, ba′ ∈ E(µ(G)), that is, each
edge of G will contribute two edges between V and V ′. Also for every a ∈ V ,
d(a, a′) = 2, and for every a, b ∈ V such that d(a, b) = 2, we have d(a, b′) =
d(b, a′) = 2. Thus

∑

5 = 2n + 2
∑2

i=1 ip(i, G) + 3
[

n2 − n − 2
∑2

i=1 p(i, G)
]

and therefore, W (µ(G)) = 6n2 − n − 7m − 4p(2, G) − p(3, G).

This formula comes in handy when finding the Wiener number of µ(G) for
which p(2, G) and p(3, G) are known even if the diameter of G is very large.

In [1], X. An et al. have shown that W (Sk
n) ≤ W (T k

n ) ≤ W (P k
n ), k ≥ 1

where Sn, Pn and Tn denotes a star, a path and a tree other than a star
and a path on n vertices. The formula mentioned in Theorem 2.1 helps
us in proving that W (µ(Sk

n)) ≤ W (µ(T k
n )) ≤ W (µ(P k

n )) for any k ≥ 1.
However, this cannot be deduced from X. An’s result mentioned above.
In fact, there are graphs G and H with same order and size such that
W (G) > W (H) and W (µ(G)) < W (µ(H)). For example, let G be C6 with
a pendant edge attached at a pair of opposite vertices and H be C7 with a
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single pendant edge, then W (G) = 62 and W (H) = 61 while W (µ(G)) = 273
and W (µ(H)) = 275.

Theorem 2.2. W (µ(Sk
n)) ≤ W (µ(T k

n )) ≤ W (µ(P k
n )), k ≥ 1.

Proof. By virtue of Theorem 2.1, the result in Theorem 2.2 is equivalent to
A = 7p(1, Sk

n)+4p(2, Sk
n)+p(3, Sk

n) ≥ B = 7p(1, T k
n )+4p(2, T k

n )+p(3, T k
n ) ≥

C = 7p(1, P k
n ) + 4p(2, P k

n ) + p(3, P k
n ).

We first prove that A ≥ B. If k ≥ 2, then Sk
n = Kn which implies

that p(1, Sk
n) =

(

n
2

)

≥ ∑3
i=1 p(i, T k

n ) and this inequality implies A ≥ B

(as 7 > 4 > 1). If k = 1, then diam(Sn) = 2 and D = diam(Tn) ≥ 2.
This gives, p(2, Sn) =

∑D
i=2 p(i, Tn), and therefore 7p(1, Sn) + 4p(2, Sn) ≥

7p(1, Tn) + 4p(2, Tn) + p(3, Tn). Once again, A ≥ B.

Next we prove that B ≥ C by induction on n. B ≥ C is obvious for
n ≤ 4. Let Tn be a tree of order n ≥ 5 and let Pn = vv1 · · · vn−1 be a path
of order n. Let P = uu1 . . . ud be a longest path of Tn (d < n− 1). u is then
a pendant vertex of Tn and Tn − {u} is a tree of order n − 1. By induction
hypothesis, B ≥ C for Tn − {u} and Pn − {v}. Let p(a, i,G) denote the
number of vertices in G that are at distance i from a. Clearly, p(i, T k

n ) =
p(i, T k

n − {u}) + p(u, i, T k
n ). So it is enough to prove that 7p(u, 1, T k

n ) +
4p(u, 2, T k

n ) + p(u, 3, T k
n ) ≥ 7p(v, 1, P k

n ) + 4p(v, 2, P k
n ) + p(v, 3, P k

n ).

We know that p(v, i, P k
n ) ≤ k for each i = 1 to D = diam(P k

n ). If there
are k vertices of P k in T k

n adjacent to u, then p(u, 1, T k
n ) ≥ p(v, 1, P k

n ). If
not, u will be a universal vertex of T k

n (that is, a vertex adjacent to all the
other vertices of T k

n ). Thus in any case, p(u, 1, T k
n ) ≥ p(v, 1, P k

n ).

If p(u, 2, T k
n ) < p(v, 2, P k

n ) ≤ k, then diam(T k
n ) ≤ 2 (This is because if

diam(T k
n ) > 2, then along the longest path in T k

n , there will be k vertices
which would be at distance 2 from u which is a contradiction). This gives
p(u, 1, T k

n ) + p(u, 2, T k
n ) = (n − 1) ≥ p(v, 1, P k

n ) + p(v, 2, P k
n ) + p(v, 3, P k

n ),
and as 7 > 4 > 1, 7p(u, 1, T k

n ) + 4p(u, 2, T k
n ) ≥ 7p(v, 1, P k

n ) + 4p(v, 2, P k
n ) +

p(v, 3, P k
n ).

Next if, p(u, 2, T k
n ) ≥ p(v, 2, P k

n ) and p(u, 3, T k
n ) ≥ p(v, 3, P k

n ) then
clearly, B ≥ C. Otherwise, diam(T k

n ) ≤ 3, (Same argument as above) which
shows that p(u, 1, T k

n ) + p(u, 2, T k
n ) + p(u, 3, T k

n ) = (n − 1) ≥ p(v, 1, P k
n ) +

p(v, 2, P k
n ) + p(v, 3, P k

n ) and hence 7p(u, 1, T k
n ) + 4p(u, 2, T k

n ) + p(u, 3, T k
n ) ≥

7p(v, 1, P k
n ) + 4p(v, 2, P k

n ) + p(v, 3, P k
n ).

It can easily be seen from the proof of Theorem 2.2 that when k = 1, we
have strict inequality for n ≥ 5.
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Corollary 2.3. If G is a connected graph of order n, then W (µ(Gk)) ≤
W (µ(P k

n )).

Proof. Let T be a spanning tree of G. In view of Theorem 2.2, it suffices
to prove that W (µ(Gk)) ≤ W (µ(T k)). Any pair of vertices of T k at distance
i will be at distance at most i in Gk. Therefore, 7p(1, Gk) + 4p(2, Gk) +
p(3, Gk) ≥ 7p(1, T k)+4p(2, T k)+ p(3, T k). Thus W (µ(Gk)) ≤ W (µ(P k

n )).

3. NG Type Results for the Wiener Number of Mycielski

Graphs and Their Powers

When G (of order n and size m) has no isolated vertices, µ(G) is connected
while µ(G) is connected always. It is easy to see that the diameter of µ(G)
is 2 and one can establish that W (µ(G)) = 2n2 + 2n + 3m.

This shows that W (µ(G))+W (µ(G)) = 8n2+n−4m−4p(2, G)−p(3, G).

As in the proof of Theorem 2.2, one can prove the following.

Theorem 3.1. W (µ(Sk
n)) + W (µ(Sk

n)) ≤ W (µ(T k
n )) + W (µ(T k

n )) ≤
W (µ(P k

n )) + W (µ(P k
n )) for any k ≥ 1.

Now W (µ(G))+W (µ(G)) is maximum, when 4m+4p(2, G)+p(3, G) is least.
As W (P k

n ) =
∑n−1

i=1 d i
k
e(n−i) (see [1]), p(i, P k

n ) =
∑k

j=1{n−(k(i−1)+j)} for

i < D, the diameter of P k
n and thus we see that 4m+4p(2, P k

n )+ p(3, P k
n ) is

least when k = 1. From the proof of Corollary 2.3, W (µ(Gk))+W (µ(Gk)) ≤
W (µ(T k)) + W (µ(T k)) where T is a spanning tree of G. Hence, for n ≥ 3,

we have W (µ(Gk)) + W (µ(Gk)) ≤ W (µ(P k
n )) + W (µ(P k

n )) ≤ W (µ(Pn)) +
W (µ(Pn)) = 8n2 − 8n + 15. W (µ(G)) + W (µ(G) is minimum for graphs
with diameter at most two and for these graphs W (µ(G)) + W (µ(G)) =

8n2+n−4
(

n
2

)

= 6n2+3n, and therefore, 6n2+3n ≤ W (µ(Gk))+W (µ(Gk)) ≤
8n2 − 8n + 15. Zhang and Wu [15] presented the NG type inequality for the
Wiener number as given in Theorem 1.2. In our case, for Mycielski graphs
|V (µ(G))| = 2n + 1. Thus the corresponding inequality of Zhang and Wu
[15] for graphs of order 2n + 1 is given by 6n2 + 3n ≤ W (G) + W (G) ≤
8n3+24n2+22n

6 . We can easily see that our bound for W (µ(Gk)) + W (µ(Gk))

is better than the bound of Zhang and Wu for µ(Gk) as 8n3+24n2+22n
6 −

(8n2 − 8n + 15) > 0, n ≥ 3.
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In a similar way, we might be tempted to obtain the NG type inequalities
for the following sums:

(i) W (µ(G)k) + W (µ(G)k),

(ii) W (µ(G)k) + W (µ(G)
k
),

(iii) W (µ(Gk)) + W (µ(Gk)),

(iv) W (µ(Gk)) + W (µ(G
k
)).

Of these four, (i), (ii) and (iii) are uninteresting as Gk is disconnected in

most of the choices for G while µ(G)k (k ≥ 2) is always disconnected (as u

becomes a universal vertex in (µ(G))k) and diameter of µ(G) and µ(G) are
4 and 2 respectively. Thus NG type inequality seems interesting only for
(iv). For this, we need the following lemma due to Zhang and Wu [15].

Lemma 3.2. Let G be a connected graph with connected complement. Then

(1) if diam(G) > 3, then diam(G) = 2,

(2) if diam(G) = 3, then G has a spanning subgraph which is a double star

(see Figure 3.1).

Sa,b

Figure 3.1

Let G be a graph of order n ≥ 5 with connected complement G. If diam(G)
= 2, we can observe the following.

(i) p(2, G) = p(1, G).

(ii) W (µ(G)) = 6n2−n−7
((

n
2

)

−p(2, G)
)

−4p(2, G) = 5
2n2 + 5

2n+3p(1, G).

(iii) W (µ(G))+W (µ(G)) = 17
2 n2+ 3

2n−4p(1, G)−4p(2, G)−p(3, G). (3.1)

For k ≥ 2, G
k

= Pn
k

= Kn which implies that µ(G
k
) = µ(Pn

k
). Therefore,

by virtue of Corollary 2.3, we get that W (µ(Gk))+W (µ(G
k
) ≤ W (µ(P k

n ))+
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W (µ(Pn
k
)) for k ≥ 2. The above inequality also holds for k = 1. This could

be seen by arguments similar to those given in the proof of Theorem 2.2 and
Corollary 2.3. Thus we have,

Theorem 3.3. Let G be a connected graph of order n ≥ 5 with connected

complement G. If diam(G) = 2, then W (µ(Gk))+W (µ(G
k
)) ≤ W (µ(P k

n ))+

W (µ(Pn
k
)).

Lemma 3.4. Let G be a connected graph of order n ≥ 5 with connected

complement G. Then W (µ(G2)) + W (µ(G
2
)) ≤ W (µ(P 2

n)) + W (µ(Pn
2
)).

Proof. As diam(Pn = 2), by using Theorem 2.1,

W (µ(Pn
2
)) = 6n2 − n − 7p(1, Pn

2
)

= 6n2 − n − 7
(

n
2

)

= 5
2n2 + 5

2n.

For n = 5, W (µ(P 2
5 )) = 6.25 − 5 − 7(4 + 3) − 4(2 + 1) = 84.

For n ≥ 6, W (µ(P 2
n)) = 6n2 − n − 7p(1, P 2

n ) − 4p(2, P 2
n ) − p(3, P 2

n )

= 6n2 − n − 14n + 21 − 8n + 28 − 2n + 11

= 6n2 − 25n + 60.

Hence, W (µ(P 2
5 )) + W (µ(P5

2
)) = 159, and

(3.2) W (µ(P 2
n)) + W (µ(Pn

2
)) =

17

2
n2 − 45

2
n + 60, for n ≥ 6.

By virtue of Theorem 3.3, it is enough to consider the case when, diam(G) =
diam(G) = 3. For these G and G, p(1, G) = p(2, G) + p(3, G), p(1, G) =
p(2, G) + p(3, G) and p(1, G) + p(1, G) =

(

n
2

)

. Now by Theorem 2.1,

W (µ(G2)) = 6n2 − n − 7p(1, G2) − 4p(2, G2)

= 6n2 − n − 7(p(1, G) + p(2, G)) − 4p(3, G)

= 6n2 − n − 7p(1, G) − 7(p(1, G) − p(3, G)) − 4p(3, G)

= 6n2 − n − 7
(

n
2

)

+ 3p(3, G).
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Thus, W (µ(G2))+W (µ(G
2
)) = 12n2 − 2n− 7n2 +7n+3(p(3, G)+ p(3, G)),

(3.3) W (µ(G2)) + W (µ(G
2
)) = 5n2 + 5n + 3(p(3, G) + p(3, G)).

As diam(G) = diam(G) = 3, by Lemma 3.2 each of G and G contains a
double star, say, Sa1,b1 and Sa2,b2 (see Figure 3.1) as spanning subgraphs of
G and G respectively. Hence p(3, G) ≤ (a1 − 1)(b1 − 1) = a1b1 − n + 1 and

p(3, G) ≤ (a2 − 1)(b2 − 1) = a2b2 − n + 1. Also, aibi ≤ bn2

4 c for i = 1, 2.
Thus,

(3.4) W (µ(G2)) + W (µ(G
2
)) ≤ 5n2 − n + 6bn2

4
c + 6.

It can be seen that 5n2 − n + 6bn2

4 c + 6 < 17
2 n2 − 45

2 n + 60, for n ≥ 7. We
now consider the remaining cases, namely 5 and 6 separately.

Case (i). n = 5.

When n = 5, by equations (3.2) and (3.3), W (µ(G2)) + W (µ(G
2
)) = 125 +

25 + 3(p(3, G) + p(3, G)) ≤ 162 and we have already seen that, W (µ(P 2
5 )) +

W (µ(P5
2
)) = 159. We show that W (µ(G2)) + W (µ(G

2
)) ≤ 159. Suppose

W (µ(G2)) + W (µ(G
2
)) = 160, then p(3, G) + p(3, G) = 10

3 , which is a
contradiction. Similarly, we will have a contradiction when W (µ(G2)) +

W (µ(G
2
)) = 161. Finally, if W (µ(G2)) + W (µ(G

2
)) = 162; then, p(3, G) +

p(3, G) = 12
3 = 4. Since n = 5 and diam(G) = diam(G) = 3, p(3, G)

and p(3, G) cannot be greater than 2 and therefore p(3, G) = p(3, G) = 2.
There are only two graphs G of order 5 (see Figure 3.2) with the property
that n = 5, p(3, G) = 2. But for these two graphs p(3, G) = 0 which is a
contradiction.
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Case (ii). n = 6.

Here W (µ(G2)) + W (µ(G
2
)) = 210 + 3(p(3, G) + p(3, G)) ≤ 234 and

W (µ(P 2
5 )) + W (µ(P5

2
)) = 231. Proving W (µ(G2)) + W (µ(G

2
)) ≤ 231 is

similar to case(i). In this case the graphs with the required property are as
shown in Figure 3.3.

We now give the result for a general k.

Theorem 3.5. Let G be a connected graph of order n ≥ 5 with connected

complement G. Then for any k ≥ 1, 5n2 + 5n ≤ W (µ(Gk)) + W (µ(G
k
)) ≤

W (µ(P k
n )) + W (µ(Pn

k
)) ≤ W (µ(Pn)) + W (µ(Pn)) = 17

2 n2 − 15
2 n + 15.

Proof. W (µ(Gk)) + W (µ(G
k
)) is minimum when Gk and G

k
are com-

plete. Thus 5n2 + 5n ≤ W (µ(Gk)) + W (µ(G
k
)). By equation 3.1 and argu-

ments similar to that in Theorem 2.2, W (µ(G)) + W (µ(G)) ≤ W (µ(Pn)) +
W (µ(Pn)). By virtue of Theorem 3.3 and Lemma 3.4, the only case left out
for the upper bound to be true is when diam(G) = diam(G) = 3 and k ≥ 3.

In this case, Gk = G
k

= Kn and we see that W (µ(Gk)) is minimum for

Gk = Kn and therefore W (µ(Gk))+W (µ(G
k
)) ≤ W (µ(P k

n ))+W (µ(Pn
k
)) ≤

W (µ(Pn)) + W (µ(Pn)) = 17
2 n2 − 15

2 n + 15 (by using equation 3.1).
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