THE WIENER NUMBER OF POWERS OF THE MYCIELSKIAN

Rangaswami Balakrishnan and S. Francis Raj
Srinivasa Ramanujan Centre
SASTRA University
Kumbakonam-612 001, India
e-mail: mathbala@satyam.net.in
e-mail: francisraj_@yahoo.com

Abstract

The Wiener number of a graph G is defined as $\frac{1}{2} \sum_{u, v \in V(G)} d(u, v)$, d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians $\mu(G)$ of graphs G. Using this, we show that for $k \geq 1, W\left(\mu\left(S_{n}^{k}\right)\right) \leq W\left(\mu\left(T_{n}^{k}\right)\right) \leq$ $W\left(\mu\left(P_{n}^{k}\right)\right)$, where S_{n}, T_{n} and P_{n} denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of $\mu\left(G^{k}\right)$.

Keywords: Wiener number, Mycielskian, powers of a graph.
2010 Mathematics Subject Classification: 05C12.

1. Introduction

Let G be a simple connected undirected graph with vertex set $V(G)$ and edge set $E(G)$. Then G is of order $|V(G)|$ and size $|E(G)|$. Given two distinct vertices u, v of G, let $d(u, v)$ denote the distance between u and v (= number of edges in a shortest path between u and v in G). The Wiener number (also called Wiener index) $W(G)$ of the graph G is defined by

$$
W(G)=\frac{1}{2} \sum_{a, b \in V(G)} d(a, b)=\sum_{i=1}^{D} i p(i, G),
$$

where $p(i, G)$ denotes the number of pairs of vertices which are at distance i in G, and D is the diameter of G. The Wiener number is one of the oldest molecular-graph based structure-descriptors, first proposed by the American chemist Harold Wiener [13] as an aid to determine the boiling point of paraffins. Some of the recent articles in this topic are ($[1,2,3,4,5,7]$ and [14]).

In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski [11] developed an interesting graph transformation as follows. For a graph $G=(V, E)$, the Mycielskian of G is the graph $\mu(G)$ with vertex set $V \cup V^{\prime} \cup\{u\}$, where $V^{\prime}=\left\{x^{\prime}: x \in V\right\}$ and is disjoint from V, and edge set $E \cup\left\{x y^{\prime}: x y \in E\right\} \cup\left\{y^{\prime} u: y^{\prime} \in V^{\prime}\right\}$. The vertex x^{\prime} is called the twin of the vertex x (and x the twin of x^{\prime}) and the vertex u is the root of $\mu(G)$. In recent times, there has been an increasing interest in the study of Mycielskians, especially, in the study of their circular chromatic numbers (see, for instance, $[9,6,8]$ and [10]).

Let H be a spanning connected subgraph of a (connected) graph G. Then for any pair of vertices u, v of $G, d_{G}(u, v) \leq d_{H}(u, v)$. The k-th power of a graph G, denoted by G^{k}, is the graph with the same vertex set as G and in which two vertices are adjacent if and only if their distance in G is at most k. Clearly, $G^{1}=G$.

The complement \bar{G} of a graph G is the graph with the same vertex set as G and in which two verties u, v are adjacent if and only if u, v are non-adjacent in G. In 1956, Nordhaus and Gaddum [12] gave bounds for the sum of the chromatic number $\chi(G)$ of a graph G and its complement \bar{G} as follows,

Theorem 1.1. For a graph G of order $n, 2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1$.

Zhang and Wu [15] presented the corresponding Nordhaus-Gaddum (in short NG) type inequality for the Wiener number as:

Theorem 1.2. Let G be a connected graph of order $n \geq 5$ with connected complement \bar{G}. Then $3\binom{n}{2} \leq W(G)+W(\bar{G}) \leq \frac{n^{3}+3 n^{2}+2 n-6}{6}$.

The bounds in Theorem 1.2 are sharp.

2. Wiener Number of the Mycielskian of a Graph

We start this section by obtaining a formula for the Wiener number of the Mycielskian of a graph.

Theorem 2.1. The Wiener number of the Mycielskian of a connected graph G of order n and size m is given by $W(\mu(G))=6 n^{2}-n-7 m-4 p(2, G)-$ $p(3, G)$.

Proof. By definition,

$$
W(\mu(G))=\frac{1}{2} \sum_{a, b \in V(\mu(G))} d(a, b) .
$$

Hence $W(\mu(G))=\sum_{\substack{a=u, b^{\prime} \in V^{\prime}}} d\left(a, b^{\prime}\right)+\sum_{\substack{a=u, b \in V}} d(a, b)+\frac{1}{2} \sum_{a^{\prime}, b^{\prime} \in V^{\prime}} d\left(a^{\prime}, b^{\prime}\right)$

$$
+\frac{1}{2} \sum_{a, b \in V} d(a, b)+\sum_{\substack{a \in V, b^{\prime} \in V^{\prime}}} d\left(a, b^{\prime}\right)
$$

$$
=\sum_{1}+\sum_{2}+\sum_{3}+\sum_{4}+\sum_{5}(\text { say })
$$

One can observe that, $\sum_{1}=n, \sum_{2}=2 n, \sum_{3}=2\binom{n}{2}$. As distance between any pair of vertices in V is atmost 4 in $\mu(G), \sum_{4}=\sum_{i=1}^{3} i p(i, G)+4\left[\begin{array}{c}n \\ 2\end{array}\right)-$ $\left.\sum_{i=1}^{3} p(i, G)\right]$. Now the maximum distance from any vertex in V to any vertex in V^{\prime} is 3 . Note that if $a b \in E$, then $a b^{\prime}, b a^{\prime} \in E(\mu(G))$, that is, each edge of G will contribute two edges between V and V^{\prime}. Also for every $a \in V$, $d\left(a, a^{\prime}\right)=2$, and for every $a, b \in V$ such that $d(a, b)=2$, we have $d\left(a, b^{\prime}\right)=$ $d\left(b, a^{\prime}\right)=2$. Thus $\sum_{5}=2 n+2 \sum_{i=1}^{2} i p(i, G)+3\left[n^{2}-n-2 \sum_{i=1}^{2} p(i, G)\right]$ and therefore, $W(\mu(G))=6 n^{2}-n-7 m-4 p(2, G)-p(3, G)$.
This formula comes in handy when finding the Wiener number of $\mu(G)$ for which $p(2, G)$ and $p(3, G)$ are known even if the diameter of G is very large.

In [1], X. An et al. have shown that $W\left(S_{n}^{k}\right) \leq W\left(T_{n}^{k}\right) \leq W\left(P_{n}^{k}\right), k \geq 1$ where S_{n}, P_{n} and T_{n} denotes a star, a path and a tree other than a star and a path on n vertices. The formula mentioned in Theorem 2.1 helps us in proving that $W\left(\mu\left(S_{n}^{k}\right)\right) \leq W\left(\mu\left(T_{n}^{k}\right)\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right)$ for any $k \geq 1$. However, this cannot be deduced from X. An's result mentioned above. In fact, there are graphs G and H with same order and size such that $W(G)>W(H)$ and $W(\mu(G))<W(\mu(H))$. For example, let G be C_{6} with a pendant edge attached at a pair of opposite vertices and H be C_{7} with a
single pendant edge, then $W(G)=62$ and $W(H)=61$ while $W(\mu(G))=273$ and $W(\mu(H))=275$.

Theorem 2.2. $W\left(\mu\left(S_{n}^{k}\right)\right) \leq W\left(\mu\left(T_{n}^{k}\right)\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right), k \geq 1$.
Proof. By virtue of Theorem 2.1, the result in Theorem 2.2 is equivalent to $A=7 p\left(1, S_{n}^{k}\right)+4 p\left(2, S_{n}^{k}\right)+p\left(3, S_{n}^{k}\right) \geq B=7 p\left(1, T_{n}^{k}\right)+4 p\left(2, T_{n}^{k}\right)+p\left(3, T_{n}^{k}\right) \geq$ $C=7 p\left(1, P_{n}^{k}\right)+4 p\left(2, P_{n}^{k}\right)+p\left(3, P_{n}^{k}\right)$.

We first prove that $A \geq B$. If $k \geq 2$, then $S_{n}^{k}=K_{n}$ which implies that $p\left(1, S_{n}^{k}\right)=\binom{n}{2} \geq \sum_{i=1}^{3} p\left(i, T_{n}^{k}\right)$ and this inequality implies $A \geq B$ (as $7>4>1$). If $k=1$, then $\operatorname{diam}\left(S_{n}\right)=2$ and $D=\operatorname{diam}\left(T_{n}\right) \geq 2$. This gives, $p\left(2, S_{n}\right)=\sum_{i=2}^{D} p\left(i, T_{n}\right)$, and therefore $7 p\left(1, S_{n}\right)+4 p\left(2, S_{n}\right) \geq$ $7 p\left(1, T_{n}\right)+4 p\left(2, T_{n}\right)+p\left(3, T_{n}\right)$. Once again, $A \geq B$.

Next we prove that $B \geq C$ by induction on $n . B \geq C$ is obvious for $n \leq 4$. Let T_{n} be a tree of order $n \geq 5$ and let $P_{n}=v v_{1} \cdots v_{n-1}$ be a path of order n. Let $P=u u_{1} \ldots u_{d}$ be a longest path of $T_{n}(d<n-1) . u$ is then a pendant vertex of T_{n} and $T_{n}-\{u\}$ is a tree of order $n-1$. By induction hypothesis, $B \geq C$ for $T_{n}-\{u\}$ and $P_{n}-\{v\}$. Let $p(a, i, G)$ denote the number of vertices in G that are at distance i from a. Clearly, $p\left(i, T_{n}^{k}\right)=$ $p\left(i, T_{n}^{k}-\{u\}\right)+p\left(u, i, T_{n}^{k}\right)$. So it is enough to prove that $7 p\left(u, 1, T_{n}^{k}\right)+$ $4 p\left(u, 2, T_{n}^{k}\right)+p\left(u, 3, T_{n}^{k}\right) \geq 7 p\left(v, 1, P_{n}^{k}\right)+4 p\left(v, 2, P_{n}^{k}\right)+p\left(v, 3, P_{n}^{k}\right)$.

We know that $p\left(v, i, P_{n}^{k}\right) \leq k$ for each $i=1$ to $D=\operatorname{diam}\left(P_{n}^{k}\right)$. If there are k vertices of P^{k} in T_{n}^{k} adjacent to u, then $p\left(u, 1, T_{n}^{k}\right) \geq p\left(v, 1, P_{n}^{k}\right)$. If not, u will be a universal vertex of T_{n}^{k} (that is, a vertex adjacent to all the other vertices of T_{n}^{k}). Thus in any case, $p\left(u, 1, T_{n}^{k}\right) \geq p\left(v, 1, P_{n}^{k}\right)$.

If $p\left(u, 2, T_{n}^{k}\right)<p\left(v, 2, P_{n}^{k}\right) \leq k$, then $\operatorname{diam}\left(T_{n}^{k}\right) \leq 2$ (This is because if $\operatorname{diam}\left(T_{n}^{k}\right)>2$, then along the longest path in T_{n}^{k}, there will be k vertices which would be at distance 2 from u which is a contradiction). This gives $p\left(u, 1, T_{n}^{k}\right)+p\left(u, 2, T_{n}^{k}\right)=(n-1) \geq p\left(v, 1, P_{n}^{k}\right)+p\left(v, 2, P_{n}^{k}\right)+p\left(v, 3, P_{n}^{k}\right)$, and as $7>4>1,7 p\left(u, 1, T_{n}^{k}\right)+4 p\left(u, 2, T_{n}^{k}\right) \geq 7 p\left(v, 1, P_{n}^{k}\right)+4 p\left(v, 2, P_{n}^{k}\right)+$ $p\left(v, 3, P_{n}^{k}\right)$.

Next if, $p\left(u, 2, T_{n}^{k}\right) \geq p\left(v, 2, P_{n}^{k}\right)$ and $p\left(u, 3, T_{n}^{k}\right) \geq p\left(v, 3, P_{n}^{k}\right)$ then clearly, $B \geq C$. Otherwise, $\operatorname{diam}\left(T_{n}^{k}\right) \leq 3$, (Same argument as above) which shows that $p\left(u, 1, T_{n}^{k}\right)+p\left(u, 2, T_{n}^{k}\right)+p\left(u, 3, T_{n}^{k}\right)=(n-1) \geq p\left(v, 1, P_{n}^{k}\right)+$ $p\left(v, 2, P_{n}^{k}\right)+p\left(v, 3, P_{n}^{k}\right)$ and hence $7 p\left(u, 1, T_{n}^{k}\right)+4 p\left(u, 2, T_{n}^{k}\right)+p\left(u, 3, T_{n}^{k}\right) \geq$ $7 p\left(v, 1, P_{n}^{k}\right)+4 p\left(v, 2, P_{n}^{k}\right)+p\left(v, 3, P_{n}^{k}\right)$.
It can easily be seen from the proof of Theorem 2.2 that when $k=1$, we have strict inequality for $n \geq 5$.

Corollary 2.3. If G is a connected graph of order n, then $W\left(\mu\left(G^{k}\right)\right) \leq$ $W\left(\mu\left(P_{n}^{k}\right)\right)$.

Proof. Let T be a spanning tree of G. In view of Theorem 2.2 , it suffices to prove that $W\left(\mu\left(G^{k}\right)\right) \leq W\left(\mu\left(T^{k}\right)\right)$. Any pair of vertices of T^{k} at distance i will be at distance at most i in G^{k}. Therefore, $7 p\left(1, G^{k}\right)+4 p\left(2, G^{k}\right)+$ $p\left(3, G^{k}\right) \geq 7 p\left(1, T^{k}\right)+4 p\left(2, T^{k}\right)+p\left(3, T^{k}\right)$. Thus $W\left(\mu\left(G^{k}\right)\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right)$.

3. NG Type Results for the Wiener Number of Mycielski Graphs and Their Powers

When G (of order n and size m) has no isolated vertices, $\mu(G)$ is connected while $\overline{\mu(G)}$ is connected always. It is easy to see that the diameter of $\overline{\mu(G)}$ is 2 and one can establish that $W(\overline{\mu(G)})=2 n^{2}+2 n+3 m$.

This shows that $W(\mu(G))+W(\overline{\mu(G)})=8 n^{2}+n-4 m-4 p(2, G)-p(3, G)$. As in the proof of Theorem 2.2, one can prove the following.

Theorem 3.1. $W\left(\mu\left(S_{n}^{k}\right)\right)+W\left(\overline{\mu\left(S_{n}^{k}\right)}\right) \leq W\left(\mu\left(T_{n}^{k}\right)\right)+W\left(\overline{\mu\left(T_{n}^{k}\right)}\right) \leq$ $W\left(\mu\left(P_{n}^{k}\right)\right)+W\left(\overline{\mu\left(P_{n}^{k}\right)}\right)$ for any $k \geq 1$.

Now $W(\mu(G))+W(\overline{\mu(G)})$ is maximum, when $4 m+4 p(2, G)+p(3, G)$ is least. As $W\left(P_{n}^{k}\right)=\sum_{i=1}^{n-1}\left\lceil\frac{i}{k}\right\rceil(n-i)($ see $[1]), p\left(i, P_{n}^{k}\right)=\sum_{j=1}^{k}\{n-(k(i-1)+j)\}$ for $i<D$, the diameter of P_{n}^{k} and thus we see that $4 m+4 p\left(2, P_{n}^{k}\right)+p\left(3, P_{n}^{k}\right)$ is least when $k=1$. From the proof of Corollary 2.3, $W\left(\mu\left(G^{k}\right)\right)+W\left(\overline{\mu\left(G^{k}\right)}\right) \leq$ $W\left(\mu\left(T^{k}\right)\right)+W\left(\overline{\mu\left(T^{k}\right)}\right)$ where T is a spanning tree of G. Hence, for $n \geq 3$, we have $W\left(\mu\left(G^{k}\right)\right)+W\left(\overline{\mu\left(G^{k}\right)}\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right)+W\left(\overline{\mu\left(P_{n}^{k}\right)}\right) \leq W\left(\mu\left(P_{n}\right)\right)+$ $W\left(\overline{\mu\left(P_{n}\right)}\right)=8 n^{2}-8 n+15 . W(\mu(G))+W(\overline{\mu(G)}$ is minimum for graphs with diameter at most two and for these graphs $W(\mu(G))+W(\overline{\mu(G)})=$ $8 n^{2}+n-4\binom{n}{2}=6 n^{2}+3 n$, and therefore, $6 n^{2}+3 n \leq W\left(\mu\left(G^{k}\right)\right)+W\left(\overline{\mu\left(G^{k}\right)}\right) \leq$ $8 n^{2}-8 n+15$. Zhang and Wu [15] presented the NG type inequality for the Wiener number as given in Theorem 1.2. In our case, for Mycielski graphs $|V(\mu(G))|=2 n+1$. Thus the corresponding inequality of Zhang and Wu [15] for graphs of order $2 n+1$ is given by $6 n^{2}+3 n \leq W(G)+W(\bar{G}) \leq$ $\frac{8 n^{3}+24 n^{2}+22 n}{6}$. We can easily see that our bound for $W\left(\mu\left(G^{k}\right)\right)+W\left(\overline{\mu\left(G^{k}\right)}\right)$ is better than the bound of Zhang and Wu for $\mu\left(G^{k}\right)$ as $\frac{8 n^{3}+24 n^{2}+22 n}{6}-$ $\left(8 n^{2}-8 n+15\right)>0, n \geq 3$.

In a similar way, we might be tempted to obtain the NG type inequalities for the following sums:
(i) $W\left(\mu(G)^{k}\right)+W\left(\overline{\mu(G)^{k}}\right)$,
(ii) $W\left(\mu(G)^{k}\right)+W\left(\overline{\mu(G)}^{k}\right)$,
(iii) $W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\overline{G^{k}}\right)\right)$,
(iv) $W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right)\right)$.

Of these four, (i), (ii) and (iii) are uninteresting as $\overline{G^{k}}$ is disconnected in most of the choices for G while $\overline{\mu(G)^{k}}(k \geq 2$) is always disconnected (as u becomes a universal vertex in $\left.(\mu(G))^{k}\right)$ and diameter of $\mu(G)$ and $\overline{\mu(G)}$ are 4 and 2 respectively. Thus NG type inequality seems interesting only for (iv). For this, we need the following lemma due to Zhang and Wu [15].

Lemma 3.2. Let G be a connected graph with connected complement. Then
(1) if $\operatorname{diam}(G)>3$, then $\operatorname{diam}(\bar{G})=2$,
(2) if $\operatorname{diam}(G)=3$, then \bar{G} has a spanning subgraph which is a double star (see Figure 3.1).

Figure 3.1
Let G be a graph of order $n \geq 5$ with connected complement \bar{G}. If $\operatorname{diam}(\bar{G})$ $=2$, we can observe the following.
(i) $p(2, \bar{G})=p(1, G)$.
(ii) $W(\mu(\bar{G}))=6 n^{2}-n-7\left(\binom{n}{2}-p(2, \bar{G})\right)-4 p(2, \bar{G})=\frac{5}{2} n^{2}+\frac{5}{2} n+3 p(1, G)$.
(iii) $W(\mu(G))+W(\mu(\bar{G}))=\frac{17}{2} n^{2}+\frac{3}{2} n-4 p(1, G)-4 p(2, G)-p(3, G)$.

For $k \geq 2, \bar{G}^{k}={\overline{P_{n}}}^{k}=K_{n}$ which implies that $\mu\left(\bar{G}^{k}\right)=\mu\left({\overline{P_{n}}}^{k}\right)$. Therefore, by virtue of Corollary 2.3, we get that $W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right)+\right.$
$W\left(\mu\left({\overline{P_{n}}}^{k}\right)\right)$ for $k \geq 2$. The above inequality also holds for $k=1$. This could be seen by arguments similar to those given in the proof of Theorem 2.2 and Corollary 2.3. Thus we have,

Theorem 3.3. Let G be a connected graph of order $n \geq 5$ with connected complement \bar{G}. If $\operatorname{diam}(\bar{G})=2$, then $W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right)\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right)+$ $W\left(\mu\left({\overline{P_{n}}}^{k}\right)\right)$.

Lemma 3.4. Let G be a connected graph of order $n \geq 5$ with connected complement \bar{G}. Then $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right) \leq W\left(\mu\left(P_{n}^{2}\right)\right)+W\left(\mu\left({\overline{P_{n}}}^{2}\right)\right)$.

Proof. As $\operatorname{diam}\left(\overline{P_{n}}=2\right)$, by using Theorem 2.1,

$$
\begin{aligned}
W\left(\mu\left({\overline{P_{n}}}^{2}\right)\right) & =6 n^{2}-n-7 p\left(1,{\overline{P_{n}}}^{2}\right) \\
& =6 n^{2}-n-7\binom{n}{2}=\frac{5}{2} n^{2}+\frac{5}{2} n
\end{aligned}
$$

For $n=5, W\left(\mu\left(P_{5}^{2}\right)\right)=6.25-5-7(4+3)-4(2+1)=84$.
For $n \geq 6, W\left(\mu\left(P_{n}^{2}\right)\right)=6 n^{2}-n-7 p\left(1, P_{n}^{2}\right)-4 p\left(2, P_{n}^{2}\right)-p\left(3, P_{n}^{2}\right)$

$$
\begin{aligned}
& =6 n^{2}-n-14 n+21-8 n+28-2 n+11 \\
& =6 n^{2}-25 n+60
\end{aligned}
$$

Hence, $W\left(\mu\left(P_{5}^{2}\right)\right)+W\left(\mu\left({\overline{P_{5}}}^{2}\right)\right)=159$, and

$$
\begin{equation*}
W\left(\mu\left(P_{n}^{2}\right)\right)+W\left(\mu\left({\overline{P_{n}}}^{2}\right)\right)=\frac{17}{2} n^{2}-\frac{45}{2} n+60, \text { for } n \geq 6 . \tag{3.2}
\end{equation*}
$$

By virtue of Theorem 3.3, it is enough to consider the case when, $\operatorname{diam}(G)=$ $\operatorname{diam}(\bar{G})=3$. For these G and $\bar{G}, p(1, G)=p(2, \bar{G})+p(3, \bar{G}), p(1, \bar{G})=$ $p(2, G)+p(3, G)$ and $p(1, G)+p(1, \bar{G})=\binom{n}{2}$. Now by Theorem 2.1,

$$
\begin{aligned}
W\left(\mu\left(G^{2}\right)\right) & =6 n^{2}-n-7 p\left(1, G^{2}\right)-4 p\left(2, G^{2}\right) \\
& =6 n^{2}-n-7(p(1, G)+p(2, G))-4 p(3, G) \\
& =6 n^{2}-n-7 p(1, G)-7(p(1, \bar{G})-p(3, G))-4 p(3, G) \\
& =6 n^{2}-n-7\binom{n}{2}+3 p(3, G)
\end{aligned}
$$

Thus, $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right)=12 n^{2}-2 n-7 n^{2}+7 n+3(p(3, G)+p(3, \bar{G}))$,

$$
\begin{equation*}
W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right)=5 n^{2}+5 n+3(p(3, G)+p(3, \bar{G})) . \tag{3.3}
\end{equation*}
$$

As $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=3$, by Lemma 3.2 each of G and \bar{G} contains a double star, say, $S_{a_{1}, b_{1}}$ and $S_{a_{2}, b_{2}}$ (see Figure 3.1) as spanning subgraphs of G and \bar{G} respectively. Hence $p(3, G) \leq\left(a_{1}-1\right)\left(b_{1}-1\right)=a_{1} b_{1}-n+1$ and $p(3, \bar{G}) \leq\left(a_{2}-1\right)\left(b_{2}-1\right)=a_{2} b_{2}-n+1$. Also, $a_{i} b_{i} \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ for $i=1,2$. Thus,

$$
\begin{equation*}
W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right) \leq 5 n^{2}-n+6\left\lfloor\frac{n^{2}}{4}\right\rfloor+6 . \tag{3.4}
\end{equation*}
$$

It can be seen that $5 n^{2}-n+6\left\lfloor\frac{n^{2}}{4}\right\rfloor+6<\frac{17}{2} n^{2}-\frac{45}{2} n+60$, for $n \geq 7$. We now consider the remaining cases, namely 5 and 6 separately.

$$
\text { Case (i). } n=5 .
$$

When $n=5$, by equations (3.2) and (3.3), $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right)=125+$ $25+3(p(3, G)+p(3, \bar{G})) \leq 162$ and we have already seen that, $W\left(\mu\left(P_{5}^{2}\right)\right)+$ $W\left(\mu\left({\overline{P_{5}}}^{2}\right)\right)=159$. We show that $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right) \leq 159$. Suppose $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right)=160$, then $p(3, G)+p(3, \bar{G})=\frac{10}{3}$, which is a contradiction. Similarly, we will have a contradiction when $W\left(\mu\left(G^{2}\right)\right)+$ $W\left(\mu\left(\bar{G}^{2}\right)\right)=161$. Finally, if $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right)=162$; then, $p(3, G)+$ $p(3, \bar{G})=\frac{12}{3}=4$. Since $n=5$ and $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=3, p(3, G)$ and $p(3, \bar{G})$ cannot be greater than 2 and therefore $p(3, G)=p(3, \bar{G})=2$. There are only two graphs G of order 5 (see Figure 3.2) with the property that $n=5, p(3, G)=2$. But for these two graphs $p(3, \bar{G})=0$ which is a contradiction.

Fig 3.2

Case (ii). $n=6$.
Here $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right)=210+3(p(3, G)+p(3, \bar{G})) \leq 234$ and $W\left(\mu\left(P_{5}^{2}\right)\right)+W\left(\mu\left({\overline{P_{5}}}^{2}\right)\right)=231$. Proving $W\left(\mu\left(G^{2}\right)\right)+W\left(\mu\left(\bar{G}^{2}\right)\right) \leq 231$ is similar to case(i). In this case the graphs with the required property are as shown in Figure 3.3.

Fig 3.3

We now give the result for a general k.
Theorem 3.5. Let G be a connected graph of order $n \geq 5$ with connected complement \bar{G}. Then for any $k \geq 1,5 n^{2}+5 n \leq W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right)\right) \leq$ $W\left(\mu\left(P_{n}^{k}\right)\right)+W\left(\mu\left({\overline{P_{n}}}^{k}\right)\right) \leq W\left(\mu\left(P_{n}\right)\right)+W\left(\mu\left(\overline{P_{n}}\right)\right)=\frac{17}{2} n^{2}-\frac{15}{2} n+15$.

Proof. $W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right)\right)$ is minimum when G^{k} and \bar{G}^{k} are complete. Thus $5 n^{2}+5 n \leq W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right)\right)$. By equation 3.1 and arguments similar to that in Theorem 2.2, $W(\mu(G))+W(\mu(\bar{G})) \leq W\left(\mu\left(P_{n}\right)\right)+$ $W\left(\mu\left(\overline{P_{n}}\right)\right)$. By virtue of Theorem 3.3 and Lemma 3.4, the only case left out for the upper bound to be true is when $\operatorname{diam}(G)=\operatorname{diam}(\bar{G})=3$ and $k \geq 3$. In this case, $G^{k}=\bar{G}^{k}=K_{n}$ and we see that $W\left(\mu\left(G^{k}\right)\right)$ is minimum for $G^{k}=K_{n}$ and therefore $W\left(\mu\left(G^{k}\right)\right)+W\left(\mu\left(\bar{G}^{k}\right)\right) \leq W\left(\mu\left(P_{n}^{k}\right)\right)+W\left(\mu\left({\overline{P_{n}}}^{k}\right)\right) \leq$ $W\left(\mu\left(P_{n}\right)\right)+W\left(\mu\left(\overline{P_{n}}\right)\right)=\frac{17}{2} n^{2}-\frac{15}{2} n+15$ (by using equation 3.1).

Acknowledgement

This research was supported by the Department of Science and Technology, Government of India grant DST SR/S4/MS:234/04 dated March 31, 2006.

References

[1] X. An and B. Wu, The Wiener index of the kth power of a graph, Appl. Math. Lett. 21 (2007) 436-440.
[2] R. Balakrishanan and S.F. Raj, The Wiener number of Kneser graphs, Discuss. Math. Graph Theory 28 (2008) 219-228.
[3] R. Balakrishanan, N. Sridharan and K.V. Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927.
[4] R. Balakrishanan, N. Sridharan and K.V. Iyer, A sharp lower bound for the Wiener Index of a graph, to appear in Ars Combinatoria.
[5] R. Balakrishanan, K. Viswanathan and K.T. Raghavendra, Wiener Index of Two Special Trees, MATCH Commun. Math. Comput. Chem. 57 (2007) 385-392.
[6] G.J. Chang, L. Huang and X. Zhu, Circular Chromatic Number of Mycielski's graphs, Discrete Math. 205 (1999) 23-37.
[7] A.A. Dobrynin, I. Gutman, S. Klavžar and P. Žigert, Wiener Index of Hexagonal Systems, Acta Appl. Math. 72 (2002) 247-294.
[8] H. Hajibolhassan and X. Zhu, The Circular Chromatic Number and Mycielski construction, J. Graph Theory 44 (2003) 106-115.
[9] D. Liu, Circular Chromatic Number for iterated Mycielski graphs, Discrete Math. 285 (2004) 335-340
[10] Liu Hongmei, Circular Chromatic Number and Mycielski graphs, Acta Mathematica Scientia 26B (2006) 314-320.
[11] J. Mycielski, Sur le colouriage des graphes, Colloq. Math. 3 (1955) 161-162.
[12] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.
[13] H. Wiener, Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc. 69 (1947) 17-20.
[14] L. Xu and X. Guo, Catacondensed Hexagonal Systems with Large Wiener Numbers, MATCH Commun. Math. Comput. Chem. 55 (2006) 137-158.
[15] L. Zhang and B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189-194.

Received 14 November 2008
Revised 8 October 2009
Accepted 20 October 2009

