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Abstract

In this note, we prove several lower bounds on the domination num-
ber of simple connected graphs. Among these are the following: the
domination number is at least two-thirds of the radius of the graph,
three times the domination number is at least two more than the num-
ber of cut-vertices in the graph, and the domination number of a tree
is at least as large as the minimum order of a maximal matching.
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1. Introduction and Key Definitions

Let G = (V,E) be a simple connected graph of finite order n = |V |. Al-
though we may identify a graph G with its set of vertices, in cases where
we need to be explicit we write V (G) to denote the vertex set of G. A set
D of vertices of a graph G is called a dominating set provided each vertex
of V − D is adjacent to a member of D. The domination number of G,
denoted γ = γ(G), is the cardinality of a smallest dominating set in G. The
eccentricity of a vertex v ∈ G is the maximum of distances from v to any of
the other vertices of G – where the distance between two vertices means the
number of edges in a shortest path connecting them. The minimum eccen-
tricity of the graph is called the radius and denoted r(G). The maximum
eccentricity of the graph is called the diameter and denoted d(G). A vertex
of minimum eccentricity is called a center vertex of G and the center set

C(G) (or center) is the set of all centers of the graph. The eccentricity of
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the center of G, denoted by r̂(G), is the maximum distance from the center
set to vertices not in the center set, where the distance from a vertex to
a set is the smallest distance from the vertex to any of the vertices in the
set. A vertex of maximum eccentricity is called a boundary vertex of G and
the boundary set B(G) (or boundary) is the set of all boundary vertices of
the graph. Vertices of maximum eccentricity are also called peripheral and
what we call the boundary is also called the periphery [2]. The eccentric-

ity of the boundary of G, denoted by d̂(G), is the maximum distance from
the boundary set to vertices not in the boundary set. Finally, a matching

is an independent set of edges and a cut-vertex is a vertex whose deletion
increases the number of components. For general graph theory terminology
and notation that is not presented here, the reader can refer to [1] or [23].

Before moving on, it is helpful to observe the following basic properties
of the distance invariants mentioned above.

Proposition 1. For any connected graph G,

(i) r(G) ≤ d(G) ≤ 2r(G),

(ii) r̂(G) ≤ r(G),

(iii) d̂(G) ≤ d(G) − 1.

The first of these is easy and well known. The second is fairly obvious. For
the third, let v be a vertex not in the boundary that realizes the maximum
distance to the boundary. If this distance is at least d(G), then it is exactly
d(G) by definition of diameter. Consequently, v is a vertex of maximum
eccentricity and is thus in the boundary, which is a contradiction.

The domination number is one of the most studied simple graph in-
variants. Indeed, there have been at least two books ([18, 19]) written on
this invariant alone. It is the aim of this paper to prove several new lower
bounds on the domination number of graphs. A few of these theorems were
inspired by conjectures of the computer program Graffiti.pc, written by E.
DeLaViña. In addition, all of these results have analogs for total domina-
tion (see [3, 8]). For example, in [8] it is proven that the total domination
number of a graph is at least the radius of the graph.

2. Lemmas

We start by stating a couple of lemmas that will be referred to several times
in the main section of the paper.
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Given a graph G with dominating set D, a vertex v /∈ D is over-dominated

by D if it has two or more neighbors in D. The over-domination number

of v with respect to D, denoted by OD(v), is one less than the number of
neighbors v has in D.

Lemma 2. Let T be a tree and let D be a minimum dominating set of T
with k components. Denote the number of edges both of whose vertices are

in D by e1, the number of edges both of whose vertices are in H = T − D
by e2, and the number of edges with one vertex in D and the other vertex in

H = T−D by e3. Moreover, let j be the number of components of H = T−D
with at least two neighbors in D (the non-trivial components of H) and let

lH be the number of components of H = T −D with exactly one neighbor in

D (the leaves of H). Then all of the following are true:

(a) e1 = |D| − k,

(b) e2 = k − 1 −
∑

v∈H OD(v) ≤ k − 1,

(c) e3 = n − |D| +
∑

v∈H OD(v) ≥ n − |D|,

(d) 2j + lH ≤ e3 = k + j + lH − 1,

(e) n − lH + 2 +
∑

v∈H OD(v) ≤ 2k + |D|.

A simple proof of the above lemma was given in [9]. The lemma below
appears to be folklore (its proof is very similar to the proof of Lemma 2
in [8]).

Lemma 3. Let G be a connected graph, with n > 1. Then for any minimum

dominating set D of G, there is a spanning tree T of G such that D is a

minimum dominating set of T .

3. Theorems

The following elementary result is a rediscovery, and can be obtained quite
easily, as is shown in [18]. One of our main results, Theorem 5, is an im-
provement on this result anytime the diameter is strictly less than twice the
radius.

Theorem 4. Let G be a connected graph with n > 1 and diameter d. Then,

γ ≥
d + 1

3
.
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Theorem 5 below is a near generalization of Theorem 4. Indeed, since the
diameter can actually equal the radius, it is sometimes twice as good as a
lower bound on the domination number (take cycles for instance). Moreover,
it is similar to the well known result that the independence number is at least
the radius — originally a conjecture of Graffiti [13] and proven independently
several times [11, 12, 14, 15]. In addition, it is shown in [8] that the total
domination number (that is, the cardinality of a set of minimum order having
the property that every vertex in the graph is adjacent to a vertex in the
set) is at least the radius.

Theorem 5. Let G be a connected graph with n > 1. Then,

γ ≥
2

3
r.

Moreover, this bound is sharp.

Proof. Let D be a minimum dominating set of G. Form a spanning tree
T of G, as prescribed in Lemma 3, so that D is also a minimum dominating
set of T . Since r(G) ≤ r(T ), 2r(T ) − 1 ≤ d(T ) (because T is a tree) and
γ(T ) = γ(G) (by Lemma 2), we can apply Theorem 4 to T and obtain the
following chain of inequalities:

2r(G) − 1 ≤ 2r(T ) − 1 ≤ d(T ) ≤ 3γ(T ) − 1 = 3γ(G) − 1.

Equality holds in the bound above for cycles with orders congruent to 0 mod-
ulo 6. On the other hand, the tree obtained by amalgamating a pendant
vertex to each vertex of a path has radius about n

3
while it has domina-

tion number of n
2

— thus showing that the difference between these two
expressions can be made arbitrarily large.

The following theorem, proven by Lemańska in [20], follows directly
from part (e) of Lemma 2.

Theorem 6. If T is a tree with l leaves, then

γ ≥
n − l + 2

3
.

We can use Theorem 6 together with Lemma 3 to deduce the more general
result below, which is equivalent to Theorem 6 for trees.
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Theorem 7. For any connected graph G with x cut-vertices,

γ ≥
x + 2

3
.

Moreover, this bound is sharp.

Proof. Let D be a minimum dominating set of G. Form a spanning tree
T of G, as prescribed in Lemma 3, so that D is also a minimum dominating
set of T . Let x(T ) denote the number of cut-vertices of T and note that
x(T ) ≥ x, since any cut-vertex of G is also a cut-vertex of T . Now, applying
Theorem 6 to T we find,

γ(G) = γ(T ) ≥
n − l(T ) + 2

3
=

x(T ) + 2

3
≥

x + 2

3
.

Lemańska shows in [20] that equality holds in Theorem 6 if and only if T is a
tree such that the distance between any two leaves is congruent to 2 modulo
3. Since for trees, the number of cut-vertices is exactly n − l, equality
holding in Theorem 6 is a sufficient condition for equality holding in the
above theorem. An example of a graph where equality holds in Theorem 7
that is not necessarily a tree is a graph with a cut-vertex of degree n − 1.
On the other hand, since cycles have no cut-vertices, the difference between
the expressions in Theorem 7 can be made arbitrarily large.

The next theorem is a very slight improvement on Theorem 5 whenever
r = r̂. For instance, in graphs with a unique center vertex, such as odd
paths, r = r̂ and the lower bound below is 1

3
more than that achieved in

Theorem 5.

Theorem 8. Let G be a connected graph with n > 1. Then,

γ ≥
2

3
r̂(G) +

1

3
.

Moreover, this bound is sharp.

Proof. Let D be a minimum dominating set of G. Form a spanning tree
T of G, as prescribed in Lemma 3, so that D is also a minimum dominating
set of T . Since T is a tree, 2r(T ) − 1 ≤ d(T ) ≤ 2r(T ).
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Suppose that 2r(T ) − 1 = d(T ). In this case, any diametral path in T is an
even path and T has a bi-center (the center is a pair of adjacent vertices).
Consequently, r̂(T ) = r(T ) − 1. Applying Theorem 4 to T ,

r̂(T ) + 1 = r(T ) =
d(T ) + 1

2
≤

3γ(T ) − 1 + 1

2
=

3γ(G)

2
.

From this we find that,

γ(G) ≥
2

3
r̂(T ) +

2

3
>

2

3
r̂(T ) +

1

3
.

On the other hand, suppose that 2r(T ) = d(T ). Now, any diametral path
in T is an odd path, T has a unique center vertex, and consequently r̂(T ) =
r(T ). Applying Theorem 4 to T ,

r̂(T ) = r(T ) =
d(T )

2
≤

3γ(T ) − 1

2
=

3γ(G)

2
−

1

2
.

From this we find that,

γ(G) ≥
2

3
r̂(T ) +

1

3
.

To complete the proof we need to show that r̂(T ) ≥ r̂(G). That is, that the
eccentricity of the center of a graph is at most the eccentricity of the center
of one of its spanning trees. To this end, observe that the following chain of
inequalities is valid:

r̂(G) ≤ r(G) ≤ r(T ) ≤ r̂(T ) + 1.

Suppose that r̂(G) = r̂(T ) + 1. This implies that all of the above are equal.
In particular, since r̂(T )+ 1 = r(T ), T is a bi-centric tree. Let {x, y} be the
bi-center of T . Moreover, let dG(p, q) denote the distance from p to q in G.
Since for any vertex w ∈ G,

dG(x,w) ≤ dT (x,w) ≤ r(T ) = r(G),

we conclude that x is also a center vertex of G. Similarly, y is also a center
vertex of G.

Let z be a vertex at eccentric distance from C(G) in G, and note that
for any v ∈ C(G),

dG(v, z) ≥ r̂(G) = r̂(T ) + 1.
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Now, because x is a center vertex of G,

r(G) = r(T ) ≥ dT (x, z) ≥ dG(x, z) ≥ r̂(G) = r(G),

whence dT (x, z) = r(T ). Similarly, dT (y, z) = r(T ). However, this is a
contradiction because only one of these equations can be true for a bi-centric
tree. Hence our supposition, r̂(G) = r̂(T ) + 1, is not feasible and it must
be the case that r̂(G) ≤ r̂(T ), proving our claim and thereby proving the
theorem.

To see that the bound is sharp, notice that equality holds for paths
whose orders are congruent to 3 modulo 6. On the other hand, for cycles,
r̂(G) = 0 showing that the difference can be made arbitrarily large.

The theorem below is sometimes a substantial improvement on Theorems 4,
5, and 8. For instance, take a path on 2k + 1 vertices and amalgamate an
endpoint of a path on k vertices to the center vertex of the original path.
This graph has d = 2k, r = r̂ = k, and d̂ = 2k − 1. Thus, the difference
between the lower bound obtained below and those bounds obtained from
the theorems mentioned above can be made arbitrarily large. On the other
hand, for odd paths, the lower bound below can be made arbitrarily less
than that obtained from any of the theorems mentioned above.

Theorem 9. Let T be a tree with n > 1. Then,

γ(T ) ≥
1 + d̂(T )

2
.

Moreover, this bound is sharp.

Proof. Let ve a vertex of maximum eccentricity from the boundary of
T . Let d be the diameter of T , and Pd = {v0, v1, . . . , vd} be the vertices of
a diametral path of T labeled left to right such that d̂(T ) = dG(v0, ve) ≤
dG(vd, ve). If ve is on the diametral path Pd, then d̂(T ) ≤ d

2
, and when d ≥ 2

the result follows from Theorem 4. In case d = 1, the result is trivial. Thus,
assume that ve is not on Pd. Let Pe be a path from v0 to ve. Let l be the
largest subscript such that vl is common to both Pe and Pd. Observe that
since T is a tree and dG(v0, ve) ≤ dG(vd, ve),

d
2
≥ l ≥ 1.

Let T ′ be the subtree induced by Pe and Pd. The rest of this proof
consists of showing that 1

2
(1 + d̂(T )) ≤ γ(T ′) from which the full result

follows since it is straightforward to argue that γ(T ′) ≤ γ(T ). Observe that
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the number of vertices of T ′ is at least 1 + d̂(T ) + d − l. Combining this
observation with l ≤ d

2
, it follows that

1 + d̂(T ) +
d

2
≤ n(T ′).

Since eccentricity of the boundary is strictly less than the diameter, it follows
that

3

2
(1 + d̂(T )) ≤ n(T ′).

For D a smallest dominating set of T ′ that contains no leaves, let k be the
number of components of the subgraph induced by D, let j be the number
components of the subgraph induced by T ′−D with at least two neighbors in
D, and lH be the number components of T ′ − D with exactly one neighbor
in D. By Lemma 2 parts (a), (b) and (d), the number of edges of T ′ is
bounded above as follows,

3

2
(1 + d̂(T )) − 1 ≤ n(T ′) − 1 ≤ [γ(T ′) − k] + [k − 1 − Od] + [k + j + lH − 1],

where Od is the number of vertices of T ′ − D that are over-dominated by
D. Since T ′ has 3 leaves and D contains no leaves of T ′, lH ≥ 3. It is
not difficult to show that any component of T ′ − D that is not a leaf of T ′

must have two neighbors in D, therefore lH = 3. Now the above relation is
equivalent to

(1)
3

2
(1 + d̂(T )) ≤ n(T ′) ≤ γ(T ′) − Od + k + j + 2.

It is obvious that k ≤ γ(T ′), and by Lemma 2 part (d), j ≤ k − 1. So, it
follows that

3

2
(1 + d̂(T )) ≤ n(T ′) ≤ γ(T ′) − Od + 2k + 1 ≤ 3γ(T ′) + 1.

In the case that 3

2
(1 + d̂(T )) < n(T ′) or Od ≥ 1, we see that

1

2
(1 + d̂(T )) ≤ γ(T ′).

Thus, we now assume that 3

2
(1 + d̂(T )) = n(T ′) and that Od = 0 (i.e., there

are no over-dominated vertices in T ′−D). These assumptions together with
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relation (1) imply,

(2)
3

2
(1 + d̂(T )) = n(T ′) ≤ γ(T ′) + k + j + 2.

Suppose that vl is not in D. Since there are no over-dominated vertices in
T ′−D, the component in T ′−D containing vl has at least 3 vertices and thus
contributes 3 edges to e3, where e3 is the number of edges with one vertex
in D and one in T ′−D. Since the remaining j−1 non-trivial components of
T ′ −D contribute at least two edges to e3, 2(j − 1) + 3 + lH ≤ e3. Together
with the right hand side of part (d) of Lemma 2 this yields, j ≤ k−2, which
together with relation (2) yields the desired result.

To complete our proof we assume that vl is in D. In this case, let
P1 be the vertices {v0, v1, . . . , vl−1} on the path Pd, let P3 be the vertices
{vl+1, vl+2, . . . , vd} on the path Pd and let P2 be the remaining vertices
of T ′ (this includes vl and the vertices on path Pe that are not on Pd).
Since |P1| + |P2| + |P3| = 3

2
(1 + d̂(T )) = n(T ′) and |P1| + |P2| = 1 + d̂(T ),

|P3| = 1

2
(1 + d̂(T )). Observe that |P1| ≤ |P3|, otherwise we contradict

that vertex vd is not closer to ve than is v0. Also observe that |P2| ≤ |P1|,
otherwise the path induced by P2∪P3 is longer than a diametral path. Thus,
it follows each of P1, P2 and P3 has exactly 1

2
(d̂(T ) + 1) vertices.

Now observe that if k < γ(T ′), then together with j ≤ k − 1 and
inequality (2) the result follows. So we assume k = γ(T ′) (that is D induces
an empty subgraph). Now since we have assumed that vl in D, none of the
neighbors of vl are in D. Since the number of vertices on paths P1 and P2

not dominated by vl differ by 1, it is easy to see that at least one of the
paths will contain a vertex that is over-dominated. This contradicts our
assumption that there are no over-dominated vertices.

To see that this bound is sharp, notice that equality holds for odd paths
of order 2k+1 with a path of order k amalgamated at the center vertex. On
the other hand, odd paths show that the difference between the two sides of
the inequality can be made arbitrarily large.

Although Theorem 9 was proven only for trees, we conjecture that it is true
for all simple connected graphs. In fact, we believe a similar proof to the one
above can be used to show this. To see that there are non-tree graphs for
which it is true, notice it trivially holds for all connected graphs for which
every vertex is in the boundary set — cycles for instance. Now, let the
vertices of a P7 be labeled from left to right as {v1, v2, . . . , v7} and let the
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vertices of a P3 be labeled {a, b, c}. Add the three edges {a, v3}, {b, v4}, and
{c, v5} and then attach a pendant vertex to b. This is a non-trivial example
of a non-tree graph for which equality holds in the conjecture below.

Conjecture 10. Let G be a connected graph with n > 1. Then,

γ(G) ≥
1 + d̂(G)

2
.

Given a graph G, the girth, denoted g = g(G), is the minimum order of an
induced cycle of G.

Theorem 11. Let G be a connected graph with n > 1. Then,

γ ≥
1

3
g.

Moreover, this bound is sharp.

Proof. The inequality is obviously true when g ≤ 3 so we can assume
g ≥ 4. Let D be a minimum dominating set and let C be an induced cycle
of order g. Moreover, let K = D ∩ C. Without loss of generality, |K| < g

3

(the inequality is trivial otherwise). Since each vertex of K dominates three
vertices of C, at most 3|K| vertices of C are dominated by vertices from K.
This leaves at most g − 3|K| vertices of C which are not dominated by K.
Finally, since no two of these un-dominated vertices of C could be adjacent
to the same vertex of D − K or a shorter cycle is present, we find;

γ ≥ |K| + (g − 3|K|) = g − 2|K| >
1

3
g.

To see that the bound is sharp, notice that equality holds for all cycles with
orders congruent to 0 modulo 6. On the other hand, the difference can be
made arbitrarily large by amalgamating paths to the vertices of a triangle.

The case of equality for Theorem 11 is not hard to discover. For g ≤ 3,
equality holds if and only if G has a vertex of degree n− 1 and at least one
triangle.

For 4 ≤ g ≤ 6, equality holds if and only if
(1) G consists of an induced hexagon, together with a collection of ver-

tices S not on the hexagon, such that every vertex of S is adjacent to one
of a pair {x, y} of diametrically opposed vertices of the hexagon.
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(2) Each vertex of N(x)∩S (resp. N(y)∩S) is adjacent to at most one
vertex of N(y) ∩ S (resp. N(x) ∩ S) and no other vertices of G.

For g ≥ 7, equality holds if and only if g ≡ 0 (mod 3) and G consists
of a cycle of order g whose vertices can be labeled clockwise 1, 2, . . . , g such
that all non-cycle vertices are pendants and are adjacent to vertices of the
cycle whose labels come from the same congruence class mod 3.

Recall that a matching is an independent set of edges. While much is
known about the cardinality of maximum matchings, [21], and in particular,
that this number can be computed in polynomial time, the problem of de-
termining the order of a maximal matching of minimum size is NP-complete
[16]. In fact, this problem remains NP-complete even when restricted to
bipartite graphs.

Theorem 12. Let T be a tree where µ∗ is the cardinality of a maximal

matching of minimum size.

µ∗ ≤ γ ≤ 2µ∗.

Moreover, these bounds are sharp.

Proof. The upper bound is obvious since the vertices of any maximal
matching are a dominating set.

Let D = {d1, d2, . . . , dγ} be a minimum dominating set of T which is
labeled so that di is no further from the center of the tree than dj whenever
i > j. If T is bi-central, then choose one of these two vertices and call it the
official center. Thus, lower indices indicate greater distance from the center.
Our strategy is to build a maximal matching and label its edges in such a
way that at most γ labels are used.

We build the matching M as follows. For each i — unless di is already
incident to an edge in M — add the edge div, where v is the vertex adjacent
to di and closest to the center, and label this edge ei. If the edge div is
already incident to an edge of M , then choose any other edge incident to
di, that is not adjacent to an edge of M , and add that edge to M – again
labeling it ei. If neither of these is possible, then either di is incident to an
edge of M or every edge incident to di is already adjacent to an edge of M .
In this case, ignore that vertex and move on to the next dominating vertex.
Repeat this for all dominating vertices of D in sequential order.

Now, if M is maximal, then we are done since µ∗ ≤ |M | ≤ |D| = γ.
Assuming otherwise, suppose xy is an edge independent of M (adjacent to
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none of the edges of M). Moreover, without loss of generality, assume y is
closer to the center than x (since they cannot be the same distance). In this
case, neither x nor y is in D — since otherwise this edge would have been
accounted for in the previous step when we built M . Now vertex x must
have a dominating vertex dj further from the center than x. Since the edge
djx was not added to M in the previous step, and x is obviously closer to
the center than any other neighbor of dj , it must be the case that an edge
containing dj and one of its neighbors, other than x, was added to M at a
previous step. Hence there is no edge in M with label j. So we can label
the edge xy as ej , include it in M , and then repeat this for any other edge
independent of M . Eventually, M is maximal and at most γ labels have
been used to label its edges.

To see that these bounds are sharp, let T be a path with order n such
that n ≡ 0 (mod 3). Then γ = µ∗ = n

3
. On the other hand, let T be a

tree obtained by attaching a pendant vertex to each of the n vertices of an
even path. Here, γ = 2µ∗ = n

2
. Thus, equality can hold for both upper and

lower bounds and the difference between the domination number and both
bounds can be made arbitrarily large.

This theorem is not true for graphs in general. For instance, take two
identical stars and add an edge between each pair of corresponding leaves.
This family of graphs has γ = 2 while µ∗ can be made arbitrarily large.
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[20] M. Lemańska, Lower Bound on the Domination Number of a Tree, Discuss.
Math. Graph Theory 24 (2004) 165–170.

[21] L. Lovász and M.D. Plummer, Matching Theory (Acedemic Press, New York,
1986).

[22] D.B. West, Open problems column #23, SIAM Activity Group Newsletter in
Discrete Mathematics, 1996.

[23] D.B. West, Introduction to Graph Theory (2nd ed.) (Prentice-Hall, NJ, 2001).

Received 18 April 2008
Revised 29 April 2009

Accepted 20 October 2009

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

