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Abstract

By a result of McKenzie [7] all finite directed graphs that satisfy
certain connectivity conditions have unique prime factorizations with
respect to the cardinal product. McKenzie does not provide an algo-
rithm, and even up to now no polynomial algorithm that factors all
graphs satisfying McKenzie’s conditions is known. Only partial results
[1, 3, 5] have been published, all of which depend on certain thinness
conditions of the graphs to be factored.

In this paper we weaken the thinness conditions and thus signifi-
cantly extend the class of graphs for which the prime factorization can
be found in polynomial time.
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1. Introduction

McKenzie [7] proved the so-called common refinement property for factor-
izations of finite or infinite relational structures with respect to the cardi-
nal product. In the context of finite directed graphs his result implies the
uniqueness of the prime factor decomposition (PFD) of directed graphs with
respect to the cardinal product under certain conditions.

Here we are concerned with the problem of finding an efficient algorithm
for the computation of the PFD. This question has evolved from a purely
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academic problem to one of importance for the recognition of ”characters”
(traits or Merkmale) in theoretical biology; see [2].

The problem of finding an algorithm for the factorization was first ad-
dressed by Feigenbaum and Schäffer in [1], where they present a polynomial
algorithm for the case of reflexive and symmetric structures. In the language
of undirected graphs this means that the prime factorization of connected
graphs with respect to the strong product can be found in polynomial time.

Later this was extended to symmetric structures that are not necessarily
reflexive by Imrich [3], that is, it was shown that the PFD of nonbipartite
connected graphs with respect to the cardinal product can also be found in
polynomial time.

The first algorithm for asymmetric relations is due to Imrich and Klöckl
[5]. It presents a class of graphs with unique PFD, which can be computed
in polynomial time. This class, say K, has nonempty intersection with the
class M of graphs for which McKenzie’s result implies uniqueness of the
PFD. Since K contains elements not in M , [5] also extends the uniqueness
result of McKenzie. Unfortunately the graphs in K must satisfy a rather
strong thinness condition.

In this paper we weaken the thinness condition. In other words, we fur-
ther extend the class of graphs whose PFD can be computed in polynomial
time. The approach of the algorithm is to simplify the given graph G until
one obtains a graph S that fulfills the assumptions of our algorithm in [5].
We then factor S and derive the factorization of G from that of S.

2. Definitions and Preliminary Results

By a directed graph G = (V,A) we mean a set of vertices V together with a
set of arcs A, that are ordered pairs 〈x, y〉 of vertices. We allow that both
〈x, y〉 and 〈y, x〉 are in A and do not require x, y to be distinct. Thus, A is
a subset of the Cartesian product V × V .

The vertex x is the origin and y the terminus of 〈x, y〉. In the case
when x = y we speak of a loop. In analogy to the undirected case we call
a graph G with A(G) = V (G) × V (G) complete. If it has n vertices it will
be denoted by Kd

n to distinguish it from the ordinary complete graph Kn

(where any two distinct vertices are connected by an undirected edge.)

We say A(G) is reflexive if A contains all loops 〈x, x〉, where x ∈ V (G).
It is symmetric if 〈x, y〉 ∈ A(G) ⇔ 〈y, x〉 ∈ A(G). By abuse of language we
simply say that G is reflexive, respectively symmetric. Symmetric directed
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graphs correspond to undirected graphs by identification of pairs of arcs
〈x, y〉, 〈y, x〉 with undirected edges [x, y].

The out-neighborhood N+(x) of a vertex x is defined as the set

{y ∈ V | 〈x, y〉 ∈ A}.

Analogously one defines the in-neighborhood N−(x). A directed graph is
uniquely defined by its vertex set and the out-neighborhoods of the vertices.

The cardinal product G1 × G2 of two directed graphs G1, G2 is defined
on the Cartesian product V (G1) × V (G2) of the vertex sets of the factors
such that the out-neighborhood of a vertex (x1, x2) ∈ V (G1 × G2) is the
Cartesian product of the out-neighborhoods of x1 in G1 and x2 in G2:

N+

G1×G2
(x1, x2) = N+

G1
(x1) × N+

G2
(x2).

The cardinal product is commutative, associative, and the single vertex with
a loop, that is Kd

1 , is a unit. The cardinal product of reflexive symmetric
graphs corresponds to the strong product of undirected graphs.

A graph G is prime with respect to the cardinal product if G = G1×G2

implies that G1 or G2 is equal to Kd
1 .

A graph G is R+|R−-connected if to all pairs x, y ∈ V (G) and n ∈ N a
sequence x = x0, x1, . . . , xn = y can be found where

N+(xi) ∩ N+(xi+1) 6= ∅

for 0 ≤ i < n; compare the factors in Figure 1. We also say that x and y
are R+|R−-connected. R−|R+-connectedness is defined analogously.

Lemma 2.1. Let G = G1 ×G2×· · ·×Gk be the cardinal product of directed
graphs. Then the following conditions are equivalent:

(i) G is R+|R−-connected.

(ii) Gi, i ∈ {1, 2, . . . , k}, is R+|R−-connected.

The statement remains true if one replaces R+|R− by R−|R+.

Proof. It suffices to prove the lemma for k = 2.
(i)=⇒(ii) Given two vertices v1, w1 ∈ G1, arbitrarily choose v2 ∈ G2.

By condition (i) the vertices x0 = (v1, v2) and xn = (w1, v2) are R+|R−-
connected. Thus there exists a sequence (v1, v2) = x0, x1, . . . , xn = (w1, v2)
such that N+(xi) ∩ N+(xi+1) 6= ∅ for 0 ≤ i < n. Setting xi = (xi,1, xi,2)
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for 0 ≤ i ≤ n, it is clear that v1 and w1 are R+|R−-connected in G1 by the
sequence v1 = x0,1, x1,1, . . . , xn,1 = w1.

Reversing the roles of G1 and G2 it is easily seen that G2 is R+|R−-
connected too.
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Figure 1. Connectedness.

(ii)=⇒(i) Given two vertices v = (v1, v2), w = (w1, w2) ∈ G. Then
there exist sequences v1 = x0, x1, . . . , xn = w1 and v2 = y0, y1, . . . , ym = w2,
where N+

1
(xi) ∩ N+

1
(xi+1) 6= ∅ for 0 ≤ i < n, and N+

2
(yi) ∩ N+

2
(yi+1) 6= ∅

for 0 ≤ i < m. Let m ≤ n and set zi = (xi, yi) for 0 ≤ i ≤ m and (xi, ym)
for m < i ≤ n.

Then (v1, v2) and (w1, w2) are R+|R−-connected in G by z0, z1, . . . , zn.

McKenzie showed that these connectivity conditions ensure the uniqueness
of the PFD with respect to cardinal multiplication:

Theorem 2.2 [7]. Let G be an R+|R−- and R−|R+-connected finite graph.
Then G is uniquely representable as a cardinal product of prime graphs, up
to isomorphisms and the order of the factors.
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The first algorithm for the actual computation of such a factorization is due
to Feigenbaum and Schäffer. They treat the case of reflexive, symmetric
relations. In the language of graphs it reads as follows:

Theorem 2.3 [1]. Let G = (V,A) be an undirected, finite, connected graph.
Then the prime factor decomposition of G with respect to the cardinal product
can be found in polynomial time.

This was extended by Imrich to the case of symmetric relations that are
not necessarily reflexive, that is, to finite undirected graphs. (In this setting
nonbipartiteness ensures R+|R−- and R−|R+-connectedness.)

Theorem 2.4 [3]. Let G = (V,A) be a connected, nonbipartite finite undi-
rected graph. Then the prime factor decomposition of G with respect to the
cardinal product can be found in polynomial time.

The first step in these algorithms is the reduction of the graphs under consid-
eration to so-called thin graphs. Subsequently the thin graphs are factored,
and then this factorization is extended to the given graphs.

A graph is thin if no two vertices have the same out- and the same
in-neighborhood. More formally we say two vertices are in the relation R if
their out-neighborhoods as well as their in-neighborhoods coincide. Clearly
R is an equivalence relation. A graph is thin if every equivalence class of R
consists of only one vertex.

For the reduction to thin graphs we introduce the concept of quotient
graphs. As usual the quotient graph G/R is defined as follows: the vertex
set of G/R is the set of all equivalence classes {x |x ∈ V (G)} of V (G) with
respect to R, and 〈x, y〉 ∈ A(G/R) if there are vertices a ∈ x, b ∈ y with
〈a, b〉 ∈ A(G).

It is clear that G/R is thin. In a thin graph it is possible that two differ-
ent vertices with different in-neighborhoods have the same out-neighborhood
and vice versa. Since the algorithm of the present paper essentially as-
sumes that different vertices have different out-neighborhoods, we introduce
the relation R+: Two vertices of G are in the relation R+ if their N+-
neighborhoods are the same.

R− is defined analogously. Clearly R+ and R− are equivalence relations.
A graph is then called R+-thin, respectively R−-thin, if all equivalence classes
of the relation R+, respectively R−, consist of just one element. For R+- or
R−-thin graphs we have the following result of Imrich and Klöckl:



466 W. Imrich and W. Klöckl

Theorem 2.5 [5]. Let G = (V,A) be an R+|R−- connected R+-thin graph,
or an R−|R+-connected R−-thin graph. Then the prime factor decomposition
of G with respect to the cardinal product is unique and can be found in
polynomial time.

In order to describe the subgraphs induced by the R+-classes we introduce
new notation. Let r and s be integers, where r > 0, s ≥ 0. Then R+

s,r is the

graph consisting of a complete subgraph Kd
s and r − s other vertices that

have empty in-neighborhoods and whose out-neighborhoods are exactly the
vertices of the complete subgraph Kd

s .

Lemma 2.6. The graphs induced by the R+-classes are R+
s,r-graphs.

Proof. Let v be a vertex of R+
s,r with nonempty in-neighborhood. Then

its out-neighborhood must be the entire R+-class. Thus the vertices with
non-empty out-neighborhood induce a complete subgraph K d

s .

On the other hand, if v has empty in-neighborhood, then its out-neighbor-
hood consists exactly of the vertices in Kd

s .

3. Computation of the G-Factorization from that of G/R+

The goal of this paper is to generalize Theorem 2.5 in a way that we can
apply it to graphs with a relaxed thinness condition. In order to do this we
will simplify a given graph first, apply Theorem 2.5 to compute the PFD of
the simplified graph and then extend this decomposition to the one of the
given graph.

In this paper the simplified graphs are R+-quotients, whereas R-quotients
were used in [7, 1, 3]. Since the subgraphs induced by the R-classes have
a much simpler structure than those induced by the R+-classes the present
setting is considerably harder.

Interestingly, G/R+ need neither be R+-thin nor thin as Figure 2 shows.
The out-neighborhoods of d′ and e′ coincide and the same holds for their
in-neighborhoods. Unfortunately, also the relation R− can fail to be thin in
such situations.

Compare Figures 2 and 3. They show a graph G whose quotient graphs
G/R+ and G/R− are not thin. Nonetheless, after a finite number of R+-
contractions we must arrive at an R+-thin graph; similarly for R−.
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The main aim of this section is the construction of the G-factorization from
that of G/R+. To do this we first consider the special case, where the PFD
of G/R+ consists of only two factors, say A1 and B1.
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Figure 3. N−(d) = N−(e).

Lemma 3.1. Let G be a finite, thin R+|R−- and R−|R+-connected graph
and A1 × B1 the prime factor decomposition of G/R+.

Then G has at most two nontrivial prime divisors. This means that G
is prime or that it has a prime factorization A ×B, where A/R+ = A1 and
B/R+ = B1.

Proof. Let us assume that A × B × C is a decomposition of G into three
nontrivial factors. Then, by Lemma 4.1 in [5], A/R+ × B/R+ × C/R+ is
a decomposition of G/R+. Since G is thin, no nontrivial factor of G is a
Kd

s . Furthermore, Lemma 2.1 implies that all factors are R−|R+-connected.
Thus, all in-neighborhoods in the factors are nonempty and none of the
factors A, B, C is an R+

s,r-graph with s < r. We conclude that each of the
three factors of G/R+ is nontrivial, contrary to the assumption that G/R+

has exactly two prime factors.
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In the sequel we try to obtain the decomposition of the graph G from the
lemma by expanding the vertices of A1 and B1 to R+-classes of possible G-
factors. The question for an estimation of the number of different ways to
do this will be answered by Lemma 3.2; it bounds this number polynomially.

We thus consider the situation where A1 × B1 is the PFD of G/R+

and label the vertex sets as follows: V (A1) = {a1, a2, . . . , al}, V (B1) =
{b1, b2, . . . , bm} and V (G/R+) = V (A1)× V (B1). V (G/R+) = {v1, . . . , vn}.
In the proofs of the next lemmas we will use a matrix M that consists of all
subgraphs of G that are induced by the vertices in R+-classes in G. M(ai, bj),
the element in row i and column j of M , is the graph induced by the vertices
in the R+-class (ai, bj). Note that all M(ai, bj) are R+

s,r-graphs. The idea
is that a decomposition G = A × B induces a decomposition M = a × b,
where a is a column-vector containing the graphs induced by the R+-classes
of A and b is a row-vector defined analogously. If G/R+ is thin, then the
matrix M is unique up to the order of the rows and the columns.

Lemma 3.2. Let G, A1, B1, V (A1), V (B1) and M be defined as above.
If G is not prime, then the following statements hold:

(i) M is the product of a column-vector a and a row-vector b, therefore
rk(M) = 1.

(ii) The number of M -decompositions a ×b is bounded by n2, where n is
the number of vertices of G.

Proof. (i) We define the column-vector a as (D(a1), D(a2), . . . , D(al))
t,

where D(ai) is the subgraph of A that is induced by the R+-class (ai) of A,
and the vector b analogously. By Lemma 4.1 in [5] the following equations
hold:

a × b =











D(a1)
D(a2)

...
D(am)











×
(

D(b1) D(b2) · · · D(bl)
)

=











M(a1, b1) M(a1, b2) · · · M(a1, bl)
M(a2, b1) M(a2, b2) · · · M(a2, bl)
...

... · · · ...
M(am, b1) M(am, b2) · · · M(am, bl)











= M

This proves (i).
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(ii) Let a and b be as in (i). Clearly, for all i and j we have D(ai) ×
D(bj) = M(ai, bj). Note that all graphs in this equation are R+

s,r-graphs
and that D(ai) is uniquely defined if D(bj) and M(ai, bj) are fixed.

Hence, the entry D(b1) in b determines all entries of a uniquely, and
thus also all entries of b. Since D(b1) is uniquely determined by its order
and its number of loops, the number of different ways to define D(b1) is at
most n2. Clearly this also bounds the number of M -decompositions.

Note that the upper bound for the number of M -decompositions gives us
also an upper bound for the number of ways to extend the vertex-sets of the
G/R+-factors to those of the perhaps existing G-factors denoted by A and
B. For every one of these extension possibilities we have to check whether
it leads to a G-decomposition. This means we have to test whether it is
possible to define E(A) and E(B) such that A and B are nontrivial divisors
of G. In Lemma 3.3 we describe this test.

Lemma 3.3. Let G be a finite, thin, R+|R−-connected graph where all in-
neighborhoods are nonempty. We assume G/R+ to be thin, that A1 × B1 is
its prime factorization and that M is the matrix of the R+-classes of G as
above.

Furthermore, let a × b be a (not necessarily unique) decomposition of
M . Then we can check in polynomial time whether there are two graphs A
and B such that the R+-classes of A are the entries in a, the R+-classes of
B the entries in b, and A × B = G.

Proof. Since the R+-classes are known, V (A) and V (B) are determined as
well as all edges between vertices in one and the same R+-class. Therefore
we only have to check if we can define the edges between vertices in different
R+-classes such that A × B = G.

In order to do this we first compute the coordinates of the vertices in
G. This is the main and most difficult part of the proof. But then we can
define the edge sets of A and B by projecting E(G) into A and B. Testing
whether A × B ∼= G can then be effected by counting the edges in A × B
and in G.

Note that the thinness of G implies unique coordinatization of G. This
means uniqueness of the A-, resp. B-layers, that is, the maximal subsets of
G, where all vertices have the same A-, resp. B-coordinate.

Suppose that V (A1) = {ai | 1 ≤ i ≤ k} and that V (B1) = {bj | 1 ≤
j ≤ l}. Then the vertex set of G/R+ is {(ai, bj) | 1 ≤ i ≤ k, 1 ≤ j ≤ l}.
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By the thinness of G/R+ we know that this coordinatization is also unique.
Without loss of generality we assume that A1 = A/R+ and B1 = B/R+. By
ai we also mean the set {x ∈ V (A) | x ∈ ai}, analogously for bj and (ai, bj)
also denotes the set {x ∈ V (G) | x ∈ (ai, bj)}. In this sense the equation
(ai, bj) = ai × bj holds, because R+-classes in G are products of R+-classes
in the G divisors.

Let l(ai) be the subset of V (G) that consists of all vertices in (ai, bj)
with j ∈ {1, 2, . . . , k}. Since l(a1) = V (B) × a1, we call l(a1) a generalized
layer. The l(bj) are defined analogously. Before layers are computed we list
three important basic facts:

(i) Layers (as vertex sets) are subsets of generalized layers.

(ii) From the definition of R+-classes we know that the in-neighborhoods
are unions of R+-classes.

(iii) The in-neighborhoods of every factor of G are nonempty.

Set
IA(x) = {j | ∃i ∈ {1, 2, . . . , l} s.t. (ai, bj) ⊂ N−(x)}.

From (i)–(iii) we conclude, as shown below in detail, that:
Two vertices x, y ∈ l(bj) are in the same A-layer if and only if IA(x) =

IA(y).
Suppose first that x, y ∈ l(bj) are in the same A-layer. Then by defini-

tion xB = yB . From (ii) we infer that

N−(xB) = N−(yB) =
⋃

j∈I

bj

for some subset I of {1, 2, . . . , k}. One can obtain this information about
the in-neighborhoods also from the generalized layers, which allows to prove:
IA(x) = I = IA(y). We will show the first equation in detail, the second can
be proved analogously.

Given some j0 ∈ I. By (iii) we know that N−(xA) 6= ∅. Hence, we
have by (ii) that there is some i0 ∈ {1, 2, . . . , l}, such that ai0 ⊂ N−(xA).
This implies (bj0 , ai0) ⊂ N−(x). By the definition of IA(x) we conclude that
j0 ∈ IA(x).

For any given j0 ∈ IA(x) there exists an i0, such that (bj0 , ai0) ⊂ N−(x).
This implies that the Cartesian product of R+-classes bj0 ×ai0 is a subset of
N−(xB) ×N−(xA). Since ai0 6= ∅, bj0 ⊂ N−(xB). By the definition of I we
know now that j0 ∈ I, which completes the proof of the first equation.
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For the proof of the second assertion we suppose that IA(x) = IA(y). This
implies N−(xB) = N−(yB). Otherwise there would exist without loss of
generality a bj0 ⊂ N−(xB) \ N−(yB). Furthermore there would also exist
a (bj0 , ai0) ⊂ N−(x) \ N−(y), and hence a j0 ∈ IA(x) \ IA(y), which is not
possible. Since x and y are in the same generalized layer l(bj), we have
N+(xB) = N+(yB). As G is thin, all divisors of G are thin. Thus xB is yB

and the vertices x and y are in the same A-layer.

By statement (i) A-layers are maximal subsets L of generalized layers
that satisfy the condition IA(x) = IA(y) for all x, y ∈ L. B-layers are
characterized analogously.

In the sequel we present an algorithm to compute the layers in O(n3)
time, where n = |V (G)|. It consists of three parts:

1.) Compute the index set IA(x) for all vertices x ∈ V (G).

For every x

For every R+-class (bj , ai) of G

Take one y ∈ (bj , ai) and check

If y ∈ N−(x)

IA(x) = IA(x) ∪ {j}
2.) Put the IA(x) in ascending order. The cardinality of the index sets

is of course not larger than |B1|. Hence the cost for this part is bounded by
n · |B1| · log(|B1|), which is O(n2 · log(n)).

3.) Compute the layers. To find the A-layer through x ∈ V (G), we have
to check for all y in the same generalized A-layer as x whether

IA(x) = IA(y).

The effort for checking the last equation is bounded by n, because the in-
dex sets are ordered. Totally we have a bound n3 for the last part of the
algorithm.

Since all coordinates of G with respect to A and B are known now, we
can derive the edge sets of A and B by projection of E(G). By this definition
of the edge sets we clearly have

E(G) ⊂ E(A × B)

which allows to prove G = A×B by checking the equation |E(G)| = |E(A×
B)| (= |E(A)| ∗ |E(B)|).
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Lemma 3.4. Let G be a finite, thin, R+|R−-connected graph where all in-
neighborhoods are nonempty and A1 × · · · × Al a PFD of the thin graph
G/R+. Then the PFD of G can be found in polynomial time O(n6), where
n is the number of vertices of G.

Proof. For l = 2 the statement of the corollary follows immediately from
the two last lemmas. In general we take all prime factors Ai (i ∈ I =
{1, 2, . . . , l}) times the cofactor G : Ai and try to blow up this decomposition
of G/R+ to a decomposition of G.

For any way of blowing Ai0 up (complexity O(n2) by Lemma 3.2) we
have to determine all layers. From Lemma 3.3 we know that the complexity
of this computation for one way of blowing up Ai0 to a graph A′

i0
(A′

i0
/R+ =

Ai0) and for checking if A′
i0

is a divisor of G is bounded by O(n3).
In the case where the blown up graph A′

i0
over Ai0 is really a divisor of

G it must be prime by Lemma 3.3 of [5]. We extract it from G and cancel
i0 from I.

Then we try to blow up decompositions Ai × Aj (i, j ∈ I) times the
cofactor with respect to G/R+ to decompositions of G. Note that the factor
over Ai × Aj, if existing, must be prime, because otherwise we had found
factors over Ai and Aj. Analogously we proceed with factors consisting of
three prime factors and so on.

Since G/R+ has at most log2(n) prime factors, it has at most n different
divisors. For this reason Lemma 3.3 must be applied at most n3 times. Hence
the complexity for finding the PFD of G is bounded by O(n6).

Lemma 3.5. Let G be a finite, R+|R−-connected graph where all in-neighbor-
hoods are nonempty. If G/R =

∏

i∈I Ai is a PFD, then the PFD of G can
be found in O(n2) time, where n is the number of vertices of G.

Proof. We can proceed as in the case of undirected graphs, compare [3]:
Determine all minimal subsets S of I = {1, 2, . . . , r} so that there are graphs
A and B with G = A × B, A/R =

∏

j∈S Aj and B/R =
∏

j∈J\S Aj. From
minimality of S we can conclude that A is prime. Now we can extract A
and compute the other divisors of G analogously.

Those graphs A and B can be found by the blowing up procedure de-
scribed in Lemma 13 of [3]. Since r ≤ log2(n), the lemma must be applied
at most n times.

To get one R-class of A respectively B, we just have to do one gcd-
computation of less than

√
n natural numbers, because it is not possible
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that both A and B consist of more than or of exactly
√

n R-classes if G
is not thin. We can get every other R-class of A and B by one division.
Clearly the number of divisions is bounded by n.

The effort of the gcd-computation of less than
√

n natural numbers
smaller than n is O(n). Hence, the total complexity of this procedure is
bounded by O(n2).

Theorem 3.6. Let G be a finite, thin, R+|R−–connected graph where all
in-neighborhoods are nonempty. Furthermore we assume that all quotient
graphs Ti+1 = Ti/R

+ (k ≥ i ≥ 0 and T0 = G), which we compute until
we arrive at an R+-thin graph Tk, are thin. Then the PFD of G can be
computed in O(n7) time.

Proof. Clearly the quotient-graphs Tk inherit the connectivity-properties
of G. Hence we can use Theorem 2.5 to determine the PFD of the R+-
thin graph Tk. Now we have to compute the PFDs of the graphs Ti (i ∈
{0, 1, 2, . . . , k − 1}). The idea at this point is of course to win the Ti-
factorization from the Ti+1-factorization (i ∈ {0, 1, 2, . . . , k − 1}). Since

(1) Ti+1 = Ti/R
+

we apply Lemma 3.4. It tells us that the complexity for finding the PFD of
Ti is bounded by O(n6).

After at most k (k ≤ n) steps we know the PFD of G. Thus the
complexity of our algorithm is bounded by O(n7).

Corollary 3.7. If the first thinness condition of Theorem 3.6 is not satisfied,
that is, if G is not thin, then the PFD of G can still be computed in O(n7)
time.

Proof. If G is not thin we simply apply the relation R before we start, if
necessary, with the R+-applications. To get the G-decomposition from the
G/R-decomposition we just have to apply Lemma 3.5.

Corollary 3.7 is our most general result concerning PFDs with respect to
directed cardinal products. It gives us a polynomial algorithm to compute
the PFD of graphs that are R+|R−- and R−|R+-connected — those are
shown to have a unique PFD by McKenzie (Theorem 2.2) — and additionally
fulfill the assumption that all quotient graphs in Theorem 3.6 are thin.
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Clearly all results in the third section, especially Theorem 3.6, also hold if
we replace R+ by R−, N+ by N− and vice versa. In view of this theorem
we assume that it should be possible to prove Theorem 3.6 without using
the thinness conditions concerning the quotient graphs of G.

The following conjecture was proposed by one of the referees. We are
sure that it is true, but could not find an easy proof.

Conjecture 3.8. For any digraph H there is a digraph G such that G/R+

is isomorphic to H.
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