THE COMPETITION NUMBERS OF JOHNSON GRAPHS

Suh-Ryung Kim*, Boram Park* ${ }^{* \dagger}$
Department of Mathematics Education
Seoul National University, Seoul 151-742, Korea
Yoshio Sano ${ }^{\S}$
Research Institute for Mathematical Sciences
Kyoto University, Kyoto 606-8502, Japan

Abstract

The competition graph of a digraph D is a graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number $k(G)$ of a graph G is defined to be the smallest number of such isolated vertices. In general, it is hard to compute the competition number $k(G)$ for a graph G and to characterize all graphs with given competition number k has been one of the important research problems in the study of competition graphs.

The Johnson graph $J(n, d)$ has the vertex set $\left\{v_{X} \left\lvert\, X \in\binom{[n]}{d}\right.\right\}$, where $\binom{[n]}{d}$ denotes the set of all d-subsets of an n-set $[n]=\{1, \ldots, n\}$, and two vertices $v_{X_{1}}$ and $v_{X_{2}}$ are adjacent if and only if $\left|X_{1} \cap X_{2}\right|=$ $d-1$. In this paper, we study the edge clique number and the competition number of $J(n, d)$. Especially we give the exact competition numbers of $J(n, 2)$ and $J(n, 3)$.

[^0]Keywords: competition graph, competition number, edge clique cover, Johnson graph.
2010 Mathematics Subject Classification: 05C69, 05C75.

1. Introduction

The competition graph $C(D)$ of a digraph D is a simple undirected graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there is a vertex v in D such that (x, v) and (y, v) are arcs of D. The notion of a competition graph was introduced by Cohen [3] as a means of determining the smallest dimension of ecological phase space (see also [4]). Since then, various variations have been defined and studied by many authors (see [11, 15] for surveys and $[1,2,7,8,9,10$, $12,14,19,20]$ for some recent results). Besides an application to ecology, the concept of competition graph can be applied to a variety of fields, as summarized in [17].

Roberts [18] observed that, for a graph G, G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. Then he defined the competition number $k(G)$ of a graph G to be the smallest number k such that G together with k isolated vertices is the competition graph of an acyclic digraph.

A subset S of the vertex set of a graph G is called a clique of G if the subgraph of G induced by S is a complete graph. For a clique S of a graph G and an edge e of G, we say e is covered by S if both of the endpoints of e are contained in S. An edge clique cover of a graph G is a family of cliques such that each edge of G is covered by some clique in the family. The edge clique cover number $\theta_{E}(G)$ of a graph G is the minimum size of an edge clique cover of G. We call an edge clique cover of G with the minimum size $\theta_{E}(G)$ a minimum edge clique cover of G. A vertex clique cover of a graph G is a family of cliques such that each vertex of G is contained in some clique in the family. The vertex clique cover number $\theta_{V}(G)$ of a graph G is the minimum size of a vertex clique cover of G. Dutton and Brigham [5] characterized the competition graphs of acyclic digraphs using edge clique covers of graphs.

Roberts [18] observed that the characterization of competition graphs is equivalent to the computation of competition numbers. It does not seem to be easy in general to compute $k(G)$ for a graph G, as Opsut [16] showed
that the computation of the competition number of a graph is an NP-hard problem (see $[11,13]$ for graphs whose competition numbers are known). For some special graph families, we have explicit formulae for computing competition numbers. For example, if G is a chordal graph without isolated vertices then $k(G)=1$, and if G is a nontrivial triangle-free connected graph then $k(G)=|E(G)|-|V(G)|+2$ (see [18]).

In this paper, we study the competition numbers of Johnson graphs. We denote an n-set $\{1, \ldots, n\}$ by $[n]$ and the set of all d-subsets of an n-set by $\binom{[n]}{d}$. The Johnson graph $J(n, d)$ has the vertex set $\left\{v_{X} \left\lvert\, X \in\binom{[n]}{d}\right.\right\}$, and two vertices $v_{X_{1}}$ and $v_{X_{2}}$ are adjacent if and only if $\left|X_{1} \cap X_{2}\right|=d-1$ (for reference, see [6]). For example, the Johnson graph $J(5,2)$ is given in Figure 1.

Figure 1. The Johnson graph $J(5,2)$.
As it is known that $J(n, d) \cong J(n, n-d)$, we assume that $n \geq 2 d$. Our main results are the following.

Theorem 1. For $n \geq 4$, we have $k(J(n, 2))=2$.
Theorem 2. For $n \geq 6$, we have $k(J(n, 3))=4$.
We use the following notation and terminology in this paper. For a digraph D, an ordering $v_{1}, v_{2}, \ldots, v_{n}$ of the vertices of D is called an acyclic ordering of D if $\left(v_{i}, v_{j}\right) \in A(D)$ implies $i<j$. It is well-known that a digraph D is acyclic if and only if there exists an acyclic ordering of D. For a digraph D and a vertex v of D, the out-neighborhood of v in D is the set $\{w \in V(D) \mid(v, w) \in A(D)\}$. A vertex in the out-neighborhood of a vertex v in a digraph D is called a prey of v in D. For simplicity, we denote the
out-neighborhood of a vertex v in a digraph D by $P_{D}(v)$ instead of usual notation $N_{D}^{+}(v)$. For a graph G and a vertex v of G, we define the (open) neighborhood $N_{G}(v)$ of v in G to be the set $\{u \in V(G) \mid u v \in E(G)\}$. We sometimes also use $N_{G}(v)$ to stand for the subgraph induced by its vertices.

2. A Lower Bound for the Competition Number of $J(n, d)$

In this section, we give lower bounds for the competition number of the Johnson graph $J(n, d)$.

Lemma 3. Let n and d be positive integers with $n \geq 2 d$. For any vertex x of the Johnson graph $J(n, d)$, we have $\theta_{V}\left(N_{J(n, d)}(x)\right)=d$.

Proof. If $d=1$, then $J(n, d)$ is a complete graph and the lemma is trivially true. Assume that $d \geq 2$. Take any vertex x in $J(n, d)$. Then $x=v_{A}$ for some $A \in\binom{[n]}{d}$. For any vertex v_{A} in $J(n, d)$, the set

$$
S_{i}\left(v_{A}\right):=\left\{v_{B} \mid B=(A \backslash\{i\}) \cup\{j\} \text { for some } j \in[n] \backslash A\right\}
$$

forms a clique of $J(n, d)$ for each $i \in A$. To see why, take two distinct vertices v_{B} and v_{C} in $S_{i}\left(v_{A}\right)$. Then $B=(A \backslash\{i\}) \cup\{j\}$ and $C=(A \backslash\{i\}) \cup\{k\}$ for some distinct $j, k \in[n] \backslash A$. Clearly $|B \cap C|=d-1$, and so v_{B} and v_{C} are adjacent in $J(n, d)$.

Take a vertex v_{B} in $N_{J(n, d)}\left(v_{A}\right)$. Then $B=(A \backslash\{i\}) \cup\{j\}$ for some $i \in A$ and $j \in[n] \backslash A$ and so $v_{B} \in S_{i}\left(v_{A}\right)$. Thus $\left\{S_{i}\left(v_{A}\right) \mid i \in A\right\}$ is a vertex clique cover of $N_{J(n, d)}\left(v_{A}\right)$. Thus $\theta_{V}\left(N_{J(n, d)}\left(v_{A}\right)\right) \leq d$. On the other hand,

$$
\left|((A \backslash\{i\}) \cup\{j\}) \cap\left(\left(A \backslash\left\{i^{\prime}\right\}\right) \cup\left\{j^{\prime}\right\}\right)\right|=d-2
$$

if $i, i^{\prime} \in A$ and $j, j^{\prime} \in[n] \backslash A$ satisfy $i \neq i^{\prime}$ and $j \neq j^{\prime}$ (such $i, i^{\prime}, j, j^{\prime}$ exist since $n \geq 2 d \geq 4)$. This implies that $\theta_{V}\left(N_{J(n, d)}\left(v_{A}\right)\right) \geq d$. Hence $\theta_{V}\left(N_{J(n, d)}\left(v_{A}\right)\right)=d$.
Opsut [16] gave a lower bound for the competition number of a graph G as follows:

$$
k(G) \geq \min \left\{\theta_{V}\left(N_{G}(v)\right) \mid v \in V(G)\right\}
$$

Together with Lemma 3, we have $k(J(n, d)) \geq d$ for positive integers n and d satisfying $n \geq 2 d$. The following theorem gives a better lower bound for $k(J(n, d))$ if $d \geq 2$.

Theorem 4. For $n \geq 2 d \geq 4$, we have $k(J(n, d)) \geq 2 d-2$.
Proof. Put $k:=k(J(n, d))$. Then there exists an acyclic digraph D such that $C(D)=J(n, d) \cup I_{k}$, where $I_{k}=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ is a set of isolated vertices. Let $x_{1}, x_{2}, \ldots, x_{\binom{n}{d}}, z_{1}, z_{2}, \ldots, z_{k}$ be an acyclic ordering of D. Let $v_{1}:=x_{\binom{n}{d}}$ and $v_{2}:=x_{\binom{n}{d}-1}$. By Lemma 3, we have $\theta_{V}\left(N_{J(n, d)}\left(x_{i}\right)\right)=d$ for $i=1, \ldots,\binom{n}{d}$. Thus v_{i} has at least d distinct prey in D, that is,

$$
\begin{equation*}
\left|P_{D}\left(v_{i}\right)\right| \geq d \tag{2.1}
\end{equation*}
$$

Since $x_{1}, x_{2}, \ldots, x_{\binom{n}{d}}, z_{1}, z_{2}, \ldots, z_{k}$ is an acyclic ordering of D, we have

$$
\begin{equation*}
P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right) \subset I_{k} \cup\left\{v_{1}\right\} . \tag{2.2}
\end{equation*}
$$

Moreover, we may claim the following:
Claim. For any two adjacent vertices $v_{X_{1}}$ and $v_{X_{2}}$ of $J(n, d)$, we have $\left|P_{D}\left(v_{X_{1}}\right) \backslash P_{D}\left(v_{X_{2}}\right)\right| \geq d-1$.

Proof of Claim. Suppose that $v_{X_{1}}$ and $v_{X_{2}}$ are adjacent in $J(n, d)$. Then $\left|X_{1} \cap X_{2}\right|=d-1$ and

$$
\left|[n] \backslash\left(X_{1} \cup X_{2}\right)\right| \geq 2 d-\left|X_{1}\right|-\left|X_{2}\right|+\left|X_{1} \cap X_{2}\right|=d-1 .
$$

We take $d-1$ elements from $[n] \backslash\left(X_{1} \cup X_{2}\right)$, say $z_{1}, z_{2}, \ldots, z_{d-1}$, and put $X_{1} \cap X_{2}:=\left\{y_{1}, y_{2}, \ldots, y_{d-1}\right\}$.

For each $1 \leq j \leq d-1$, we put $Z_{j}:=X_{1} \cup\left\{z_{j}\right\} \backslash\left\{y_{j}\right\}$. Then $\left|Z_{j}\right|=d$ and so $v_{Z_{j}}$ is a vertex in $J(n, d)$. Note that $\left|Z_{j} \cap X_{1}\right|=d-1$ and $\left|Z_{j} \cap X_{2}\right|=d-2$. Thus $v_{Z_{j}}$ is adjacent to $v_{X_{1}}$ while it is not adjacent to $v_{X_{2}}$. Therefore

$$
P_{D}\left(v_{X_{1}}\right) \cap P_{D}\left(v_{Z_{j}}\right) \neq \emptyset \quad \text { and } \quad P_{D}\left(v_{X_{2}}\right) \cap P_{D}\left(v_{Z_{j}}\right)=\emptyset .
$$

This implies

$$
\begin{equation*}
P_{D}\left(v_{X_{1}}\right) \backslash P_{D}\left(v_{X_{2}}\right) \supseteq \bigcup_{j=1}^{d-1}\left(P_{D}\left(v_{X_{1}}\right) \cap P_{D}\left(v_{Z_{j}}\right)\right), \tag{2.3}
\end{equation*}
$$

and, trivially, for each $j \in\{1, \ldots, d-1\}$,

$$
\begin{equation*}
\left|P_{D}\left(v_{X_{1}}\right) \cap P_{D}\left(v_{Z_{j}}\right)\right| \geq 1 \tag{2.4}
\end{equation*}
$$

Note that $\left|Z_{j} \cap Z_{i}\right|=d-2$ for $i \neq j$. Therefore $v_{Z_{i}}$ and $v_{Z_{j}}$ are not adjacent and so $P_{D}\left(v_{Z_{i}}\right) \cap P_{D}\left(v_{Z_{j}}\right)=\emptyset$. Thus, for $i \neq j$,

$$
\begin{equation*}
\left(P_{D}\left(v_{X_{1}}\right) \cap P_{D}\left(v_{Z_{i}}\right)\right) \cap\left(P_{D}\left(v_{X_{1}}\right) \cap P_{D}\left(v_{Z_{j}}\right)\right)=\emptyset . \tag{2.5}
\end{equation*}
$$

From (2.3), (2.4), and (2.5), it follows that

$$
\left|P_{D}\left(v_{X_{1}}\right) \backslash P_{D}\left(v_{X_{2}}\right)\right| \geq \sum_{j=1}^{d-1}\left|P_{D}\left(v_{X_{1}}\right) \cap P_{D}\left(v_{Z_{j}}\right)\right| \geq d-1 .
$$

This completes the proof of the claim.
Now suppose that v_{1} and v_{2} are not adjacent in $J(n, d)$. Then v_{1} and v_{2} do not have a common prey in D, that is,

$$
\begin{equation*}
P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)=\emptyset . \tag{2.6}
\end{equation*}
$$

By (2.1), (2.2) and (2.6), we have

$$
k+1 \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right)\right|=\left|P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{2}\right)\right| \geq 2 d .
$$

Hence $k \geq 2 d-1>2 d-2$.
Next suppose that v_{1} and v_{2} are adjacent in $J(n, d)$. Then v_{1} and v_{2} have at least one common prey in D, that is,

$$
\begin{equation*}
\left|P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)\right| \geq 1 \tag{2.7}
\end{equation*}
$$

By the above claim,

$$
\begin{equation*}
\left|P_{D}\left(v_{1}\right) \backslash P_{D}\left(v_{2}\right)\right| \geq d-1 \quad \text { and } \quad\left|P_{D}\left(v_{2}\right) \backslash P_{D}\left(v_{1}\right)\right| \geq d-1 \tag{2.8}
\end{equation*}
$$

Then

$$
\begin{aligned}
k+1 & \geq\left|P_{D}\left(v_{1}\right) \cup P_{D}\left(v_{2}\right)\right| \quad(\text { by }(2.2)) \\
& =\left|P_{D}\left(v_{1}\right) \backslash P_{D}\left(v_{2}\right)\right|+\left|P_{D}\left(v_{2}\right) \backslash P_{D}\left(v_{1}\right)\right|+\left|P_{D}\left(v_{1}\right) \cap P_{D}\left(v_{2}\right)\right| \\
& \geq(d-1)+(d-1)+1 \quad(\text { by }(2.7) \text { and }(2.8)) \\
& =2 d-1 .
\end{aligned}
$$

Hence it holds that $k \geq 2 d-2$.

3. A Minimum Edge Clique Cover of $J(n, d)$

In this section, we build a minimum edge clique cover of $J(n, d)$.
Given a Johnson graph $J(n, d)$, we define a family \mathcal{F}_{d}^{n} of cliques of $J(n, d)$ as follows. For each $Y \in\binom{[n]}{d-1}$, we put

$$
S_{Y}:=\left\{v_{X} \mid X=Y \cup\{j\} \text { for } j \in[n]-Y\right\} .
$$

Note that S_{Y} is a clique of $J(n, d)$ with size $n-d+1$. We let

$$
\begin{equation*}
\mathcal{F}_{d}^{n}:=\left\{S_{Y} \left\lvert\, Y \in\binom{[n]}{d-1}\right.\right\} . \tag{3.1}
\end{equation*}
$$

Then it is not difficult to show that \mathcal{F}_{d}^{n} is the collection of cliques of maximum size. Moreover the family \mathcal{F}_{d}^{n} is an edge clique cover of $J(n, d)$. To see why, take any edge $v_{X_{1}} v_{X_{2}}$ of $J(n, d)$. Then $\left|X_{1} \cap X_{2}\right|=d-1$ and both of $v_{X_{1}}$ and $v_{X_{2}}$ belong to the clique $S_{X_{1} \cap X_{2}} \in \mathcal{F}_{d}^{n}$. Thus \mathcal{F}_{d}^{n} is an edge clique cover of $J(n, d)$.

We will show that \mathcal{F}_{d}^{n} is a minimum edge clique cover of $J(n, d)$. Prior to that, we present the following theorem. For two distinct cliques S and S^{\prime} of a graph G, we say S and S^{\prime} are edge disjoint if $\left|S \cap S^{\prime}\right| \leq 1$.

Theorem 5. $\theta_{E}(J(n, d))=\binom{n}{d-1}$ and any minimum edge clique cover of $J(n, d)$ consists of edge disjoint maximum cliques.

Proof. Let \mathcal{E} be a minimum edge clique cover for $J(n, d)$, that is, $\theta_{E}(J(n, d))$ $=|\mathcal{E}|$. Since \mathcal{F}_{d}^{n} is an edge clique cover with $\left|\mathcal{F}_{d}^{n}\right|=\binom{n}{d-1}$, we have $\theta_{E}(J(n, d)) \leq\binom{ n}{d-1}$.

Now we show that $|\mathcal{E}| \geq\binom{ n}{d-1}$. Since the size of a maximum clique is $n-d+1$, we have $|E(S)| \leq\binom{ n-d+1}{2}$ for each $S \in \mathcal{E}$ where $E(S)=\binom{S}{2}$. Therefore,

$$
\begin{equation*}
|E(J(n, d))| \leq \sum_{S \in \mathcal{E}}|E(S)| \leq\binom{ n-d+1}{2} \times|\mathcal{E}|, \tag{3.2}
\end{equation*}
$$

and the first equality holds if and only if none of two distinct cliques in \mathcal{E} have a common edge, and the second equality holds if and only if any element of \mathcal{E} is a maximum clique in $J(n, d)$.

Since the Johnson graph $J(n, d)$ is a $d(n-d)$-regular graph and the number of vertices of $J(n, d)$ is $\binom{n}{d}$,

$$
\begin{equation*}
|E(J(n, d))|=\frac{1}{2} d(n-d) \times\binom{ n}{d}=\binom{n-d+1}{2} \times\binom{ n}{d-1} \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3), it follows that $\binom{n-d+1}{2} \times\binom{ n}{d-1} \leq\binom{ n-d+1}{2} \times|\mathcal{E}|$. Thus we have $\binom{n}{d-1} \leq|\mathcal{E}|$. Hence we can conclude that $\theta_{E}(J(n, d))=\binom{n}{d-1}$.

Furthermore, two equalities in (3.2) must hold, and therefore any minimum edge clique cover of $J(n, d)$ consists of edge disjoint maximum cliques.
Since $\left|\mathcal{F}_{d}^{n}\right|=\binom{n}{d-1}$, the following corollary is an immediate consequence of Theorem 5:

Corollary 6. The edge clique cover \mathcal{F}_{d}^{n} of $J(n, d)$ defined in (3.1) is a minimum edge clique cover of $J(n, d)$.

4. Proofs of Theorems 1 and 2

First, we define an order \prec on the set $\binom{[n]}{d}$ as follows. Take two distinct elements X_{1} and X_{2} in $\binom{[n]}{d}$. Let $X_{1}=\left\{i_{1}, i_{2}, \ldots, i_{d}\right\}$ and $X_{2}=\left\{j_{1}, j_{2}, \ldots, j_{d}\right\}$ where $i_{1}<\cdots<i_{d}$ and $j_{1}<\cdots<j_{d}$. Then we define $X_{1} \prec X_{2}$ if there exists $t \in\{1, \ldots, d\}$ such that $i_{s}=j_{s}$ for $1 \leq s \leq t-1$ and $i_{t}<j_{t}$. It is easy to see that \prec is a total order.

Now we prove Theorem 1.
Proof of Theorem 1. As $k(J(n, 2)) \geq 2$ by Theorem 4, it remains to show $k(J(n, 2)) \leq 2$. We define a digraph D as follows:

$$
V(D)=V(J(n, 2)) \cup I_{2}
$$

where $I_{2}=\left\{z_{1}, z_{2}\right\}$, and

$$
\begin{aligned}
A(D)= & \bigcup_{i=1}^{n-2}\left\{\left(x, v_{\{i+1, i+2\}}\right) \mid x \in S_{\{i\}} \in \mathcal{F}_{2}^{n}\right\} \\
& \cup \bigcup_{i=1}^{2}\left\{\left(x, z_{i}\right) \mid x \in S_{\{n-2+i\}} \in \mathcal{F}_{2}^{n}\right\}
\end{aligned}
$$

Since the vertices of each clique in the edge clique cover \mathcal{F}_{2}^{n} has a common prey in D, it holds that $C(D)=J(n, 2) \cup I_{2}$. Each vertex in $S_{\{i\}}$ is denoted by v_{X} for some $X \in\binom{[n]}{2}$ which contains i. Then by the definition of \prec, $v_{X} \prec v_{\{i+1, i+2\}}$ for $i=1, \ldots, n-2$. Thus, there exists an arc from a vertex x to a vertex y in D if and only if either $x=v_{X}$ and $y=v_{Y}$ with $X \prec Y$, or $x=v_{X}$ and $y=z_{i}$ with $X \in S_{\{n-1\}} \cup S_{\{n\}}$ and $i \in\{1,2\}$. Therefore D is acyclic. Thus we have $k(J(n, 2)) \leq 2$ and this completes the proof.

Proof of Theorem 2. By Theorem 4, we have $k(J(n, 3)) \geq 4$. It remains to show $k(J(n, 3)) \leq 4$. We define a digraph D as follows:

$$
V(D)=V(J(n, 3)) \cup I_{4}
$$

where $I_{4}=\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$, and

$$
\begin{aligned}
A(D)= & \bigcup_{i=1}^{n-3} \bigcup_{j=i+1}^{n-2}\left\{\left(x, v_{\{i, j+1, j+2\}}\right) \mid x \in S_{\{i, j\}} \in \mathcal{F}_{3}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-3}\left\{\left(x, v_{\{i+1, i+2, i+3\}}\right) \mid x \in S_{\{i, n-1\}} \in \mathcal{F}_{3}^{n}\right\} \\
& \cup \bigcup_{i=1}^{n-4}\left\{\left(x, v_{\{i+1, i+2, i+4\}}\right) \mid x \in S_{\{i, n\}} \in \mathcal{F}_{3}^{n}\right\} \\
& \cup \bigcup_{i=1}^{3}\left\{\left(x, z_{i}\right) \mid x \in S_{\{n-4+i, n\}} \in \mathcal{F}_{3}^{n}\right\} \\
& \cup\left\{\left(x, z_{4}\right) \mid x \in S_{\{n-2, n-1\}} \in \mathcal{F}_{3}^{n}\right\} .
\end{aligned}
$$

It is easy to check that

$$
\begin{aligned}
\mathcal{F}_{3}^{n}=\{ & \left.S_{\{i, j\}} \mid i=1, \ldots, n-3 ; j=i+1, \ldots, n-2\right\} \\
& \cup\left\{S_{\{i, n-1\}} \mid i=1, \ldots, n-3\right\} \cup\left\{S_{\{i, n\}} \mid i=1, \ldots, n-4\right\} \\
& \cup\left\{S_{\{n-3, n\}}, S_{\{n-2, n\}}, S_{\{n-1, n\}}\right\} \cup\left\{S_{\{n-2, n-1\}}\right\} .
\end{aligned}
$$

Thus $C(D)=J(n, 3) \cup I_{4}$. Moreover, any vertex $x \in S_{\{i, j\}}$ is denoted by v_{X} for some $X \in\binom{[n]}{3}$ which contains i and j. By the definition of \prec,
$X \prec\{i, j+1, j+2\}$. In a similar manner, for x in other cliques in \mathcal{F}_{3}^{n}, we may show that $(x, y) \in A(D)$ if and only if either $x=v_{X}$ and $y=v_{Y}$ with $X \prec Y$, or $x=v_{X}$ and $y=z_{i}$ with $X \in S_{\{n-3, n\}} \cup S_{\{n-2, n\}} \cup S_{\{n-1, n\}} \cup S_{\{n-2, n-1\}}$ and $i \in\{1,2,3,4\}$. Thus D is acyclic. Hence $k(J(n, 3)) \leq 4$.

5. Concluding Remarks

In this paper, we gave some lower bounds for the competition numbers of Johnson graphs, and computed the competition numbers of Johnson graphs $J(n, 2)$ and $J(n, 3)$. It would be natural to ask: What is the exact value of the competition number of a Johnson graph $J(n, 4)$ for $n \geq 8$? Eventually, what are the exact values of the competition numbers of the Johnson graphs $J(n, q)$ for $q \geq 5$?

References

[1] H.H. Cho and S.-R. Kim, The competition number of a graph having exactly one hole, Discrete Math. 303 (2005) 32-41.
[2] H.H. Cho, S.-R. Kim and Y. Nam, On the trees whose 2-step competition numbers are two, Ars Combin. 77 (2005) 129-142.
[3] J.E. Cohen, Interval graphs and food webs: a finding and a problem, Document 17696-PR, RAND Corporation (Santa Monica, CA, 1968).
[4] J.E. Cohen, Food webs and Niche space (Princeton University Press, Princeton, NJ, 1978).
[5] R.D. Dutton and R.C. Brigham, A characterization of competition graphs, Discrete Appl. Math. 6 (1983) 315-317.
[6] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207 (Springer-Verlag, 2001).
[7] S.G. Hartke, The elimination procedure for the phylogeny number, Ars Combin. 75 (2005) 297-311.
[8] S.G. Hartke, The elimination procedure for the competition number is not optimal, Discrete Appl. Math. 154 (2006) 1633-1639.
[9] G.T. Helleloid, Connected triangle-free m-step competition graphs, Discrete Appl. Math. 145 (2005) 376-383.
[10] W. Ho, The m-step, same-step, and any-step competition graphs, Discrete Appl. Math. 152 (2005) 159-175.
[11] S.-R. Kim, The competition number and its variants, in: Quo Vadis, Graph Theory, (J. Gimbel, J.W. Kennedy, and L.V. Quintas, eds.), Annals of Discrete Mathematics 55 (North-Holland, Amsterdam, 1993) 313-326.
[12] S.-R. Kim, Graphs with one hole and competition number one, J. Korean Math. Soc. 42 (2005) 1251-1264.
[13] S.-R. Kim and F.S. Roberts, Competition numbers of graphs with a small number of triangles, Discrete Appl. Math. 78 (1997) 153-162.
[14] S.-R. Kim and Y. Sano, The competition numbers of complete tripartite graphs, Discrete Appl. Math. 156 (2008) 3522-3524.
[15] J.R. Lundgren, Food Webs, Competition Graphs, Competition-Common Enemy Graphs, and Niche Graphs, in: Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, IMH Volumes in Mathematics and Its Application 17 (Springer-Verlag, New York, 1989) 221-243.
[16] R.J. Opsut, On the computation of the competition number of a graph, SIAM J. Algebraic Discrete Methods 3 (1982) 420-428.
[17] A. Raychaudhuri and F.S. Roberts, Generalized competition graphs and their applications, Methods of Operations Research, 49 (Anton Hain, Königstein, West Germany, 1985) 295-311.
[18] F.S. Roberts, Food webs, competition graphs, and the boxicity of ecological phase space, in: Theory and applications of graphs (Proc. Internat. Conf., Western Mich. Univ., Kalamazoo, Mich., 1976) (1978) 477-490.
[19] F.S. Roberts and L. Sheng, Phylogeny numbers for graphs with two triangles, Discrete Appl. Math. 103 (2000) 191-207.
[20] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329.

Received 14 April 2009
Revised 9 October 2009
Accepted 10 October 2009

[^0]: *This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2008-531-C00004).
 ${ }^{\dagger}$ The author was supported by Seoul Fellowship.
 ${ }^{\ddagger}$ Corresponding author. E-mail address: kawa22@snu.ac.kr
 ${ }^{\S}$ The author was supported by JSPS Research Fellowships for Young Scientists. The author was also supported partly by Global COE program "Fostering Top Leaders in Mathematics".

