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Abstract

We give ”if and only if” characterization of graphs with the fol-
lowing property: given n ≥ 3, edges of such graphs form matroids
with circuits from the collection of all graphs with n fundamental cy-
cles. In this way we refer to the notion of matroidal family defined by
Simões-Pereira [2].
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1. Introduction

The connection between graph theory and matroid theory was first noticed
by Whitney [1], who defined a matroid in order to generalize the idea of linear
dependence. Simões-Pereira [2] introduced a notion of matroidal family.
Among known examples of such families we find the collections of cycles and
bicycles which give well-known cycle matroid [4] and bicircular matroid [5].
Cycles and bicycles are graphs with, respectively, one and two fundamental
cycles. Thus, it is interesting whether we can define, for given n ≥ 3, a
matroidal family that consists of graphs from Cn, a family of all graphs
with n fundamental cycles. One of the results of this paper is a theorem
which explains why it is impossible. However, we may put a question the
other way. Given n ≥ 3, can we describe graphs, such that their edges form
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matroids with circuits from Cn? Positive answer to this question is the main
result of this paper.

Next section we devote to remind basic facts about graphs and matroids.
We recall a precise definition of matroidal family and a few important ex-
amples. Some facts concerning fundamental cycles are also given. Third
section contains the main results of the paper and some technical lemmas.

2. Preliminaries

2.1. Graphs and matroids

At first we are going to recall some terminology connected with graphs. In
this paper, all considered graphs are finite, undirected and simple (without
loops or parallel edges). By a cycle we mean a closed path, with no repeated
vertices except for the starting and ending vertices. We call a path simple

if it has no repeated vertices. A subdivision of an edge d with endpoints
{w, y} is an operation in a graph such that the edge d is replaced by two
new edges with endpoints {w, x} and {x, y}, where x is a new vertex. By a
subdivision of a graph G we mean a graph obtained from G by subdivisions
of some edges in G. A bridge (also known as a cut-edge) of a graph G is
an edge whose deletion increases the number of connected components of
G. By a pendant edge of a graph G we mean an edge which is incident to
a vertex of degree 1. Such a vertex is also called pendant. A pendant cycle

in a graph G is a cycle where all vertices have degree 2, except one vertex
with degree equal to 3. We say that a graph G is homeomorphic to a graph
H if G and H have isomorphic subdivisions. If F1 and F2 are subgraphs of
a graph G, their sum F1 ∪ F2 is a graph which is built of all vertices and
edges which belong to F1 or F2.

We use the following definition of a matroid:

Definition 1. A matroid M is an ordered pair (E, C), where E is a finite set
and C is a collection of subsets of E satisfying the following three conditions:

1. ∅ 6∈ C;

2. If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2;

3. If C1, C2 ∈ C, C1 6= C2 and e ∈ C1 ∩ C2, then there exist C3 ∈ C such
that C3 ⊆ (C1 ∪ C2) \ {e}.

The members of the family C in the above definition are called the circuits

of the matroid M . The set E is called the ground set of M . As we will see
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in the next subsection, we may use a set of edges of an arbitrary graph G

as a ground set of a matroid M . In this case we say that M comes from a
given graph G or is defined on G.

2.2. Matroidal families

An interesting approach to the relations between graphs and matroids is
widely presented in [3], and is based on the following definition:

Definition 2. A matroidal family of graphs is a non-empty collection P of
connected graphs with the following property: given an arbitrary graph G,
the edge sets of the subgraphs of G, which are isomorphic to some members
of P, are the circuits of a matroid on G.

To abridge further statements, we introduce the following: if G is a graph
and P is a collection of connected graphs, we say that G forms a P-matroid

if we can define a matroid on G such that the circuits of this matroid are
the sets of edges of subgraphs of G which are isomorphic to some members
of P.

Example 3. There were only four matroidal families known until 1978:

1. P0 consists of one graph only, namely the complete graph on two points.

2. P1 consists of all cycles with at least 3 edges. P1-matroid formed by an

arbitrary graph is a well-known cycle matroid (see [4]).

3. P2 consists of subdivisions of the following graphs (called bicycles):

P2-matroid formed by an arbitrary graph is called a bicircular matroid

(see [5]).

4. P3 consists of the even cycles with at least 4 edges and bicycles with no

even cycle.

Andreae [6] showed the existence of a countably infinite series of matroidal
families. Schmidt [7] extended this result and proved that there is uncount-
ably many of such families. Proofs of these results are also available in [3].
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2.3. Fundamental cycles

This section is devoted to the notion of a fundamental cycle. A general
reference for fundamental cycles is [8]. Let us fix a connected graph G with
e edges and v vertices. A spanning tree of G is its connected subgraph which
contains all vertices of G and does not contain any cycle. The edges of a
spanning tree are called the branches and all remaining edges are called the
chords. It is obvious that every bridge of G must be a branch. Since the
graph may have many different spanning trees, division of the set of edges
of G into branches and chords depends on a choice of a spanning tree.

Let us fix a spanning tree T of G and a corresponding set {c1, . . . , ck}
of chords. Notice that adding any chord c to the spanning tree T produces
a unique cycle L in G. This cycle is called a fundamental cycle of G with
respect to the chord c. The fundamental cycle with respect to the chord c

contains only one chord, namely, the chord c. Moreover, this chord is not
present in any other fundamental cycle with respect to T . Thanks to this
one-to-one correspondence, fundamental cycles are also uniquely determined
by a spanning tree. However, number of these cycles does not depend on the
chosen spanning tree. Indeed, every spanning tree has v − 1 branches, thus
the number of chords is equal to k = e − (v − 1). This number is called a
cyclomatic number of G and is denoted by µ(G). We assume that µ(∅) = 0.

A spanning forest is a notion that generalises the concept of a spanning
tree to graphs which are not connected, i.e., it is a subgraph that consists
of all spanning trees of connected components of a graph. A cyclomatic
number for such a graph can also be counted. If G is a graph with e edges,
v vertices and a connected components, then µ(G) = e − (v − a).

Notation 4. Let Cn denote the family of all connected graphs without pen-
dant edges and µ(G) = n.

It is evident that for i 6= j we have Ci ∩ Cj = ∅.

3. Main Results

As we mentioned in Example 3, sets of edges of cycles as well as bicycles
of an arbitrary graph G may be considered as circuits of a matroid whose
ground set is the set of edges of G. Notice that cycles and bicycles are
exactly those graphs which have one and two fundamental cycles, thus form
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C1 and C2, respectively. Obviously Ci = Pi, i = 1, 2. Can we go further
and ask whether the collection Cn, for a certain n ≥ 3, can be a matroidal
family? Next theorem explains why the answer for this question is negative.
Before we state it, we introduce the following definition.

Definition 5. Let r, s ∈ N, r, s ≥ 2, and suppose that H and F are disjoint
graphs such that H ∈ Cr, F ∈ Cs. A graph which arises from H and F

joined by a bridge we call an (r, s)-bridge-graph.

Notice that an (r, s)-bridge-graph belongs to Cr+s. Before we continue, we
will need a definition of a certain operation on graphs.

Let G be a connected graph. We define a graph ϕ(G) in the following
way: delete, one by one, all pendant edges from G together with incident
vertices of degree 1. In this way we receive a graph with no pendant edge.
It is easy to see that ϕ(G) is also connected. Notice that µ(G) = µ(ϕ(G)).
Indeed, all pendant edges are branches of any spanning tree of G. If we
remove them, we do not change the number of chords of G. Hence the
number of fundamental cycles also remains the same.

Lemma 6. If G ∈ Cn and an edge d belongs to some cycle of G, then G\{d}
has n − 1 fundamental cycles and ϕ(G \ {d}) ∈ Cn−1.

Proof. If we remove d from G, the number of vertices in G \ {d} remains
unchanged, say v. On the other hand, if e is the number of edges of G, then
graph G \ {d} has e − 1 of them. Hence

µ(ϕ(G \ {d})) = µ(G \ {d}) = (e − 1) − v + 1 = e − v = µ(G) − 1.

Lemma 7. Let F ∈ Cs, s ≥ 2, and w be an arbitrary vertex of F . There

exist connected subgraphs F1, F2 of F , F1 6= F2, with s − 1 fundamental

cycles, such that w is a common vertex of F1 and F2, and w is their only

possible pendant vertex.

Proof. We choose two different chords c1 and c2 of F . Next we remove c1

from F and, by Lemma 6, we obtain a subgraph F̂1 with s− 1 fundamental
cycles. If F̂1 has pendant vertices, different from w, we delete them and
edges incident to them, one by one, not changing the number of fundamental
cycles. A graph obtained in this way we denote by F1. We define F2 in an
analogous manner, removing c2 from F . Thus F1 and F2 have different sets
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of fundamental cycles, and as a result, F1 6= F2. Moreover, in this way, w is
a common vertex of F1 and F2 and their only possible pendant vertex.

Theorem 8. Given any n ∈ N, n ≥ 3, suppose that G is an (r, s)-bridge-
graph such that r, s ∈ {2, . . . , n − 1} and r + s = n + 1. Then graph G does

not form a Cn-matroid.

Proof. To prove this, we will show a pair of subgraphs C1 and C2 of G,
isomorphic to some members of Cn, which do not fulfil the third condition
of Definition 1. Since G is an (r, s)-bridge-graph, it consists of disjoint
subgraphs F ∈ Cs and H ∈ Cr connected by a bridge b, and we can suppose
that r ≤ s. Let us denote by w a common vertex of b and F . From the
Lemma 7 we obtain connected subgraphs F1 and F2 of F with the properties:
each of F1 and F2 has s−1 fundamental cycles, F1 6= F2, w is their common
vertex and their only possible pendant vertex. For i = 1, 2, we build graphs
Ci from graphs Fi, H and the bridge b. It is easily seen that C1, C2 ∈ Cn

and C1 6= C2. Since bridge b is in the intersection of C1 and C2, we look for
a graph C3 ⊆ (C1 ∪ C2) \ {b} such that C3 ∈ Cn. However (C1 ∪ C2) \ {b}
consists of two connected components and each of them has at most n − 1
fundamental cycles. This observation ends the proof.

The following is obvious.

Corollary 9. Given any n ∈ N, n ≥ 3, suppose that G is an (r, s)-bridge-
graph such that r, s ∈ {2, . . . , n − 1} and r + s = n + 1. If a graph E has a

subgraph homeomorphic to G, then E does not form a Cn-matroid.

It follows from the above theorem that for n ≥ 3 we cannot construct a ma-
troidal family which consists of all graphs with n fundamental cycles. How-
ever, for each such n, we are able to describe graphs forming Cn-matroids.
Before we do that, we need a few lemmas. The proof of the following is
straightforward.

Lemma 10. An arbitrary edge of a connected graph G either belongs to a

cycle of G or is a bridge.

Lemma 11. If C1, C2 ∈ Cn and C1 ⊆ C2, then C1 = C2.

Proof. Suppose that C1 ( C2. Hence there is an edge d ∈ C2 such that
d 6∈ C1. Let us consider two cases. If d is a bridge, then C1 is contained
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in one of two connected components of C2 \ {d}. Each of them has at
least 1 fundamental cycle (otherwise C2 would have a pendant edge) and
at most n − 1 fundamental cycles. Hence C1 ∈ Ck for some k ≤ n − 1,
which contradicts our assumptions. If d is not a bridge, then according to
Lemma 10, it belongs to some cycle of C2. It follows from Lemma 6 that
ϕ(C2 \ {d}) ∈ Cn−1. Since C1 is contained in C2 \ {d} and has no pendant
edge, it is also contained in ϕ(C2 \ {d}). Thus C1 ∈ Ck for some k ≤ n − 1,
which is impossible. This finishes the proof.

Lemma 12. Let F ∈ Cn and H ∈ Cn be subgraphs of a connected graph

G such that they have at least one common vertex and F 6= H. Then

F ∪ H ∈ Ck for a certain k > n.

Proof. Let v denote the number of vertices that belong to both F and H,
vF denote the number of vertices that belong to F and do not belong to H,
and vH denote the number of vertices that belong to H and do not belong
to F . Let e, eF and eH denote numbers of edges defined in an analogous
manner. We will prove that eH > vH .

Let us notice that case vH = eH = 0 implies H ⊆ F , thus from
Lemma 11 we obtain H = F , against our assumption. Thus we may as-
sume vH > 0. Since H is connected, every vertex of H that does not belong
to F , must be incident to an edge, which also belongs to H and does not
belong to F , hence eH ≥ vH .

Let us suppose that eH = vH , and let R denote a set of those vertices
which belong to F and are also incident to the edges that belong to H and
do not belong to F . Next, let a denote a number of connected components of
a graph H \F , which is obtained from H after removing all edges belonging
to F and the vertices belonging to F , except for those belonging to R. Every
such a component contains at least one vertex from R, hence a < |R| and
we obtain

µ(H \ F ) = eH − (vH + |R|) + a

≤ eH − (vH + a) + a

= eH − vH = 0.

Therefore H has a pendant edges, as a graph with no fundamental cycles.
This shows that eH > vH , and since n = µ(F ) = e+eF −v−vF +1 we have
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µ(F ∪ H) = e + eF + eH − v − vF − vH + 1

= (e + eF − v − vF + 1) + eH − vH

= n + eH − vH > n.

Since it is evident that F ∪ H is connected and has no pendant edge, this
ends the proof.

Theorem 13. Given any n, k ∈ N, k > n ≥ 3, let G ∈ Ck be a graph which

does not have a subgraph homeomorphic to an (r, s)-bridge-graph for any

r, s ∈ {2, . . . , n − 1} such that r + s = n + 1. Then G forms a Cn-matroid.

Proof. We have to check if all conditions of Definition 1 are fulfilled by
arbitrary subgraphs C1, C2 of G such that C1, C2 ∈ Cn. Condition 1 is
fulfilled because we assumed that µ(∅) = 0. Condition 2 is exactly the
assertion of Lemma 11. Now, assume that C1 and C2 have common edges
{d1, . . . , dj}, j ∈ N, and C1 6= C2. It suffices to show that for all i ∈
{1, . . . , j} a graph (C1 ∪ C2) \ {di} contains a graph C3 ∈ Cn. Let us fix
i ∈ {1, . . . , j} and consider two cases:

1. If di is not a bridge of the graph C1 ∪ C2, then according to Lemma 10,
it belongs to some cycle of C1 ∪ C2. From Lemma 12, it follows that
C1 ∪ C2 ∈ Cm, where m > n. By this and Lemma 6 we obtain that
ϕ(C1 ∪ C2 \ {di}) ∈ Cl, for some l ≥ n. Hence there is a graph C3 ∈ Cn

such that C3 ⊂ ϕ(C1 ∪ C2 \ {di}) ⊂ (C1 ∪ C2) \ {di}.

2. Suppose di is a bridge in C1∪C2. It follows from Lemma 12 that C1∪C2

has at least n+1 fundamental cycles. Because of the assumption that G

does not contain a subgraph homeomorphic to (r, s)-bridge-graph with
n+1 fundamental cycles, di can only be a bridge between a pendant cycle
connected with a certain simple path and the remaining part of C1 ∪C2.
It means that di divides C1 ∪ C2 into two connected components: a
pendant cycle connected with a simple path, which has 1 fundamental
cycle, and a subgraph F with at least n fundamental cycles. Hence there
exist C3 ∈ Cn such that C3 ⊆ F ⊆ (C1 ∪ C2) \ {di}.

This completes the proof.

By an analogy to cases n = 1, 2, matroids described in the above theorem
we will call an n-circular matroids.
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Corollary 14. Let G ∈ Ck, k > 3, be a graph having a vertex w, with the

following properties:

1. any two cycles of G are disjoint or w is their only common vertex,

2. for any cycle L of G, if w does not belong to L, then there exist a vertex

u ∈ L such that {u,w} are endpoints of a bridge.

Then G forms a Cn-matroid for 3 ≤ n < k.

Figure 1. An example of a graph that meets conditions of Corollary 14.

Proof. To prove this corollary, we will check that all assumptions of Theo-
rem 13 are fulfilled. For any n ∈ {3, . . . , k−1} let us fix r, s ∈ {2, . . . , n−1}
such that r+s = n+1 and suppose, on the contrary, that G has a subgraph
E homeomorphic to an (r, s)-bridge-graph. Let us denote a subgraph of E

which belongs to Cr by H and, similarly, a subgraph of E which belongs
to Cs by F . It is immediate that every connected subgraph of G without
pendant edges and with at least 2 fundamental cycles must have w as its
vertex. Hence H and F have a common vertex w, what contradicts the fact
that they are disjoint.

Corollary 15. Let W ∈ Ck, k ≥ 3, be a wheel, L ∈ C1, and assume that W

and L are disjoint graphs. A graph G which arises from W and L joined by

a bridge b forms Cn-matroid for 3 ≤ n < k + 1.

Proof. To prove this, for any n ∈ {3, . . . , k} let us fix r, s ∈ {2, . . . , n− 1}
such that r+s = n+1 and suppose that G has a subgraph E homeomorphic
to an (r, s)-bridge-graph. Denote by H and F subgraphs of E which belong
to Cr and Cs, respectively. Notice that any two cycles of W have at least
one common vertex. Since H and F are disjoint, L must be a unique cycle
of H or F . This is a contradiction because both H and F should have at
least two fundamental cycles.
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Figure 2. An example of a graph that meets conditions of Corollary 15.

Corollary 16. Let W ∈ Ck, k ≥ 6, be a wheel, L1, L2 ∈ C1, and assume

that W , L1 and L2 are disjoint graphs. Let G be a graph which arises from

W , L1 and L2 in the following way:

1. L1 and L2 are joined with W by bridges b1 and b2, respectively,

2. bi is incident to a vertex wi of W for i = 1, 2,

3. w1 and w2 are adjacent and neither of them is a hub.

Then G forms Cn-matroid for k − 1 ≤ n < k + 2, however does not form

Cn-matroid for 3 ≤ n ≤ k − 2.

Figure 3. A graph that meets conditions of Corollary 16.

Proof. Our procedure will be to find for which r and s graph G has a
subgraph E homeomorphic to an (r, s)-bridge-graph. Denote by H and F

subgraphs of E which belong to Cr and Cs, respectively. Any two cycles
of W have at least one common vertex, and since subgraphs H and F are
disjoint, then one of them, say F , does not have common cycles with W .
By the fact that F has at least two fundamental cycles, then L1 and L2 are
subgraphs of F . Since H also has at least two fundamental cycles, a hub
of W belongs to H. By this and from connectivity we infer that F is built
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out (exclusively) of the following components: L1, b1, L2, b2, an edge with
endpoints w1 and w2. As a result we obtain r = 2. Now it is easily seen
that we can find subgraph H ∈ Cs of W , disjoint with F , if and only if
s ∈ {2, . . . , k − 3}. Moreover, for those values of s it is easy to find a bridge
joining H and F described above. On account of Theorems 8 and 13 we
obtain both assertions.
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