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Abstract

Let γt(G) and γ2(G) be the total domination number and the 2-
domination number of a graph G, respectively. It has been shown that:
γt(T ) ≤ γ2(T ) for any tree T . In this paper, we provide a constructive
characterization of those trees with equal total domination number and
2-domination number.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge
set E(G). The open neighborhood, the closed neighborhood and the degree
of a vertex v ∈ V (G) are denoted by NG(v) = {u ∈ V (G) | uv ∈ E(G)},
NG[v] = NG(v) ∪ {v} and degG(v) = |NG(v)|, respectively. For u ∈ V (G),
u is a leaf of G if degG(u) = 1 and a support vertex of G if u has a leaf as
its neighbor in G. For a pair of vertices u, v ∈ V (G), the distance dG(u, v)
of u and v is the length of a shortest uv-path in G. The diameter of G is
d(G) = max{dG(u, v) : u, v ∈ V (G)}.

For any set S ⊆ V (G), the subgraph induced by S is denoted by G[S]
and we write G − S for G[V (G) − S]. For convenience, we write G − v for
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G − {v} for v ∈ V (G). For any edge xy ∈ E(G), we use G − xy to denote
the subgraph induced by E(G) − {xy}.

Total domination in graphs was introduced by Cockayne et al. [3]. A
subset S ⊆ V (G) is a total dominating set (denoted by TDS) if every vertex
of V (G) has at least one neighbor in S. The total domination number
(denoted by γt(G)) is the minimum cardinality among the total dominating
sets of G. The total dominating set of G with cardinality γt(G) will be called
a γt-set of G. For a survey on total domination in graphs one can refer to
Henning [12].

Let p be a positive integer. In [6], Fink and Jacobson introduced the
concept of p-domination. A p-dominating set of G is a subset S of V (G) such
that every vertex not in S has at least p neighbors in S. The p-domination
number γp(G) is the minimum cardinality of a p-dominating set of G. The
p-dominating set of G with cardinality γp(G) will be called a γp-set of G.
Note that p-domination is the classic domination when p = 1. For any
S, T ⊆ V (G), S p-dominates T in G if every vertex of T not in S has at
least p neighbors in S.

An area of research in domination of graphs that has received con-
siderable attention is the characterization of classes of graphs with equal
domination parameters. For any two graph parameters λ and µ, G is called
a (λ, µ)-graph if λ(G) = µ(G). Characterizing the (λ, µ)-graphs has been
investigated in many papers (for example [1, 4, 7, 11, 13]).

In [8], Haynes et al. showed that for all trees the total domination
number is equal or less than the 2-domination number, and they also gave
a necessary condition for all trees with equal total domination number
and 2-domination number. In this paper, we give a constructive charac-
terization of trees with equal total domination number and 2-domination
number.

2. A Characterization

Let Pn = u1 · · · un (n ≥ 1) be a path with vertex set {u1, . . . , un} and K(t)
(t ≥ 2) be the tree obtained from a star K1,t with support vertex u by
adding a path P2 to every leaf of K1,t. Denote u by cent(K(t)). For conve-
nience, we denote a path P4 by K(1) and let cent(K(1)) represent one leaf
of P4.

To state the characterization of (γt, γ2)-trees, we introduce the six types
of operations.
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Type-1 operation: Attach a path P1 to each of the two vertices u,w of a
tree T , respectively, where u,w locate at a component Pl of T −xy for some
edge xy such that either x is in a γ2-set of T and Pl = P4 = uvwx or y is in
a γ2-set of T and Pl = P5 = uvwxx′.

Type-2 operation: Attach a path P2 to a vertex v of a tree T by joining
one leaf of P2 to v, where v is a vertex such that T − v has a component P2.

Type-3 operation: Attach t (≥ 1) paths P3 to a vertex v of a tree T by
joining one leaf of each P3 to v, where v is a vertex such that either T − v
has a component P2 or T − v has two components P1 and P3 that a leaf of
P3 is adjacent to v in T .

Type-4 operation: Attach a path P3 to a vertex v of a tree T by joining
its support vertex to v, where v is a vertex such that v is not contained
in any γt-set of T and T − v has a component P3 that one of its leaves is
adjacent to v in T .

Type-5 operation: Attach a tree K(t) (t ≥ 1) to a vertex v of a tree T by
joining cent(K(t)) to v, where v is in a γ2-set of T if t = 1.

Type-6 operation: Attach a path P5 to a vertex v of a tree T by joining
one of its support vertices to v, where v is a vertex such that T − v has a
component H ∈ {P2, P3, P5} and v is adjacent to a support vertex of H if
H = P5.

From the survey on total domination in graphs [12], it is hard to recognize
whether a vertex v is in no γt-set or no γ2-set.

Let A be the family of trees with equal total domination number and
2-domination number, that is

A = {T : T is a tree satisfying γt(T ) = γ2(T )}.

We also define the family B as:

B={T : T is obtained from P3 by a finite sequence of operations of Type-i,

where 1 ≤ i ≤ 6}.

We shall show that

Theorem 1. A = B ∪ {P2}.
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3. The Proof of Theorem 1

We need some known results.

Lemma 2 ([8]). Let T be a tree without isolated vertices, then γt(T ) ≤
γ2(T ).

Lemma 3 ([2]). Every 2-dominating set of a graph G contains all leaves

of G.

Lemma 4 ([8]). If T is a tree satisfying γt(T ) = γ2(T ), then every support

vertex of T is adjacent to at most two leaves.

Let T be a rooted tree. For every v ∈ V (T ), let C(v) and D(v) denote the
set of children and descendants of v, respectively, and D[v] = D(v) ∪ {v}.
Define

C ′(v) = {u ∈ C(v) : every vertex of D[u] has distance at most two

from v in T}.

By Lemma 4, each vertex of C ′(v) has degree at most three. Hence we can
partition C ′(v) into C ′

1
(v), C ′

2
(v), C ′

3
(v) such that every vertex of C ′

i(v) has
degree i in T , i = 1, 2 or 3.

Lemma 5. Let T be a rooted tree satisfying γt(T ) = γ2(T ) and w ∈ V (T ).
We have

(1) If C ′

2
(w) 6= ∅, then C ′

1
(w) = C ′

3
(w) = ∅.

(2) If C ′

3
(w) 6= ∅, then C ′

1
(w) = C ′

2
(w) = ∅ and |C ′

3
(w)| = 1.

(3) If C(w) = C ′(w) 6= C ′

1
(w), then C ′

1
(w) = C ′

3
(w) = ∅.

Proof. Let C ′

1
(w) = {x1, . . . , xr}, C ′

2
(w) = {y1, . . . , ys} and C ′

3
(w) =

{z1, . . . , zt}. Then |C ′

1
(w)| = r, |C ′

2
(w)| = s and |C ′

3
(w)| = t. For each

i = 1, . . . , t, let ui be a leaf adjacent with zi in T . Let T ′ = T −{x1, . . . , xr,
u1, . . . , ut}.

(1). We prove that if s ≥ 1 then r + t = 0. Assume r + t ≥ 1. Since
s ≥ 1, we can choose a γ2-set D of T such that w ∈ D, and a γt-set S′ of T ′

such that w ∈ S ′. It is not difficult to check that D−{x1, . . . , xr, u1, . . . , ut}
is a 2-dominating set of T ′ and S′ is a TDS of T . Hence,
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γt(T
′) = |S′| ≥ γt(T ) = γ2(T )

= |D| > |D − {x1, . . . , xr, u1, . . . , ut}| ≥ γ2(T
′),

a contradiction with Lemma 2.
(2) and (3). Suppose either C ′

3
(w) 6= ∅ or C(w) = C ′(w) 6= C ′

1
(w). Then

s + t ≥ 1. Choose a γt-set S′ of T ′ such that w ∈ S ′. Then S′ is also a TDS
of T . Hence γt(T

′) = |S′| ≥ γt(T ). By the definition of γ2-set and Lemma 3,
there is a γ2-set, denoted by D, of T satisfying D∩{y1, . . . , ys, z1, . . . , zt} = ∅.
Then (D ∩ V (T ′)) ∪ {w} is a 2-dominating set of T ′. Hence

γ2(T
′) ≤ |(D ∩ V (T ′)) ∪ {w}|

≤ |D| − (r + t) + 1

= γ2(T ) − (r + t) + 1

= γt(T ) − (r + t) + 1.

If t ≥ 1, then γ2(T
′) ≤ γt(T ) ≤ γt(T

′) ≤ γ2(T
′), the last inequality is by

Lemma 2, which implies that r + t = 1 and w /∈ D. So r = 0 and t = 1. By
(1), we have s = 0. Hence (2) is valid.

If C(w) = C ′(w) 6= C ′

1
(w), then s + t ≥ 1. By (1) and (2), r = 0. We

show that t = 0. If not, similar to the proof of (2), we have w /∈ D, t = 1
and s = 0. Since C(w) = C ′(w), we know that degT (w) = 2. To 2-dominate
w, z1 ∈ D, which contradicts with the choice of D.

Lemma 6. If T ′ ∈ A with order at least three and T is obtained from T ′

by an operation of Type-i, 1 ≤ i ≤ 6, then T ∈ A .

Proof. Since T ′ ∈ A , we have γt(T
′) = γ2(T

′). By Lemma 2, we only
need to prove that γt(T ) ≥ γ2(T ).

Case 1. i = 1. Assume that T is obtained from T ′ by attaching u′ and
w′ to u and w, respectively, where u and w satisfy the conditions of Type-1
operation. Then there is an edge xy in T ′ such that either x is in a γ2-set
of T ′ and T ′ − xy has a component P4 = uvwx, or y is in a γ2-set of T ′ and
T ′ − xy has a component P5 = uvwxx′. Clearly, γt(T

′) = γt(T ) − 1.
If T ′ − xy contains a path P4 = uvwx, then let D′ be a γ2-set of T ′

containing x. From Lemma 3 and the definition of γ2-set, we have D′ ∩
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{u, v, w, x} = {u,w} or {u, v}. Thus D = (D ′ − {u, v, w}) ∪ {u′, v, w′} is
a 2-dominating set of T with |D| = |D′| + 1 = γ2(T

′) + 1. So, γt(T ) =
γt(T

′) + 1 = γ2(T
′) + 1 = |D| ≥ γ2(T ).

If T ′ − xy contains a path P5 = uvwxx′, then let D′ be a γ2-set of
T ′ containing y. By Lemma 3 and the definition of γ2-set, we have D′ ∩
{u, v, w, x, x′} = {u,w, x′}. Thus D = (D′ \ {u,w}) ∪ {u′, v, w′} is a 2-
dominating set of T with |D| = |D′|+1 = γ2(T

′)+1. So, γt(T ) = γt(T
′)+1 =

γ2(T
′) + 1 = |D| ≥ γ2(T ).

Case 2. i = 2. Assume that T is obtained from T ′ by attaching a
path P2 = uu′ to a vertex v of T ′ such that uv ∈ E(T ), where T ′ − v
has a component P2 = wx satisfying vw ∈ E(T ′). It is easy to show that
γt(T ) = γt(T

′) + 1. By the definition of γ2-set, there exists a γ2-set D′ of T ′

containing the vertex v. Then D′ ∪ {u′} is a 2-dominating set of T . Hence,
γt(T ) = γt(T

′) + 1 = γ2(T
′) + 1 = |D′ ∪ {u′}| ≥ γ2(T ).

Case 3. i = 3. Assume that T is obtained from T ′ by attaching t (≥ 1)
paths P3, denoted by {xiyizi : 1 ≤ i ≤ t}, to a vertex v of T ′ such that
xiv ∈ E(T ) for 1 ≤ i ≤ t, where either T ′ − v has a component P2 = uu′

satisfying uv ∈ E(T ′), or T ′ − v has a component P1 = u0 and a component
P3 = uu′u′′ satisfying uv ∈ E(T ′). By the definitions of γt-set and γ2-set,
we can easily prove that γt(T ) ≥ γt(T

′) + 2t and γ2(T
′) + 2t ≥ γ2(T ). Since

γt(T
′) = γ2(T

′), we have γt(T ) ≥ γt(T
′) + 2t = γ2(T

′) + 2t ≥ γ2(T ).

Case 4. i = 4. Assume that T is obtained from T ′ by attaching a
path P2 = xyz to a vertex v of T ′ such that yv ∈ E(T ), where v is not
in any γt-set of T ′ and T ′ − v has a component P3 = uu′u′′ satisfying
uv ∈ E(T ′). For any γ2-set D′ of T ′, D′ ∪ {x, z} is a 2-dominating set of T .
So γ2(T

′) + 2 ≥ γ2(T ). Let S be a γt-set of T containing the vertex u, then
y ∈ S and |S ∩ {v, x, z}| = 1.

If v /∈ S, then |S∩V (T ′)| = |S|−2 = γt(T )−2 ≥ γt(T
′) since S∩V (T ′)

is a TDS of T ′. By γt(T
′) = γ2(T

′), γt(T ) ≥ γt(T
′)+2 = γ2(T

′)+2 ≥ γ2(T ).

If v ∈ S, then S∩{v, x, z} = {v} and |S∩V (T ′)| = |S|−1 = γt(T )−1 ≥
γt(T

′) since S ∩ V (T ′) is a TDS of T ′. Suppose that γt(T ) ≤ γ2(T ) − 1,
then, by γt(T

′) = γ2(T
′), γ2(T ) ≥ γt(T ) + 1 ≥ γt(T

′) + 2 = γ2(T
′) + 2 ≥

γ2(T ). So |S ∩ V (T ′)| = γt(T ) − 1 = γt(T
′), and S ∩ V (T ′) is a γt-set of

T ′ containing v, which contradicts with v is not in any γt-set of T ′. Hence
γt(T ) ≥ γ2(T ).
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Case 5. i = 5. Assume that T is obtained from T ′ by attaching a K(t)
(t ≥ 1) to a vertex v of T ′ by joining u = cent(K(t)) to v, where v satisfies
the condition of Type-5 operation. Clearly, γt(T ) ≥ γt(T

′) + 2t.
If t ≥ 2, then, by γt(T

′) = γ2(T
′), it is obvious that γt(T ) ≥ γt(T

′)+2t =
γ2(T

′) + 2t ≥ γ2(T ).
If t = 1, then let K(1) = uxyz and D′ be a γ2-set of T ′ containing v.

Thus D′ ∪ {z, x} is a 2-dominating set of T . Hence γt(T ) ≥ γt(T
′) + 2 =

γ2(T
′) + 2 = |D′ ∪ {z, x}| ≥ γ2(T ).

Case 6. i = 6. Assume that T is obtained from T ′ by attaching a path
P5 = x1x2x3x4x5 to a vertex v of a tree T such that x2v ∈ E(T ), where
T ′ and v satisfy the condition of Type-6 operation. Then we can choose a
subset S of V (T ) as a γt-set of T such that S ∩NT ′(v) 6= ∅. Thus S ∩V (T ′)
is a TDS of T ′ and then |S∩V (T ′)| ≥ γt(T

′). By the definition of γ2-set, we
have γ2(T

′) + 3 ≥ γ2(T ). Hence γt(T ) = |S| = |S ∩ V (P5)| + |S ∩ V (T ′)| ≥
3 + γt(T

′) = 3 + γ2(T
′) ≥ γ2(T ).

Lemma 7. If T ∈ A with order at least three, then T ∈ B.

Proof. Let n = |V (T )|. Since T ∈ A , we have γt(T ) = γ2(T ). If d(T ) = 2,
then T is a star K1,n−1. Since 2 = γt(T ) = γ2(T ) = n − 1, n = 3. So
T = P3 ∈ B. If d(T ) = 3, then T contains exactly n − 2 leaves. Since 2 =
γt(T ) = γ2(T ) ≥ n − 2, n = 4. So T = P4. However, γ2(P4) = 3 6= γt(P4),
a contradiction. If d(T ) = 4, then there is a vertex w of T with distance at
most two from the other vertices in T . Hence C(w) = C ′(w) 6= C ′

1
(w) if we

root T at w. By (3) of Lemma 5, T is a tree obtained from a star K1,t by
attaching a vertex to every leaf of K1,t, where 2t +1 = n. Clearly, T can be
obtained from P3 by t − 1 operations of Type-2. By Lemma 6, T ∈ B. In
the following, we will assume that d(T ) ≥ 5 and prove T ∈ B by induction
on the order of n = |V (T )|.

If n < 6, then d(G) ≤ 4. The result is true from the above proof. If
n = 6, then T = P6 ∈ B. This establishes the base cases. Assume that
n > 6 and the result is true for all the trees T ′ with order |V (T ′)| < n, that
is, if T ′ ∈ A with order |V (T ′)| < n then T ′ ∈ B.

Claim 1. If there is a vertex a ∈ V (T ) such that T − a contains at least
two components P2, then T ∈ B.

Proof. Assume that P2 = bb′ and P2 = cc′ are two components of T − a
such that ab, ac ∈ E(T ). Let T ′ = T − {b, b′}, then we use S ′ and D to
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denote a γt-set of T ′ containing a and a γ2-set of T , respectively. Since
a ∈ S′, S′∪{b} is a TDS of T , and so γt(T

′) ≥ γt(T )−1. Since D is a γ2-set
of T , D ∩ {a, b, b′} = {a, b′} by the definition of γ2-set. So D ∩ V (T ′) is a 2-
dominating set of T ′. Hence γt(T

′) ≥ γt(T )−1 = γ2(T )−1 = |D∩V (T ′)| ≥
γ2(T

′). By Lemma 2, γt(T
′) = γ2(T

′), and so T ′ ∈ A . By the induction
on T ′, T ′ ∈ B. Since T can be obtained from T ′ by Type-2 operation. So
T ∈ B. The claim holds.

By Claim 1, we only need consider the case that, for every vertex a,
T − a has at most one component P2. Let P = uvwxyz · · · r be a longest
path in T and we root T at r.

Clearly, C(w) = C ′(w) 6= C ′

1
(w). By (3) of Lemma 5, C ′

1
(w) = C ′

3
(w)

= ∅. Hence P3 = uvw is a component of T − x. Let t be the number of
components P3 of T [D(x)] such that a leaf of every P3 is adjacent to x.
Note that T [D(x)] possible has other components. We suppose T [D(x)] has
s components P3 with its support vertex is adjacent to x, k components P2

and h components P1. By Lemmas 4 and 5, s, k ∈ {0, 1} and h ∈ {0, 1, 2}.
Denote the t components P3 of T [D(x)] with one of its leaves is adjacent to
x in T by P3 = uiviwi (1 ≤ i ≤ t), where xwi ∈ E(T ) for 1 ≤ i ≤ t. We
prove the result according to the values of {s, k, h}.

Case 1. s = k = h = 0.
Then T [D[x]] = K(t), t ≥ 1. Let T ′ = T − D[x]. Then 3 ≤ |V (T ′)| < n.
Clearly, γt(T

′) ≥ γt(T ) − 2t. Let D be a γ2-set of T such that D contains
as few vertices of T [D[x]] as possible. Then, x /∈ D and |D ∩ D[x]| = 2t
by the definition of γ2-set. So D ∩ V (T ′) is a 2-dominating set of T ′. Thus
γt(T

′) ≥ γt(T ) − 2t = γt(T ) − 2t = |D ∩ V (T ′)| ≥ γ2(T ). By Lemma 2,
γt(T

′) = γ2(T
′) and D ∩ V (T ′) is a γ2-set of T ′. So T ′ ∈ A . Applying the

inductive hypothesis on T ′, T ′ ∈ B.
If t ≥ 2, then it is obvious that T is obtained from T ′ by Type-5 opera-

tion, and so T ∈ B.
If t = 1, then T [D[x]] = K(1) = P4 = uvwx, and so D ∩ {u, v, w, x} =

{u,w}. To 2-dominate x, y ∈ D, and so y ∈ D ∩ V (T ′), which implies
that y is in some γ2-set of T ′. Hence T can be obtained from T ′ by Type-5
operation, and T ∈ B, too.

Case 2. s 6= 0. By the proof procedure of Lemma 5, s = 1 and k = h = 0.
Denote the component P3 of T [D[x]] whose support vertex is adjacent to x
in T by P3 = abc and let T ′ = T − {a, b, c}. Clearly, 3 ≤ |V (T ′)| < n. Let
D be a γ2-set of T which does not contain b.
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We claim that x is not in any γt-set of T ′. Suppose that T ′ has a γt-set
containing x, denoted by S ′, then S′ ∪ {b} is a TDS of T . So γt(T

′) ≥
γt(T ) − 1. Since b /∈ D, then D ∩ V (T ′) is a 2-dominating set of T ′. Hence
γt(T

′) ≥ γt(T ) − 1 = γ2(T ) − 1 = |D ∩ V (T ′)| + 1 ≥ γ2(T
′) + 1, which

contradicts γt(T
′) ≤ γ2(T

′). The claim holds. Therefore, T can be obtained
from T ′ by Type-4 operation.

Now we prove that T ′ ∈ B. Let S′ be a γt-set of T ′. By the above
claim, x /∈ S ′. Since S′ ∪ {x, b} is a TDS of T , γt(T

′) ≥ γt(T ) − 2. Since
b /∈ D, D ∩ V (T ′) is a 2-dominating set of T ′. Hence γt(T

′) ≥ γt(T ) − 2 =
γ2(T ) − 2 = |D ∩ V (T ′)| ≥ γ2(T

′). By Lemma 2, γt(T
′) = γ2(T

′), which
implies T ′ ∈ A . Applying the inductive hypothesis on T ′, T ′ ∈ B, and so
T ∈ B.

Case 3. k 6= 0. By the proof procedure of Lemma 5, s = h = 0.

Let T ′ = T − ∪t
i=1

{ui, vi, wi}. It is clearly that 3 ≤ |V (T ′)| < n and T is
obtained from T ′ by Type-3 operation.

We only need to prove that T ′ ∈ B. Let S′ ⊆ V (T ′) be a γt-set of
T ′, then S′ ∪ (∪t

i=1
{vi, wi}) is a TDS of T . So γt(T

′) ≥ γt(T ) − 2t. Since
T − x has a component P2 = ab, we can choose D ⊆ V (T ) as a γ2-set
of T containing x. Then D ∩ V (T ′) is a 2-dominating set of T ′, and so
γ2(T ) = |D| = 2t + |D ∩ V (T ′)| ≥ 2t + γ2(T

′). By γt(T ) = γ2(T ), we have
γt(T

′) = γ2(T
′), and so T ′ ∈ A . Applying the inductive hypothesis on T ′,

T ′ ∈ B.

Case 4. h 6= 0. By Lemmas 4 and 5, h ∈ {1, 2} and s = k = 0.

We claim that h = 1. If not, then h = 2. We denote the two components
P1 of T [D(x)] by x′ and x′′. Let T ′ = T − x′′. Clearly, γt(T

′) = γt(T ). Let
D be a γ2-set of T containing {w1, . . . , wt}. By Lemma 3, {x′, x′′} ⊆ D.
Since D ∩ V (T ′) is 2-dominating set of T ′ with |D ∩ V (T ′)| = γ2(T ) − 1,
we have γt(T

′) = γt(T ) = γ2(T ) > γ2(T ) − 1 ≥ γ2(T
′), which contradicts

γt(T
′) ≤ γ2(T

′).

Case 4.1. t ≥ 2.

Let T ′ = T − ∪t
i=2

{ui, vi, wi}, then T is obtained from T ′ by Type-3 op-
eration. By the definitions of γt-set and γ2-set, it is easy to see that
γt(T

′)+2(t−1) = γt(T ) and γ2(T
′)+2(t−1) = γ2(T ). Hence γt(T

′) = γ2(T
′)

and T ′ ∈ A . Applying the inductive hypothesis on T ′, T ′ ∈ B, and so
T ∈ B.
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Case 4.2. t = 1. Denote the component P1 of T [D(x)] by P1 = x′.

Case 4.2.1. If T [D(y) \ D[x]] has a component H ∈ {P2, P3, P5}, then
let T ′ = T −D[x]. We can easily check that T is obtained from T ′ by Type-6
operation. By the definition of γ2-set, γ2(T

′) + 3 = γ2(T ). For any γt-set
S′ of T ′, S′ ∪ {v, w, x} is a TDS of T . So γt(T

′) ≥ γt(T ) − 3 = γ2(T ) − 3 =
γ2(T

′). By Lemma 2, γt(T
′) = γ2(T

′) and T ′ ∈ A . Applying the inductive
hypothesis on T ′, T ′ ∈ B, and so T ∈ B.

Case 4.2.2. If T [D(y)\D[x]] has no component P2, P3 or P5, we consider
the structure of T [D(y)]. By the above discussion, T [D(y)] consists of a
component P5 = uvwxx′ and ` components P1, denoted by {y1, . . . , y`}. By
Lemma 4, ` ≤ 2. However, if ` = 2, then let T ′ = T −D[y]. It can be easily
checked that γt(T

′) + 4 ≥ γt(T ) = γ2(T ) = γ2(T
′) + 5, which contradicts

γt(T
′) ≤ γ2(T

′). Hence ` ≤ 1.

Let T ′ = T −{u, x′}. Then we can easily check that γt(T
′) + 1 = γt(T ).

Let D be a γ2-set of T such that D contains as few vertices of D[y] as
possible and D ∩ D[x] = {u,w, x′}. Then D′ = (D \ {u,w, x′}) ∪ {v, x} is a
2-dominating set of T ′. So γt(T

′) = γt(T ) − 1 = γ2(T ) − 1 = |D′| ≥ γ2(T
′),

which implies that γt(T
′) = γ2(T

′) and D′ is a γ2-set of T ′. By γt(T
′) =

γ2(T
′), T ′ ∈ A . Applying the inductive hypothesis to T ′, T ′ ∈ B.

If ` = 0, then degT (y) = 2. Since x /∈ D, to 2-dominate y, y ∈ D. Thus
y is in the γ2-set D′ of T ′. Hence T is obtained from T ′ by Type-1 operation.
Thus T ∈ B.

If ` = 1, then degT (y) = 3. Since x /∈ D, to 2-dominate y, we have
y /∈ D and z ∈ D by the choice of D. Thus z is in the γ2-set D′ of T ′. Hence
T is obtained from T ′ by Type-1 operation. Thus T ∈ B.

This completes the proof of Lemma 7.

Note that {P2, P3} ⊆ A . Lemma 6 implies that B ⊆ A and Lemma 7
implies that A ⊆ B ∪ {P2}. Hence Theorem 1 is true.
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