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Abstract

The competition graph of a digraph D is a graph which has the
same vertex set as D and has an edge between two distinct vertices x

and y if and only if there exists a vertex v in D such that (x, v) and
(y, v) are arcs of D. For any graph G, G together with sufficiently many
isolated vertices is the competition graph of some acyclic digraph. The
competition number k(G) of a graph G is defined to be the smallest
number of such isolated vertices. In general, it is hard to compute
the competition number k(G) for a graph G and to characterize all
graphs with given competition number k has been one of the important
research problems in the study of competition graphs.

The Johnson graph J(n, d) has the vertex set {vX | X ∈
(

[n]
d

)

},

where
(

[n]
d

)

denotes the set of all d-subsets of an n-set [n] = {1, . . . , n},
and two vertices vX1

and vX2
are adjacent if and only if |X1 ∩ X2| =

d − 1. In this paper, we study the edge clique number and the com-
petition number of J(n, d). Especially we give the exact competition
numbers of J(n, 2) and J(n, 3).
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1. Introduction

The competition graph C(D) of a digraph D is a simple undirected graph
which has the same vertex set as D and has an edge between two distinct
vertices x and y if and only if there is a vertex v in D such that (x, v) and
(y, v) are arcs of D. The notion of a competition graph was introduced by
Cohen [3] as a means of determining the smallest dimension of ecological
phase space (see also [4]). Since then, various variations have been defined
and studied by many authors (see [11, 15] for surveys and [1, 2, 7, 8, 9, 10,
12, 14, 19, 20] for some recent results). Besides an application to ecology,
the concept of competition graph can be applied to a variety of fields, as
summarized in [17].

Roberts [18] observed that, for a graph G, G together with sufficiently
many isolated vertices is the competition graph of an acyclic digraph. Then
he defined the competition number k(G) of a graph G to be the smallest
number k such that G together with k isolated vertices is the competition
graph of an acyclic digraph.

A subset S of the vertex set of a graph G is called a clique of G if the
subgraph of G induced by S is a complete graph. For a clique S of a graph
G and an edge e of G, we say e is covered by S if both of the endpoints of e

are contained in S. An edge clique cover of a graph G is a family of cliques
such that each edge of G is covered by some clique in the family. The edge

clique cover number θE(G) of a graph G is the minimum size of an edge
clique cover of G. We call an edge clique cover of G with the minimum size
θE(G) a minimum edge clique cover of G. A vertex clique cover of a graph
G is a family of cliques such that each vertex of G is contained in some
clique in the family. The vertex clique cover number θV (G) of a graph G is
the minimum size of a vertex clique cover of G. Dutton and Brigham [5]
characterized the competition graphs of acyclic digraphs using edge clique
covers of graphs.

Roberts [18] observed that the characterization of competition graphs
is equivalent to the computation of competition numbers. It does not seem
to be easy in general to compute k(G) for a graph G, as Opsut [16] showed
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that the computation of the competition number of a graph is an NP-hard
problem (see [11, 13] for graphs whose competition numbers are known).
For some special graph families, we have explicit formulae for computing
competition numbers. For example, if G is a chordal graph without isolated
vertices then k(G) = 1, and if G is a nontrivial triangle-free connected graph
then k(G) = |E(G)| − |V (G)| + 2 (see [18]).

In this paper, we study the competition numbers of Johnson graphs.
We denote an n-set {1, . . . , n} by [n] and the set of all d-subsets of an n-set

by
([n]

d

)

. The Johnson graph J(n, d) has the vertex set {vX | X ∈
([n]

d

)

},
and two vertices vX1

and vX2
are adjacent if and only if |X1 ∩ X2| = d − 1

(for reference, see [6]). For example, the Johnson graph J(5, 2) is given in
Figure 1.
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Figure 1. The Johnson graph J(5, 2).

As it is known that J(n, d) ∼= J(n, n−d), we assume that n ≥ 2d. Our main
results are the following.

Theorem 1. For n ≥ 4, we have k(J(n, 2)) = 2.

Theorem 2. For n ≥ 6, we have k(J(n, 3)) = 4.

We use the following notation and terminology in this paper. For a digraph
D, an ordering v1, v2, . . . , vn of the vertices of D is called an acyclic ordering

of D if (vi, vj) ∈ A(D) implies i < j. It is well-known that a digraph
D is acyclic if and only if there exists an acyclic ordering of D. For a
digraph D and a vertex v of D, the out-neighborhood of v in D is the set
{w ∈ V (D) | (v, w) ∈ A(D)}. A vertex in the out-neighborhood of a vertex
v in a digraph D is called a prey of v in D. For simplicity, we denote the
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out-neighborhood of a vertex v in a digraph D by PD(v) instead of usual
notation N+

D (v). For a graph G and a vertex v of G, we define the (open)
neighborhood NG(v) of v in G to be the set {u ∈ V (G) | uv ∈ E(G)}. We
sometimes also use NG(v) to stand for the subgraph induced by its vertices.

2. A Lower Bound for the Competition Number of J(n, d)

In this section, we give lower bounds for the competition number of the
Johnson graph J(n, d).

Lemma 3. Let n and d be positive integers with n ≥ 2d. For any vertex x

of the Johnson graph J(n, d), we have θV (NJ(n,d)(x)) = d.

Proof. If d = 1, then J(n, d) is a complete graph and the lemma is trivially
true. Assume that d ≥ 2. Take any vertex x in J(n, d). Then x = vA for

some A ∈
([n]

d

)

. For any vertex vA in J(n, d), the set

Si(vA) := {vB | B = (A \ {i}) ∪ {j} for some j ∈ [n] \ A}

forms a clique of J(n, d) for each i ∈ A. To see why, take two distinct vertices
vB and vC in Si(vA). Then B = (A \ {i}) ∪ {j} and C = (A \ {i}) ∪ {k} for
some distinct j, k ∈ [n] \ A. Clearly |B ∩ C| = d − 1, and so vB and vC are
adjacent in J(n, d).

Take a vertex vB in NJ(n,d)(vA). Then B = (A \ {i}) ∪ {j} for some
i ∈ A and j ∈ [n] \ A and so vB ∈ Si(vA). Thus {Si(vA) | i ∈ A} is a vertex
clique cover of NJ(n,d)(vA). Thus θV (NJ(n,d)(vA)) ≤ d. On the other hand,

|((A \ {i}) ∪ {j}) ∩ ((A \ {i′}) ∪ {j′})| = d − 2

if i, i′ ∈ A and j, j ′ ∈ [n] \ A satisfy i 6= i′ and j 6= j′ (such i, i′, j, j′

exist since n ≥ 2d ≥ 4). This implies that θV (NJ(n,d)(vA)) ≥ d. Hence
θV (NJ(n,d)(vA)) = d.

Opsut [16] gave a lower bound for the competition number of a graph G as
follows:

k(G) ≥ min{θV (NG(v)) | v ∈ V (G)}.

Together with Lemma 3, we have k(J(n, d)) ≥ d for positive integers n and
d satisfying n ≥ 2d. The following theorem gives a better lower bound for
k(J(n, d)) if d ≥ 2.
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Theorem 4. For n ≥ 2d ≥ 4, we have k(J(n, d)) ≥ 2d − 2.

Proof. Put k := k(J(n, d)). Then there exists an acyclic digraph D such
that C(D) = J(n, d) ∪ Ik, where Ik = {z1, z2, . . . , zk} is a set of isolated
vertices. Let x1, x2, . . . , x(n

d)
, z1, z2, . . . , zk be an acyclic ordering of D. Let

v1 := x(n

d)
and v2 := x(n

d)−1. By Lemma 3, we have θV (NJ(n,d)(xi)) = d for

i = 1, . . . ,
(

n
d

)

. Thus vi has at least d distinct prey in D, that is,

(2.1) |PD(vi)| ≥ d.

Since x1, x2, . . . , x(n

d)
, z1, z2, . . . , zk is an acyclic ordering of D, we have

(2.2) PD(v1) ∪ PD(v2) ⊂ Ik ∪ {v1}.

Moreover, we may claim the following:

Claim. For any two adjacent vertices vX1
and vX2

of J(n, d), we have
|PD(vX1

) \ PD(vX2
)| ≥ d − 1.

Proof of Claim. Suppose that vX1
and vX2

are adjacent in J(n, d). Then
|X1 ∩ X2| = d − 1 and

|[n] \ (X1 ∪ X2)| ≥ 2d − |X1| − |X2| + |X1 ∩ X2| = d − 1.

We take d − 1 elements from [n] \ (X1 ∪ X2), say z1, z2, . . . , zd−1, and put
X1 ∩ X2 := {y1, y2, . . . , yd−1}.

For each 1 ≤ j ≤ d−1, we put Zj := X1∪{zj}\{yj}. Then |Zj | = d and
so vZj

is a vertex in J(n, d). Note that |Zj∩X1| = d−1 and |Zj∩X2| = d−2.
Thus vZj

is adjacent to vX1
while it is not adjacent to vX2

. Therefore

PD(vX1
) ∩ PD(vZj

) 6= ∅ and PD(vX2
) ∩ PD(vZj

) = ∅.

This implies

PD(vX1
) \ PD(vX2

) ⊇
d−1
⋃

j=1

(

PD(vX1
) ∩ PD(vZj

)
)

,(2.3)

and, trivially, for each j ∈ {1, . . . , d − 1},

|PD(vX1
) ∩ PD(vZj

)| ≥ 1.(2.4)
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Note that |Zj ∩Zi| = d−2 for i 6= j. Therefore vZi
and vZj

are not adjacent
and so PD(vZi

) ∩ PD(vZj
) = ∅. Thus, for i 6= j,

(PD(vX1
) ∩ PD(vZi

)) ∩
(

PD(vX1
) ∩ PD(vZj

)
)

= ∅.(2.5)

From (2.3), (2.4), and (2.5), it follows that

|PD(vX1
) \ PD(vX2

)| ≥
d−1
∑

j=1

|PD(vX1
) ∩ PD(vZj

)| ≥ d − 1.

This completes the proof of the claim. 2

Now suppose that v1 and v2 are not adjacent in J(n, d). Then v1 and v2 do
not have a common prey in D, that is,

(2.6) PD(v1) ∩ PD(v2) = ∅.

By (2.1), (2.2) and (2.6), we have

k + 1 ≥ |PD(v1) ∪ PD(v2)| = |PD(v1)| + |PD(v2)| ≥ 2d.

Hence k ≥ 2d − 1 > 2d − 2.

Next suppose that v1 and v2 are adjacent in J(n, d). Then v1 and v2

have at least one common prey in D, that is,

(2.7) |PD(v1) ∩ PD(v2)| ≥ 1.

By the above claim,

(2.8) |PD(v1) \ PD(v2)| ≥ d − 1 and |PD(v2) \ PD(v1)| ≥ d − 1.

Then

k + 1 ≥ |PD(v1) ∪ PD(v2)| (by (2.2))

= |PD(v1) \ PD(v2)| + |PD(v2) \ PD(v1)| + |PD(v1) ∩ PD(v2)|

≥ (d − 1) + (d − 1) + 1 (by (2.7) and (2.8))

= 2d − 1.

Hence it holds that k ≥ 2d − 2.
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3. A Minimum Edge Clique Cover of J(n, d)

In this section, we build a minimum edge clique cover of J(n, d).

Given a Johnson graph J(n, d), we define a family Fn
d of cliques of

J(n, d) as follows. For each Y ∈
( [n]
d−1

)

, we put

SY := {vX | X = Y ∪ {j} for j ∈ [n] − Y }.

Note that SY is a clique of J(n, d) with size n − d + 1. We let

(3.1) Fn
d := {SY | Y ∈

(

[n]

d − 1

)

}.

Then it is not difficult to show that Fn
d is the collection of cliques of maxi-

mum size. Moreover the family Fn
d is an edge clique cover of J(n, d). To see

why, take any edge vX1
vX2

of J(n, d). Then |X1 ∩ X2| = d − 1 and both of
vX1

and vX2
belong to the clique SX1∩X2

∈ Fn
d . Thus Fn

d is an edge clique
cover of J(n, d).

We will show that Fn
d is a minimum edge clique cover of J(n, d). Prior

to that, we present the following theorem. For two distinct cliques S and S ′

of a graph G, we say S and S ′ are edge disjoint if |S ∩ S ′| ≤ 1.

Theorem 5. θE(J(n, d)) =
(

n
d−1

)

and any minimum edge clique cover of

J(n, d) consists of edge disjoint maximum cliques.

Proof. Let E be a minimum edge clique cover for J(n, d), that is, θE(J(n, d))
= |E|. Since Fn

d is an edge clique cover with |Fn
d | =

(

n
d−1

)

, we have

θE(J(n, d)) ≤
(

n
d−1

)

.

Now we show that |E| ≥
(

n
d−1

)

. Since the size of a maximum clique is

n − d + 1, we have |E(S)| ≤
(

n−d+1
2

)

for each S ∈ E where E(S) =
(

S
2

)

.
Therefore,

(3.2) |E(J(n, d))| ≤
∑

S∈E

|E(S)| ≤

(

n − d + 1

2

)

× |E|,

and the first equality holds if and only if none of two distinct cliques in
E have a common edge, and the second equality holds if and only if any
element of E is a maximum clique in J(n, d).
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Since the Johnson graph J(n, d) is a d(n−d)-regular graph and the number
of vertices of J(n, d) is

(

n
d

)

,

(3.3) |E(J(n, d))| =
1

2
d(n − d) ×

(

n

d

)

=

(

n − d + 1

2

)

×

(

n

d − 1

)

.

From (3.2) and (3.3), it follows that
(

n−d+1
2

)

×
(

n
d−1

)

≤
(

n−d+1
2

)

× |E|. Thus

we have
(

n
d−1

)

≤ |E|. Hence we can conclude that θE(J(n, d)) =
(

n
d−1

)

.
Furthermore, two equalities in (3.2) must hold, and therefore any mini-

mum edge clique cover of J(n, d) consists of edge disjoint maximum
cliques.

Since |Fn
d | =

(

n
d−1

)

, the following corollary is an immediate consequence of
Theorem 5:

Corollary 6. The edge clique cover Fn
d of J(n, d) defined in (3.1) is a min-

imum edge clique cover of J(n, d).

4. Proofs of Theorems 1 and 2

First, we define an order ≺ on the set
([n]

d

)

as follows. Take two distinct ele-

ments X1 and X2 in
([n]

d

)

. Let X1 = {i1, i2, . . . , id} and X2 = {j1, j2, . . . , jd}
where i1 < · · · < id and j1 < · · · < jd. Then we define X1 ≺ X2 if there
exists t ∈ {1, . . . , d} such that is = js for 1 ≤ s ≤ t − 1 and it < jt. It is
easy to see that ≺ is a total order.

Now we prove Theorem 1.

Proof of Theorem 1. As k(J(n, 2)) ≥ 2 by Theorem 4, it remains to show
k(J(n, 2)) ≤ 2. We define a digraph D as follows:

V (D) = V (J(n, 2)) ∪ I2

where I2 = {z1, z2}, and

A(D) =
n−2
⋃

i=1

{

(x, v{i+1,i+2}) | x ∈ S{i} ∈ Fn
2

}

∪
2

⋃

i=1

{

(x, zi) | x ∈ S{n−2+i} ∈ Fn
2

}

.
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Since the vertices of each clique in the edge clique cover F n
2 has a common

prey in D, it holds that C(D) = J(n, 2)∪ I2. Each vertex in S{i} is denoted

by vX for some X ∈
([n]

2

)

which contains i. Then by the definition of ≺,
vX ≺ v{i+1,i+2} for i = 1, . . . , n − 2. Thus, there exists an arc from a vertex
x to a vertex y in D if and only if either x = vX and y = vY with X ≺ Y ,
or x = vX and y = zi with X ∈ S{n−1} ∪ S{n} and i ∈ {1, 2}. Therefore D

is acyclic. Thus we have k(J(n, 2)) ≤ 2 and this completes the proof.

Proof of Theorem 2. By Theorem 4, we have k(J(n, 3)) ≥ 4. It remains
to show k(J(n, 3)) ≤ 4. We define a digraph D as follows:

V (D) = V (J(n, 3)) ∪ I4

where I4 = {z1, z2, z3, z4}, and

A(D) =
n−3
⋃

i=1

n−2
⋃

j=i+1

{

(x, v{i,j+1,j+2}) | x ∈ S{i,j} ∈ Fn
3

}

∪
n−3
⋃

i=1

{

(x, v{i+1,i+2,i+3}) | x ∈ S{i,n−1} ∈ Fn
3

}

∪
n−4
⋃

i=1

{

(x, v{i+1,i+2,i+4}) | x ∈ S{i,n} ∈ Fn
3

}

∪
3

⋃

i=1

{(x, zi) | x ∈ S{n−4+i,n} ∈ Fn
3 }

∪ {(x, z4) | x ∈ S{n−2,n−1} ∈ Fn
3 }.

It is easy to check that

Fn
3 = {S{i,j} | i = 1, . . . , n − 3; j = i + 1, . . . , n − 2}

∪ {S{i,n−1} | i = 1, . . . , n − 3} ∪ {S{i,n} | i = 1, . . . , n − 4}

∪ {S{n−3,n}, S{n−2,n}, S{n−1,n}} ∪ {S{n−2,n−1}}.

Thus C(D) = J(n, 3) ∪ I4. Moreover, any vertex x ∈ S{i,j} is denoted

by vX for some X ∈
([n]

3

)

which contains i and j. By the definition of ≺,
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X ≺ {i, j+1, j+2}. In a similar manner, for x in other cliques in F n
3 , we may

show that (x, y) ∈ A(D) if and only if either x = vX and y = vY with X ≺ Y ,
or x = vX and y = zi with X ∈ S{n−3,n} ∪ S{n−2,n} ∪ S{n−1,n} ∪ S{n−2,n−1}

and i ∈ {1, 2, 3, 4}. Thus D is acyclic. Hence k(J(n, 3)) ≤ 4.

5. Concluding Remarks

In this paper, we gave some lower bounds for the competition numbers of
Johnson graphs, and computed the competition numbers of Johnson graphs
J(n, 2) and J(n, 3). It would be natural to ask: What is the exact value of
the competition number of a Johnson graph J(n, 4) for n ≥ 8? Eventually,
what are the exact values of the competition numbers of the Johnson graphs
J(n, q) for q ≥ 5?
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