A CHARACTERIZATION OF $\left(\gamma_{t}, \gamma_{2}\right)$-TREES *

You Lu, Xinmin Hou, Jun-Ming Xu and Ning Li
Department of Mathematics
University of Science and Technology of China
Hefei, Anhui, 230026, China
e-mail: xmhou@ustc.edu.cn

Abstract

Let $\gamma_{t}(G)$ and $\gamma_{2}(G)$ be the total domination number and the 2domination number of a graph G, respectively. It has been shown that: $\gamma_{t}(T) \leq \gamma_{2}(T)$ for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.

Keywords: domination, total domination, 2-domination, (λ, μ)-tree.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The open neighborhood, the closed neighborhood and the degree of a vertex $v \in V(G)$ are denoted by $N_{G}(v)=\{u \in V(G) \mid u v \in E(G)\}$, $N_{G}[v]=N_{G}(v) \cup\{v\}$ and $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$, respectively. For $u \in V(G)$, u is a leaf of G if $\operatorname{deg}_{G}(u)=1$ and a support vertex of G if u has a leaf as its neighbor in G. For a pair of vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ of u and v is the length of a shortest $u v$-path in G. The diameter of G is $d(G)=\max \left\{d_{G}(u, v): u, v \in V(G)\right\}$.

For any set $S \subseteq V(G)$, the subgraph induced by S is denoted by $G[S]$ and we write $G-S$ for $G[V(G)-S]$. For convenience, we write $G-v$ for

[^0]$G-\{v\}$ for $v \in V(G)$. For any edge $x y \in E(G)$, we use $G-x y$ to denote the subgraph induced by $E(G)-\{x y\}$.

Total domination in graphs was introduced by Cockayne et al. [3]. A subset $S \subseteq V(G)$ is a total dominating set (denoted by TDS) if every vertex of $V(G)$ has at least one neighbor in S. The total domination number (denoted by $\gamma_{t}(G)$) is the minimum cardinality among the total dominating sets of G. The total dominating set of G with cardinality $\gamma_{t}(G)$ will be called a γ_{t}-set of G. For a survey on total domination in graphs one can refer to Henning [12].

Let p be a positive integer. In [6], Fink and Jacobson introduced the concept of p-domination. A p-dominating set of G is a subset S of $V(G)$ such that every vertex not in S has at least p neighbors in S. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality of a p-dominating set of G. The p-dominating set of G with cardinality $\gamma_{p}(G)$ will be called a γ_{p}-set of G. Note that p-domination is the classic domination when $p=1$. For any $S, T \subseteq V(G), S p$-dominates T in G if every vertex of T not in S has at least p neighbors in S.

An area of research in domination of graphs that has received considerable attention is the characterization of classes of graphs with equal domination parameters. For any two graph parameters λ and μ, G is called a (λ, μ)-graph if $\lambda(G)=\mu(G)$. Characterizing the (λ, μ)-graphs has been investigated in many papers (for example $[1,4,7,11,13]$).

In [8], Haynes et al. showed that for all trees the total domination number is equal or less than the 2-domination number, and they also gave a necessary condition for all trees with equal total domination number and 2 -domination number. In this paper, we give a constructive characterization of trees with equal total domination number and 2-domination number.

2. A Characterization

Let $P_{n}=u_{1} \cdots u_{n}(n \geq 1)$ be a path with vertex set $\left\{u_{1}, \ldots, u_{n}\right\}$ and $K(t)$ $(t \geq 2)$ be the tree obtained from a star $K_{1, t}$ with support vertex u by adding a path P_{2} to every leaf of $K_{1, t}$. Denote u by $\operatorname{cent}(K(t))$. For convenience, we denote a path P_{4} by $K(1)$ and let cent $(K(1))$ represent one leaf of P_{4}.

To state the characterization of $\left(\gamma_{t}, \gamma_{2}\right)$-trees, we introduce the six types of operations.

Type-1 operation: Attach a path P_{1} to each of the two vertices u, w of a tree T, respectively, where u, w locate at a component P_{l} of $T-x y$ for some edge $x y$ such that either x is in a γ_{2}-set of T and $P_{l}=P_{4}=u v w x$ or y is in a γ_{2}-set of T and $P_{l}=P_{5}=u v w x x^{\prime}$.

Type-2 operation: Attach a path P_{2} to a vertex v of a tree T by joining one leaf of P_{2} to v, where v is a vertex such that $T-v$ has a component P_{2}.

Type-3 operation: Attach $t(\geq 1)$ paths P_{3} to a vertex v of a tree T by joining one leaf of each P_{3} to v, where v is a vertex such that either $T-v$ has a component P_{2} or $T-v$ has two components P_{1} and P_{3} that a leaf of P_{3} is adjacent to v in T.

Type-4 operation: Attach a path P_{3} to a vertex v of a tree T by joining its support vertex to v, where v is a vertex such that v is not contained in any γ_{t}-set of T and $T-v$ has a component P_{3} that one of its leaves is adjacent to v in T.

Type- 5 operation: Attach a tree $K(t)(t \geq 1)$ to a vertex v of a tree T by joining $\operatorname{cent}(K(t))$ to v, where v is in a γ_{2}-set of T if $t=1$.

Type-6 operation: Attach a path P_{5} to a vertex v of a tree T by joining one of its support vertices to v, where v is a vertex such that $T-v$ has a component $H \in\left\{P_{2}, P_{3}, P_{5}\right\}$ and v is adjacent to a support vertex of H if $H=P_{5}$.

From the survey on total domination in graphs [12], it is hard to recognize whether a vertex v is in no γ_{t}-set or no γ_{2}-set.

Let \mathscr{A} be the family of trees with equal total domination number and 2 -domination number, that is

$$
\mathscr{A}=\left\{T: T \text { is a tree satisfying } \gamma_{t}(T)=\gamma_{2}(T)\right\} .
$$

We also define the family \mathscr{B} as:
$\mathscr{B}=\left\{T: T\right.$ is obtained from P_{3} by a finite sequence of operations of Type- i, where $1 \leq i \leq 6\}$.

We shall show that
Theorem 1. $\mathscr{A}=\mathscr{B} \cup\left\{P_{2}\right\}$.

3. The Proof of Theorem 1

We need some known results.

Lemma 2 ([8]). Let T be a tree without isolated vertices, then $\gamma_{t}(T) \leq$ $\gamma_{2}(T)$.

Lemma 3 ([2]). Every 2-dominating set of a graph G contains all leaves of G.

Lemma 4 ([8]). If T is a tree satisfying $\gamma_{t}(T)=\gamma_{2}(T)$, then every support vertex of T is adjacent to at most two leaves.

Let T be a rooted tree. For every $v \in V(T)$, let $C(v)$ and $D(v)$ denote the set of children and descendants of v, respectively, and $D[v]=D(v) \cup\{v\}$. Define

$$
\begin{aligned}
C^{\prime}(v)= & \{u \in C(v): \text { every vertex of } D[u] \text { has distance at most two } \\
& \text { from } v \text { in } T\} .
\end{aligned}
$$

By Lemma 4, each vertex of $C^{\prime}(v)$ has degree at most three. Hence we can partition $C^{\prime}(v)$ into $C_{1}^{\prime}(v), C_{2}^{\prime}(v), C_{3}^{\prime}(v)$ such that every vertex of $C_{i}^{\prime}(v)$ has degree i in $T, i=1,2$ or 3 .

Lemma 5. Let T be a rooted tree satisfying $\gamma_{t}(T)=\gamma_{2}(T)$ and $w \in V(T)$. We have
(1) If $C_{2}^{\prime}(w) \neq \emptyset$, then $C_{1}^{\prime}(w)=C_{3}^{\prime}(w)=\emptyset$.
(2) If $C_{3}^{\prime}(w) \neq \emptyset$, then $C_{1}^{\prime}(w)=C_{2}^{\prime}(w)=\emptyset$ and $\left|C_{3}^{\prime}(w)\right|=1$.
(3) If $C(w)=C^{\prime}(w) \neq C_{1}^{\prime}(w)$, then $C_{1}^{\prime}(w)=C_{3}^{\prime}(w)=\emptyset$.

Proof. Let $C_{1}^{\prime}(w)=\left\{x_{1}, \ldots, x_{r}\right\}, C_{2}^{\prime}(w)=\left\{y_{1}, \ldots, y_{s}\right\}$ and $C_{3}^{\prime}(w)=$ $\left\{z_{1}, \ldots, z_{t}\right\}$. Then $\left|C_{1}^{\prime}(w)\right|=r,\left|C_{2}^{\prime}(w)\right|=s$ and $\left|C_{3}^{\prime}(w)\right|=t$. For each $i=1, \ldots, t$, let u_{i} be a leaf adjacent with z_{i} in T. Let $T^{\prime}=T-\left\{x_{1}, \ldots, x_{r}\right.$, $\left.u_{1}, \ldots, u_{t}\right\}$.
(1). We prove that if $s \geq 1$ then $r+t=0$. Assume $r+t \geq 1$. Since $s \geq 1$, we can choose a γ_{2}-set D of T such that $w \in D$, and a γ_{t}-set S^{\prime} of T^{\prime} such that $w \in S^{\prime}$. It is not difficult to check that $D-\left\{x_{1}, \ldots, x_{r}, u_{1}, \ldots, u_{t}\right\}$ is a 2 -dominating set of T^{\prime} and S^{\prime} is a TDS of T. Hence,

$$
\begin{aligned}
& \gamma_{t}\left(T^{\prime}\right)=\left|S^{\prime}\right| \geq \gamma_{t}(T)=\gamma_{2}(T) \\
& =|D|>\left|D-\left\{x_{1}, \ldots, x_{r}, u_{1}, \ldots, u_{t}\right\}\right| \geq \gamma_{2}\left(T^{\prime}\right)
\end{aligned}
$$

a contradiction with Lemma 2.
(2) and (3). Suppose either $C_{3}^{\prime}(w) \neq \emptyset$ or $C(w)=C^{\prime}(w) \neq C_{1}^{\prime}(w)$. Then $s+t \geq 1$. Choose a γ_{t}-set S^{\prime} of T^{\prime} such that $w \in S^{\prime}$. Then S^{\prime} is also a TDS of T. Hence $\gamma_{t}\left(T^{\prime}\right)=\left|S^{\prime}\right| \geq \gamma_{t}(T)$. By the definition of γ_{2}-set and Lemma 3, there is a γ_{2}-set, denoted by D, of T satisfying $D \cap\left\{y_{1}, \ldots, y_{s}, z_{1}, \ldots, z_{t}\right\}=\emptyset$. Then $\left(D \cap V\left(T^{\prime}\right)\right) \cup\{w\}$ is a 2-dominating set of T^{\prime}. Hence

$$
\begin{aligned}
\gamma_{2}\left(T^{\prime}\right) & \leq\left|\left(D \cap V\left(T^{\prime}\right)\right) \cup\{w\}\right| \\
& \leq|D|-(r+t)+1 \\
& =\gamma_{2}(T)-(r+t)+1 \\
& =\gamma_{t}(T)-(r+t)+1 .
\end{aligned}
$$

If $t \geq 1$, then $\gamma_{2}\left(T^{\prime}\right) \leq \gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}\right)$, the last inequality is by Lemma 2, which implies that $r+t=1$ and $w \notin D$. So $r=0$ and $t=1$. By (1), we have $s=0$. Hence (2) is valid.

If $C(w)=C^{\prime}(w) \neq C_{1}^{\prime}(w)$, then $s+t \geq 1$. By (1) and (2), $r=0$. We show that $t=0$. If not, similar to the proof of (2), we have $w \notin D, t=1$ and $s=0$. Since $C(w)=C^{\prime}(w)$, we know that $\operatorname{deg}_{T}(w)=2$. To 2-dominate $w, z_{1} \in D$, which contradicts with the choice of D.

Lemma 6. If $T^{\prime} \in \mathscr{A}$ with order at least three and T is obtained from T^{\prime} by an operation of Type-i, $1 \leq i \leq 6$, then $T \in \mathscr{A}$.

Proof. Since $T^{\prime} \in \mathscr{A}$, we have $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$. By Lemma 2, we only need to prove that $\gamma_{t}(T) \geq \gamma_{2}(T)$.

Case 1. $i=1$. Assume that T is obtained from T^{\prime} by attaching u^{\prime} and w^{\prime} to u and w, respectively, where u and w satisfy the conditions of Type-1 operation. Then there is an edge $x y$ in T^{\prime} such that either x is in a γ_{2}-set of T^{\prime} and $T^{\prime}-x y$ has a component $P_{4}=u v w x$, or y is in a γ_{2}-set of T^{\prime} and $T^{\prime}-x y$ has a component $P_{5}=u v w x x^{\prime}$. Clearly, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{t}(T)-1$.

If $T^{\prime}-x y$ contains a path $P_{4}=u v w x$, then let D^{\prime} be a γ_{2}-set of T^{\prime} containing x. From Lemma 3 and the definition of γ_{2}-set, we have $D^{\prime} \cap$
$\{u, v, w, x\}=\{u, w\}$ or $\{u, v\}$. Thus $D=\left(D^{\prime}-\{u, v, w\}\right) \cup\left\{u^{\prime}, v, w^{\prime}\right\}$ is a 2-dominating set of T with $|D|=\left|D^{\prime}\right|+1=\gamma_{2}\left(T^{\prime}\right)+1$. So, $\gamma_{t}(T)=$ $\gamma_{t}\left(T^{\prime}\right)+1=\gamma_{2}\left(T^{\prime}\right)+1=|D| \geq \gamma_{2}(T)$.

If $T^{\prime}-x y$ contains a path $P_{5}=u v w x x^{\prime}$, then let D^{\prime} be a γ_{2}-set of T^{\prime} containing y. By Lemma 3 and the definition of γ_{2}-set, we have $D^{\prime} \cap$ $\left\{u, v, w, x, x^{\prime}\right\}=\left\{u, w, x^{\prime}\right\}$. Thus $D=\left(D^{\prime} \backslash\{u, w\}\right) \cup\left\{u^{\prime}, v, w^{\prime}\right\}$ is a $2-$ dominating set of T with $|D|=\left|D^{\prime}\right|+1=\gamma_{2}\left(T^{\prime}\right)+1$. So, $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+1=$ $\gamma_{2}\left(T^{\prime}\right)+1=|D| \geq \gamma_{2}(T)$.

Case 2. $\quad i=2$. Assume that T is obtained from T^{\prime} by attaching a path $P_{2}=u u^{\prime}$ to a vertex v of T^{\prime} such that $u v \in E(T)$, where $T^{\prime}-v$ has a component $P_{2}=w x$ satisfying $v w \in E\left(T^{\prime}\right)$. It is easy to show that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+1$. By the definition of γ_{2}-set, there exists a γ_{2}-set D^{\prime} of T^{\prime} containing the vertex v. Then $D^{\prime} \cup\left\{u^{\prime}\right\}$ is a 2-dominating set of T. Hence, $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+1=\gamma_{2}\left(T^{\prime}\right)+1=\left|D^{\prime} \cup\left\{u^{\prime}\right\}\right| \geq \gamma_{2}(T)$.

Case 3. $i=3$. Assume that T is obtained from T^{\prime} by attaching $t(\geq 1)$ paths P_{3}, denoted by $\left\{x_{i} y_{i} z_{i}: 1 \leq i \leq t\right\}$, to a vertex v of T^{\prime} such that $x_{i} v \in E(T)$ for $1 \leq i \leq t$, where either $T^{\prime}-v$ has a component $P_{2}=u u^{\prime}$ satisfying $u v \in E\left(T^{\prime}\right)$, or $T^{\prime}-v$ has a component $P_{1}=u_{0}$ and a component $P_{3}=u u^{\prime} u^{\prime \prime}$ satisfying $u v \in E\left(T^{\prime}\right)$. By the definitions of γ_{t}-set and γ_{2}-set, we can easily prove that $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2 t$ and $\gamma_{2}\left(T^{\prime}\right)+2 t \geq \gamma_{2}(T)$. Since $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$, we have $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2 t=\gamma_{2}\left(T^{\prime}\right)+2 t \geq \gamma_{2}(T)$.

Case 4. $i=4$. Assume that T is obtained from T^{\prime} by attaching a path $P_{2}=x y z$ to a vertex v of T^{\prime} such that $y v \in E(T)$, where v is not in any γ_{t}-set of T^{\prime} and $T^{\prime}-v$ has a component $P_{3}=u u^{\prime} u^{\prime \prime}$ satisfying $u v \in E\left(T^{\prime}\right)$. For any γ_{2}-set D^{\prime} of $T^{\prime}, D^{\prime} \cup\{x, z\}$ is a 2-dominating set of T. So $\gamma_{2}\left(T^{\prime}\right)+2 \geq \gamma_{2}(T)$. Let S be a γ_{t}-set of T containing the vertex u, then $y \in S$ and $|S \cap\{v, x, z\}|=1$.

If $v \notin S$, then $\left|S \cap V\left(T^{\prime}\right)\right|=|S|-2=\gamma_{t}(T)-2 \geq \gamma_{t}\left(T^{\prime}\right)$ since $S \cap V\left(T^{\prime}\right)$ is a TDS of T^{\prime}. By $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right), \gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2=\gamma_{2}\left(T^{\prime}\right)+2 \geq \gamma_{2}(T)$.

If $v \in S$, then $S \cap\{v, x, z\}=\{v\}$ and $\left|S \cap V\left(T^{\prime}\right)\right|=|S|-1=\gamma_{t}(T)-1 \geq$ $\gamma_{t}\left(T^{\prime}\right)$ since $S \cap V\left(T^{\prime}\right)$ is a TDS of T^{\prime}. Suppose that $\gamma_{t}(T) \leq \gamma_{2}(T)-1$, then, by $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right), \gamma_{2}(T) \geq \gamma_{t}(T)+1 \geq \gamma_{t}\left(T^{\prime}\right)+2=\gamma_{2}\left(T^{\prime}\right)+2 \geq$ $\gamma_{2}(T)$. So $\left|S \cap V\left(T^{\prime}\right)\right|=\gamma_{t}(T)-1=\gamma_{t}\left(T^{\prime}\right)$, and $S \cap V\left(T^{\prime}\right)$ is a γ_{t}-set of T^{\prime} containing v, which contradicts with v is not in any γ_{t}-set of T^{\prime}. Hence $\gamma_{t}(T) \geq \gamma_{2}(T)$.

Case 5. $i=5$. Assume that T is obtained from T^{\prime} by attaching a $K(t)$ $(t \geq 1)$ to a vertex v of T^{\prime} by joining $u=\operatorname{cent}(K(t))$ to v, where v satisfies the condition of Type-5 operation. Clearly, $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2 t$.

If $t \geq 2$, then, by $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$, it is obvious that $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2 t=$ $\gamma_{2}\left(T^{\prime}\right)+2 t \geq \gamma_{2}(T)$.

If $t=1$, then let $K(1)=u x y z$ and D^{\prime} be a γ_{2}-set of T^{\prime} containing v. Thus $D^{\prime} \cup\{z, x\}$ is a 2 -dominating set of T. Hence $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2=$ $\gamma_{2}\left(T^{\prime}\right)+2=\left|D^{\prime} \cup\{z, x\}\right| \geq \gamma_{2}(T)$.

Case 6. $i=6$. Assume that T is obtained from T^{\prime} by attaching a path $P_{5}=x_{1} x_{2} x_{3} x_{4} x_{5}$ to a vertex v of a tree T such that $x_{2} v \in E(T)$, where T^{\prime} and v satisfy the condition of Type-6 operation. Then we can choose a subset S of $V(T)$ as a γ_{t}-set of T such that $S \cap N_{T^{\prime}}(v) \neq \emptyset$. Thus $S \cap V\left(T^{\prime}\right)$ is a TDS of T^{\prime} and then $\left|S \cap V\left(T^{\prime}\right)\right| \geq \gamma_{t}\left(T^{\prime}\right)$. By the definition of γ_{2}-set, we have $\gamma_{2}\left(T^{\prime}\right)+3 \geq \gamma_{2}(T)$. Hence $\gamma_{t}(T)=|S|=\left|S \cap V\left(P_{5}\right)\right|+\left|S \cap V\left(T^{\prime}\right)\right| \geq$ $3+\gamma_{t}\left(T^{\prime}\right)=3+\gamma_{2}\left(T^{\prime}\right) \geq \gamma_{2}(T)$.

Lemma 7. If $T \in \mathscr{A}$ with order at least three, then $T \in \mathscr{B}$.
Proof. Let $n=|V(T)|$. Since $T \in \mathscr{A}$, we have $\gamma_{t}(T)=\gamma_{2}(T)$. If $d(T)=2$, then T is a star $K_{1, n-1}$. Since $2=\gamma_{t}(T)=\gamma_{2}(T)=n-1, n=3$. So $T=P_{3} \in \mathscr{B}$. If $d(T)=3$, then T contains exactly $n-2$ leaves. Since $2=$ $\gamma_{t}(T)=\gamma_{2}(T) \geq n-2, n=4$. So $T=P_{4}$. However, $\gamma_{2}\left(P_{4}\right)=3 \neq \gamma_{t}\left(P_{4}\right)$, a contradiction. If $d(T)=4$, then there is a vertex w of T with distance at most two from the other vertices in T. Hence $C(w)=C^{\prime}(w) \neq C_{1}^{\prime}(w)$ if we root T at w. By (3) of Lemma $5, T$ is a tree obtained from a star $K_{1, t}$ by attaching a vertex to every leaf of $K_{1, t}$, where $2 t+1=n$. Clearly, T can be obtained from P_{3} by $t-1$ operations of Type-2. By Lemma $6, T \in \mathscr{B}$. In the following, we will assume that $d(T) \geq 5$ and prove $T \in \mathscr{B}$ by induction on the order of $n=|V(T)|$.

If $n<6$, then $d(G) \leq 4$. The result is true from the above proof. If $n=6$, then $T=P_{6} \in \mathscr{B}$. This establishes the base cases. Assume that $n>6$ and the result is true for all the trees T^{\prime} with order $\left|V\left(T^{\prime}\right)\right|<n$, that is, if $T^{\prime} \in \mathscr{A}$ with order $\left|V\left(T^{\prime}\right)\right|<n$ then $T^{\prime} \in \mathscr{B}$.

Claim 1. If there is a vertex $a \in V(T)$ such that $T-a$ contains at least two components P_{2}, then $T \in \mathscr{B}$.

Proof. Assume that $P_{2}=b b^{\prime}$ and $P_{2}=c c^{\prime}$ are two components of $T-a$ such that $a b, a c \in E(T)$. Let $T^{\prime}=T-\left\{b, b^{\prime}\right\}$, then we use S^{\prime} and D to
denote a γ_{t}-set of T^{\prime} containing a and a γ_{2}-set of T, respectively. Since $a \in S^{\prime}, S^{\prime} \cup\{b\}$ is a TDS of T, and so $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-1$. Since D is a γ_{2}-set of $T, D \cap\left\{a, b, b^{\prime}\right\}=\left\{a, b^{\prime}\right\}$ by the definition of γ_{2}-set. So $D \cap V\left(T^{\prime}\right)$ is a 2 dominating set of T^{\prime}. Hence $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-1=\gamma_{2}(T)-1=\left|D \cap V\left(T^{\prime}\right)\right| \geq$ $\gamma_{2}\left(T^{\prime}\right)$. By Lemma 2, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$, and so $T^{\prime} \in \mathscr{A}$. By the induction on $T^{\prime}, T^{\prime} \in \mathscr{B}$. Since T can be obtained from T^{\prime} by Type- 2 operation. So $T \in \mathscr{B}$. The claim holds.

By Claim 1, we only need consider the case that, for every vertex a, $T-a$ has at most one component P_{2}. Let $P=u v w x y z \cdots r$ be a longest path in T and we root T at r.

Clearly, $C(w)=C^{\prime}(w) \neq C_{1}^{\prime}(w)$. By (3) of Lemma 5, $C_{1}^{\prime}(w)=C_{3}^{\prime}(w)$ $=\emptyset$. Hence $P_{3}=u v w$ is a component of $T-x$. Let t be the number of components P_{3} of $T[D(x)]$ such that a leaf of every P_{3} is adjacent to x. Note that $T[D(x)]$ possible has other components. We suppose $T[D(x)]$ has s components P_{3} with its support vertex is adjacent to x, k components P_{2} and h components P_{1}. By Lemmas 4 and $5, s, k \in\{0,1\}$ and $h \in\{0,1,2\}$. Denote the t components P_{3} of $T[D(x)]$ with one of its leaves is adjacent to x in T by $P_{3}=u_{i} v_{i} w_{i}(1 \leq i \leq t)$, where $x w_{i} \in E(T)$ for $1 \leq i \leq t$. We prove the result according to the values of $\{s, k, h\}$.

Case 1. $s=k=h=0$.
Then $T[D[x]]=K(t), t \geq 1$. Let $T^{\prime}=T-D[x]$. Then $3 \leq\left|V\left(T^{\prime}\right)\right|<n$. Clearly, $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-2 t$. Let D be a γ_{2}-set of T such that D contains as few vertices of $T[D[x]]$ as possible. Then, $x \notin D$ and $|D \cap D[x]|=2 t$ by the definition of γ_{2}-set. So $D \cap V\left(T^{\prime}\right)$ is a 2 -dominating set of T^{\prime}. Thus $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-2 t=\gamma_{t}(T)-2 t=\left|D \cap V\left(T^{\prime}\right)\right| \geq \gamma_{2}(T)$. By Lemma 2, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$ and $D \cap V\left(T^{\prime}\right)$ is a γ_{2}-set of T^{\prime}. So $T^{\prime} \in \mathscr{A}$. Applying the inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathscr{B}$.

If $t \geq 2$, then it is obvious that T is obtained from T^{\prime} by Type- 5 operation, and so $T \in \mathscr{B}$.

If $t=1$, then $T[D[x]]=K(1)=P_{4}=u v w x$, and so $D \cap\{u, v, w, x\}=$ $\{u, w\}$. To 2-dominate $x, y \in D$, and so $y \in D \cap V\left(T^{\prime}\right)$, which implies that y is in some γ_{2}-set of T^{\prime}. Hence T can be obtained from T^{\prime} by Type- 5 operation, and $T \in \mathscr{B}$, too.

Case 2. $s \neq 0$. By the proof procedure of Lemma $5, s=1$ and $k=h=0$. Denote the component P_{3} of $T[D[x]]$ whose support vertex is adjacent to x in T by $P_{3}=a b c$ and let $T^{\prime}=T-\{a, b, c\}$. Clearly, $3 \leq\left|V\left(T^{\prime}\right)\right|<n$. Let D be a γ_{2}-set of T which does not contain b.

We claim that x is not in any γ_{t}-set of T^{\prime}. Suppose that T^{\prime} has a γ_{t}-set containing x, denoted by S^{\prime}, then $S^{\prime} \cup\{b\}$ is a TDS of T. So $\gamma_{t}\left(T^{\prime}\right) \geq$ $\gamma_{t}(T)-1$. Since $b \notin D$, then $D \cap V\left(T^{\prime}\right)$ is a 2 -dominating set of T^{\prime}. Hence $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-1=\gamma_{2}(T)-1=\left|D \cap V\left(T^{\prime}\right)\right|+1 \geq \gamma_{2}\left(T^{\prime}\right)+1$, which contradicts $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}\right)$. The claim holds. Therefore, T can be obtained from T^{\prime} by Type- 4 operation.

Now we prove that $T^{\prime} \in \mathscr{B}$. Let S^{\prime} be a γ_{t}-set of T^{\prime}. By the above claim, $x \notin S^{\prime}$. Since $S^{\prime} \cup\{x, b\}$ is a TDS of $T, \gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-2$. Since $b \notin D, D \cap V\left(T^{\prime}\right)$ is a 2-dominating set of T^{\prime}. Hence $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-2=$ $\gamma_{2}(T)-2=\left|D \cap V\left(T^{\prime}\right)\right| \geq \gamma_{2}\left(T^{\prime}\right)$. By Lemma 2, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$, which implies $T^{\prime} \in \mathscr{A}$. Applying the inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathscr{B}$, and so $T \in \mathscr{B}$.

Case 3. $k \neq 0$. By the proof procedure of Lemma $5, s=h=0$.
Let $T^{\prime}=T-\cup_{i=1}^{t}\left\{u_{i}, v_{i}, w_{i}\right\}$. It is clearly that $3 \leq\left|V\left(T^{\prime}\right)\right|<n$ and T is obtained from T^{\prime} by Type-3 operation.

We only need to prove that $T^{\prime} \in \mathscr{B}$. Let $S^{\prime} \subseteq V\left(T^{\prime}\right)$ be a γ_{t}-set of T^{\prime}, then $S^{\prime} \cup\left(\cup_{i=1}^{t}\left\{v_{i}, w_{i}\right\}\right)$ is a TDS of T. So $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-2 t$. Since $T-x$ has a component $P_{2}=a b$, we can choose $D \subseteq V(T)$ as a γ_{2}-set of T containing x. Then $D \cap V\left(T^{\prime}\right)$ is a 2-dominating set of T^{\prime}, and so $\gamma_{2}(T)=|D|=2 t+\left|D \cap V\left(T^{\prime}\right)\right| \geq 2 t+\gamma_{2}\left(T^{\prime}\right)$. By $\gamma_{t}(T)=\gamma_{2}(T)$, we have $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$, and so $T^{\prime} \in \mathscr{A}$. Applying the inductive hypothesis on T^{\prime}, $T^{\prime} \in \mathscr{B}$.

Case 4. $h \neq 0$. By Lemmas 4 and $5, h \in\{1,2\}$ and $s=k=0$.
We claim that $h=1$. If not, then $h=2$. We denote the two components P_{1} of $T[D(x)]$ by x^{\prime} and $x^{\prime \prime}$. Let $T^{\prime}=T-x^{\prime \prime}$. Clearly, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{t}(T)$. Let D be a γ_{2}-set of T containing $\left\{w_{1}, \ldots, w_{t}\right\}$. By Lemma 3, $\left\{x^{\prime}, x^{\prime \prime}\right\} \subseteq D$. Since $D \cap V\left(T^{\prime}\right)$ is 2-dominating set of T^{\prime} with $\left|D \cap V\left(T^{\prime}\right)\right|=\gamma_{2}(T)-1$, we have $\gamma_{t}\left(T^{\prime}\right)=\gamma_{t}(T)=\gamma_{2}(T)>\gamma_{2}(T)-1 \geq \gamma_{2}\left(T^{\prime}\right)$, which contradicts $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}\right)$.

Case 4.1. $t \geq 2$.
Let $T^{\prime}=T-\cup_{i=2}^{t}\left\{u_{i}, v_{i}, w_{i}\right\}$, then T is obtained from T^{\prime} by Type- 3 operation. By the definitions of γ_{t}-set and γ_{2}-set, it is easy to see that $\gamma_{t}\left(T^{\prime}\right)+2(t-1)=\gamma_{t}(T)$ and $\gamma_{2}\left(T^{\prime}\right)+2(t-1)=\gamma_{2}(T)$. Hence $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$ and $T^{\prime} \in \mathscr{A}$. Applying the inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathscr{B}$, and so $T \in \mathscr{B}$.

Case 4.2. $t=1$. Denote the component P_{1} of $T[D(x)]$ by $P_{1}=x^{\prime}$.
Case 4.2.1. If $T[D(y) \backslash D[x]]$ has a component $H \in\left\{P_{2}, P_{3}, P_{5}\right\}$, then let $T^{\prime}=T-D[x]$. We can easily check that T is obtained from T^{\prime} by Type- 6 operation. By the definition of γ_{2}-set, $\gamma_{2}\left(T^{\prime}\right)+3=\gamma_{2}(T)$. For any γ_{t}-set S^{\prime} of $T^{\prime}, S^{\prime} \cup\{v, w, x\}$ is a TDS of T. So $\gamma_{t}\left(T^{\prime}\right) \geq \gamma_{t}(T)-3=\gamma_{2}(T)-3=$ $\gamma_{2}\left(T^{\prime}\right)$. By Lemma 2, $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$ and $T^{\prime} \in \mathscr{A}$. Applying the inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathscr{B}$, and so $T \in \mathscr{B}$.

Case 4.2.2. If $T[D(y) \backslash D[x]]$ has no component P_{2}, P_{3} or P_{5}, we consider the structure of $T[D(y)]$. By the above discussion, $T[D(y)]$ consists of a component $P_{5}=u v w x x^{\prime}$ and ℓ components P_{1}, denoted by $\left\{y_{1}, \ldots, y_{\ell}\right\}$. By Lemma $4, \ell \leq 2$. However, if $\ell=2$, then let $T^{\prime}=T-D[y]$. It can be easily checked that $\gamma_{t}\left(T^{\prime}\right)+4 \geq \gamma_{t}(T)=\gamma_{2}(T)=\gamma_{2}\left(T^{\prime}\right)+5$, which contradicts $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{2}\left(T^{\prime}\right)$. Hence $\ell \leq 1$.

Let $T^{\prime}=T-\left\{u, x^{\prime}\right\}$. Then we can easily check that $\gamma_{t}\left(T^{\prime}\right)+1=\gamma_{t}(T)$. Let D be a γ_{2}-set of T such that D contains as few vertices of $D[y]$ as possible and $D \cap D[x]=\left\{u, w, x^{\prime}\right\}$. Then $D^{\prime}=\left(D \backslash\left\{u, w, x^{\prime}\right\}\right) \cup\{v, x\}$ is a 2-dominating set of T^{\prime}. So $\gamma_{t}\left(T^{\prime}\right)=\gamma_{t}(T)-1=\gamma_{2}(T)-1=\left|D^{\prime}\right| \geq \gamma_{2}\left(T^{\prime}\right)$, which implies that $\gamma_{t}\left(T^{\prime}\right)=\gamma_{2}\left(T^{\prime}\right)$ and D^{\prime} is a γ_{2}-set of T^{\prime}. By $\gamma_{t}\left(T^{\prime}\right)=$ $\gamma_{2}\left(T^{\prime}\right), T^{\prime} \in \mathscr{A}$. Applying the inductive hypothesis to $T^{\prime}, T^{\prime} \in \mathscr{B}$.

If $\ell=0$, then $\operatorname{deg}_{T}(y)=2$. Since $x \notin D$, to 2-dominate $y, y \in D$. Thus y is in the γ_{2}-set D^{\prime} of T^{\prime}. Hence T is obtained from T^{\prime} by Type- 1 operation. Thus $T \in \mathscr{B}$.

If $\ell=1$, then $\operatorname{deg}_{T}(y)=3$. Since $x \notin D$, to 2 -dominate y, we have $y \notin D$ and $z \in D$ by the choice of D. Thus z is in the γ_{2}-set D^{\prime} of T^{\prime}. Hence T is obtained from T^{\prime} by Type- 1 operation. Thus $T \in \mathscr{B}$.

This completes the proof of Lemma 7.
Note that $\left\{P_{2}, P_{3}\right\} \subseteq \mathscr{A}$. Lemma 6 implies that $\mathscr{B} \subseteq \mathscr{A}$ and Lemma 7 implies that $\mathscr{A} \subseteq \mathscr{B} \cup\left\{P_{2}\right\}$. Hence Theorem 1 is true.

References

[1] M. Blidia, M. Chellalia and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006) 1840-1845.
[2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037.
[3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
[4] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterization of (γ, i)-trees, J. Graph Theory 34 (2000) 277-292.
[5] G. Chartrant and L. Lesniak, Graphs \& Digraphs, third ed. (Chapman \& Hall, London, 1996).
[6] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi, A.J. Schwenk (eds.), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
[7] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150.
[8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and P.J. Slater, H-forming sets in graphs, Discrete Math. 262 (2003) 159-169.
[9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998).
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998).
[11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong quality of domination parameters in trees, Discrete Math. 260 (2003) 77-87.
[12] M.A. Henning, A survey of selected recently results on total domination in graphs, Discrete Math. 309 (2009) 32-63.
[13] X. Hou, A characterization of $\left(2 \gamma, \gamma_{p}\right)$-trees, Discrete Math. 308 (2008) 3420-3426.

[^0]: *The work was supported by NNSF of China (No. 10701068 and No.10671191).

