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Abstract

Let 7:(G) and ~2(G) be the total domination number and the 2-
domination number of a graph G, respectively. It has been shown that:
Y(T) < 42(T) for any tree T'. In this paper, we provide a constructive
characterization of those trees with equal total domination number and
2-domination number.
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1. INTRODUCTION

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) and edge
set E(G). The open neighborhood, the closed neighborhood and the degree
of a vertex v € V(G) are denoted by Ng(v) = {u € V(G) | w € E(G)},
Nglv] = Ng(v) U{v} and degg(v) = |Ng(v)|, respectively. For u € V(G),
u is a leaf of G if degg(u) = 1 and a support vertex of G if u has a leaf as
its neighbor in G. For a pair of vertices u,v € V(G), the distance dg(u,v)
of u and v is the length of a shortest uv-path in G. The diameter of G is
d(G) = max{dg(u,v) : u,v € V(G)}.

For any set S C V(G), the subgraph induced by S is denoted by G[S]
and we write G — S for G[V(G) — S]. For convenience, we write G — v for

*The work was supported by NNSF of China (No.10701068 and No.10671191).



426 Y. Lu, X. Hou, J.-M. XU anND N. L1

G — {v} for v € V(G). For any edge xy € E(G), we use G — zy to denote
the subgraph induced by E(G) — {zy}.

Total domination in graphs was introduced by Cockayne et al. [3]. A
subset S C V(G) is a total dominating set (denoted by TDS) if every vertex
of V(G) has at least one neighbor in S. The total domination number
(denoted by 7:(G)) is the minimum cardinality among the total dominating
sets of G. The total dominating set of G with cardinality v¢(G) will be called
a y-set of G. For a survey on total domination in graphs one can refer to
Henning [12].

Let p be a positive integer. In [6], Fink and Jacobson introduced the
concept of p-domination. A p-dominating set of G is a subset S of V(G) such
that every vertex not in S has at least p neighbors in S. The p-domination
number 7,(G) is the minimum cardinality of a p-dominating set of G. The
p-dominating set of G with cardinality 7,(G) will be called a 7,-set of G.
Note that p-domination is the classic domination when p = 1. For any
S, T C V(G), S p-dominates T in G if every vertex of T not in S has at
least p neighbors in S.

An area of research in domination of graphs that has received con-
siderable attention is the characterization of classes of graphs with equal
domination parameters. For any two graph parameters A and u, G is called
a (A, p)-graph if A\(G) = u(G). Characterizing the (A, )-graphs has been
investigated in many papers (for example [1, 4, 7, 11, 13]).

In [8], Haynes et al. showed that for all trees the total domination
number is equal or less than the 2-domination number, and they also gave
a necessary condition for all trees with equal total domination number
and 2-domination number. In this paper, we give a constructive charac-
terization of trees with equal total domination number and 2-domination
number.

2. A CHARACTERIZATION

Let P, = uy---uy, (n > 1) be a path with vertex set {u1,...,u,} and K(t)
(t > 2) be the tree obtained from a star Kj; with support vertex u by
adding a path P; to every leaf of K. Denote u by cent(K(t)). For conve-
nience, we denote a path Py by K (1) and let cent(K (1)) represent one leaf
of P4.

To state the characterization of (7, v2)-trees, we introduce the six types
of operations.



A CHARACTERIZATION OF (7¢,y2)-TREES 427

Type-1 operation: Attach a path P; to each of the two vertices u,w of a
tree T, respectively, where u, w locate at a component P; of T'— xy for some
edge xy such that either x is in a yo-set of T' and P, = Py = uvwx or y is in
a y9-set of T and P, = P5 = uwvwza’.

Type-2 operation: Attach a path P, to a vertex v of a tree T by joining
one leaf of P, to v, where v is a vertex such that T — v has a component Ps.

Type-3 operation: Attach ¢ (> 1) paths Ps to a vertex v of a tree T' by
joining one leaf of each Ps to v, where v is a vertex such that either T" — v
has a component P, or T'— v has two components P; and P3 that a leaf of
Pj is adjacent to v in T.

Type-4 operation: Attach a path P3 to a vertex v of a tree T by joining
its support vertex to v, where v is a vertex such that v is not contained
in any -set of T and T — v has a component P3 that one of its leaves is
adjacent to v in T.

Type-5 operation: Attach a tree K(t) (t > 1) to a vertex v of a tree T' by
joining cent(K (t)) to v, where v is in a ya-set of T'if ¢t = 1.

Type-6 operation: Attach a path Ps to a vertex v of a tree T' by joining
one of its support vertices to v, where v is a vertex such that T'— v has a
component H € {P,, P3, Ps} and v is adjacent to a support vertex of H if
H=P;.

From the survey on total domination in graphs [12], it is hard to recognize
whether a vertex v is in no y;-set or no ~s-set.

Let & be the family of trees with equal total domination number and
2-domination number, that is

of ={T : T is a tree satisfying v;(T") = v2(T)}.
We also define the family & as:

PB={T:T is obtained from Ps3 by a finite sequence of operations of Type-i,
where 1 <i < 6}.

We shall show that
Theorem 1. o = BU{Ps}.
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3. THE PROOF OF THEOREM 1

We need some known results.

Lemma 2 ([8]). Let T be a tree without isolated vertices, then ~(T) <
Y2(T).

Lemma 3 ([2]). Every 2-dominating set of a graph G contains all leaves

of G.

Lemma 4 ([8]). If T is a tree satisfying v¢(T) = v2(T'), then every support
vertex of T is adjacent to at most two leaves.

Let T be a rooted tree. For every v € V(T'), let C(v) and D(v) denote the
set of children and descendants of v, respectively, and D[v] = D(v) U {v}.
Define

C'(v) = {u € C(v) : every vertex of D[u| has distance at most two

from v in T'}.

By Lemma 4, each vertex of C’(v) has degree at most three. Hence we can
partition C’(v) into C}(v), C4(v), C4(v) such that every vertex of C/(v) has
degree ¢ in T, i = 1,2 or 3.

Lemma 5. Let T be a rooted tree satisfying v¢(T') = v2(T") and w € V(T).
We have
(1) If Cy(w) # 0, then Cj(w) = C4(w) = 0.
(2) If Ci(w) # 0, then Cj(w) = Ch(w) =0 and |C4(w)| = 1.
(3) If Clw) = C'(w) # C}(w), then C}(w) = Ch(w) = 0.
Proof. Let Ci(w) = {z1,...,2:}, Co(w) = {y1,...,ys} and C4(w) =
{z1,...,2:}. Then |C](w)] = 7, |C4(w)] = s and |C4(w)| = ¢. For each
i=1,...,t let u; be a leaf adjacent with z; in T. Let T/ =T — {1, ..., 2y,
ULy ,’U,t}.

(1). We prove that if s > 1 then r +¢ = 0. Assume r +¢ > 1. Since
s > 1, we can choose a ~yo-set D of T such that w € D, and a y;-set S’ of T’
such that w € S’. Tt is not difficult to check that D —{x1,..., &, u1,...,us}
is a 2-dominating set of 77 and S’ is a TDS of T. Hence,
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W(T') = [S'] > W(T) = 72(T)
=|D| > |D —{x1,..., %, u1,. .., u}| > (1),
a contradiction with Lemma 2.
(2) and (3). Suppose either C%(w) # 0 or C(w) = C'(w) # Cf(w). Then
s+t > 1. Choose a y-set S” of T” such that w € S’. Then S’ is also a TDS
of T. Hence v(T") = |S’| > 7(T). By the definition of y5-set and Lemma 3,

there is a y9-set, denoted by D, of T satisfying DN {y1,...,ys, 21,...,2:} = 0.
Then (DNV(T')) U{w} is a 2-dominating set of 7"’. Hence

2(T) < [(DNV(T")) U{w}]
< ID| = (r+t)+1
=yT)—-(r+t)+1

=% (T)—(r+t)+1.

IN

If t > 1, then yo(T") < %(T) < % (T") < v(T"), the last inequality is by
Lemma 2, which implies that r +¢=1and w ¢ D. Sor =0 and t = 1. By
(1), we have s = 0. Hence (2) is valid.

If C(w) = C'"(w) # C}(w), then s+t > 1. By (1) and (2), r = 0. We
show that ¢ = 0. If not, similar to the proof of (2), we have w ¢ D, t =1
and s = 0. Since C'(w) = C'(w), we know that degr(w) = 2. To 2-dominate
w, z1 € D, which contradicts with the choice of D. [ |

Lemma 6. If T' € o with order at least three and T is obtained from T’
by an operation of Type-i, 1 <i <6, thenT € & .

Proof. Since T' € o/, we have 1(T’) = v2(T"). By Lemma 2, we only
need to prove that v (T') > o (7).

Case 1. i = 1. Assume that T is obtained from T’ by attaching v’ and
w’ to u and w, respectively, where u and w satisfy the conditions of Type-1
operation. Then there is an edge xy in T such that either x is in a yo-set
of T" and T" — xy has a component Py = uvwz, or y is in a yo-set of 7" and
T" — xy has a component Ps = uwvwzz’. Clearly, v(T") = v(T) — 1.

If 7" — zy contains a path Py = uvwz, then let D’ be a 7o-set of T”
containing x. From Lemma 3 and the definition of ~s-set, we have D' N
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{u,v,w,2} = {u,w} or {u,v}. Thus D = (D' — {u,v,w}) U {v/,v,w'} is
a 2-dominating set of 7' with |D| = |D'| + 1 = (T") + 1. So, w(T) =
Y(T') +1=7(T") +1=|D| > 7(T).

If T/ — xy contains a path P5; = wvwzxx’, then let D’ be a v9-set of
T’ containing y. By Lemma 3 and the definition of ~ys-set, we have D’ N
{u,v,w,z,2'} = {u,w,2'}. Thus D = (D' \ {u,w}) U {v/,v,w'} is a 2-
dominating set of 7' with |D| = |D'|4+1 = o (T")+1. So, %(T) = w(T")+1 =
72(T") + 1 =|D| = 72(T).

Case 2. i = 2. Assume that T is obtained from 7’ by attaching a
path P, = wu' to a vertex v of T” such that uv € FE(T), where T" — v
has a component P, = wz satisfying vw € E(T"). It is easy to show that
v(T) = %(T") + 1. By the definition of vs-set, there exists a vyo-set D’ of T"
containing the vertex v. Then D’ U {u'} is a 2-dominating set of T. Hence,
W(T) =%(T") +1=7(T")+1= D' U{u"}| = (T).

Case 3. i = 3. Assume that T is obtained from T’ by attaching ¢ (> 1)
paths P3, denoted by {z;y;2; : 1 < i < t}, to a vertex v of T' such that
ziv € E(T) for 1 < i < t, where either 7" — v has a component P, = uu/
satisfying uv € E(T"), or T" — v has a component P; = ug and a component
Py = uu'u” satisfying wv € E(T). By the definitions of ~4-set and ~yo-set,
we can easily prove that v¢(T) > v(T") + 2t and v2(T") + 2t > v2(T'). Since
Y (T") = 72(T"), we have v¢(T) > 3(T") + 2t = vo(T") + 2t > 72(T).

Case 4. i = 4. Assume that T is obtained from T’ by attaching a
path P, = zyz to a vertex v of T’ such that yv € E(T), where v is not
in any 7-set of 77 and 7" — v has a component P3 = wu/u” satisfying
uv € E(T"). For any ~ys-set D' of T', D' U{x, z} is a 2-dominating set of T'.
So ¥2(T") +2 > ~v9(T). Let S be a y-set of T containing the vertex u, then
yeSand |SN{v,z, 2z} =1

Ifv ¢ S, then [SNV(T")| =1S|—2=n(T)—2 > v(T") since SNV (T")
isa TDS of T". By w(T") = 72(T"), %(T) = w(T") +2 = 72(T") +2 > 72(T).

Ifv e S, then SN{v,z,2} = {v} and |SNV(T")| = |S|-1=%(T)—1>
v (T") since SNV (T') is a TDS of T'. Suppose that v(T) < 7o(T) — 1,
then, by %(T") = 72(T"), 72(T) > w(T) +1 > w(T') +2 = »(T") +2 >
Y2(T). So |SNV(T)| = v(T) — 1 = %(T"), and SNV (T') is a y-set of
T’ containing v, which contradicts with v is not in any ~;-set of 7”. Hence
(T) > 3o(T).
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Case 5. i = 5. Assume that T is obtained from 7" by attaching a K (t)
(t > 1) to a vertex v of T' by joining u = cent(K (t)) to v, where v satisfies
the condition of Type-5 operation. Clearly, v¢(T) > ~v(T") + 2t.

If t > 2, then, by v(T") = v2(T"), it is obvious that v (T') > (T")+2t =
Y2 (T") + 2t > 7o (T).

If t = 1, then let K(1) = uzyz and D’ be a ~s-set of T containing v.
Thus D' U {z,z} is a 2-dominating set of T. Hence y(T) > w(T') + 2 =
(1) +2= D' U {z,2| > (T).

Case 6. i = 6. Assume that T is obtained from 7" by attaching a path
Ps = z1xex3z4w5 to a vertex v of a tree T such that z9v € E(T), where
T’ and v satisfy the condition of Type-6 operation. Then we can choose a
subset S of V(T') as a y-set of T such that SN Ny (v) # 0. Thus SNV (T")
is a TDS of 77 and then |SNV(T")| > v(T"). By the definition of v,-set, we
have y2(T") + 3 > 72(T). Hence v(T) = |S| = |SNV(Ps)| + |SNV(T")| >
34+ 2(T") =3+ 72(T") > (). u

Lemma 7. If T € & with order at least three, then T € 2.

Proof. Letn = |V(T)|. Since T € o, we have 7(T) = v2(T). If d(T) = 2,
then T is a star Kj,—1. Since 2 = %(T) = 7(T) =n—-1, n = 3. So
T =P;€ B If d(T) = 3, then T contains exactly n — 2 leaves. Since 2 =
Y(T) =v(T) >n—2,n=4. SoT = P;. However, v2(Py) = 3 # v(Ps),
a contradiction. If d(T') = 4, then there is a vertex w of T with distance at
most two from the other vertices in 7. Hence C(w) = C'(w) # Cf(w) if we
root T at w. By (3) of Lemma 5, T is a tree obtained from a star K;; by
attaching a vertex to every leaf of K ;, where 2t +1 = n. Clearly, T' can be
obtained from Pjs by ¢ — 1 operations of Type-2. By Lemma 6, T' € 4. In
the following, we will assume that d(7") > 5 and prove T' € £ by induction
on the order of n = |V (T)|.

If n < 6, then d(G) < 4. The result is true from the above proof. If
n = 6, then T' = Pg € 4. This establishes the base cases. Assume that
n > 6 and the result is true for all the trees T' with order |V (T”)| < n, that
is, if T" € o/ with order |V (T")] < n then T' € A.

Claim 1. If there is a vertex a € V(T') such that T' — a contains at least
two components Py, then T € 4.

Proof. Assume that P, = b’ and P, = ¢’ are two components of T — a
such that ab,ac € E(T). Let T" = T — {b,b'}, then we use S’ and D to
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denote a 7;-set of T' containing a and a ~ys-set of T, respectively. Since
a€ S, S'U{b}isa TDS of T, and so v(T") > v(T) — 1. Since D is a yo-set
of T, DN {a,b,t'} = {a,b'} by the definition of yo-set. So DNV (T") is a 2-
dominating set of T7. Hence v(T") > w(T)—1=(T)—1=|DNV(T")| >
v2(T"). By Lemma 2, v(T") = v2(T"), and so T" € «/. By the induction
on T', T" € B. Since T can be obtained from 7" by Type-2 operation. So
T € A. The claim holds.

By Claim 1, we only need consider the case that, for every vertex a,
T — a has at most one component P,. Let P = uvwzyz---r be a longest
path in T" and we root T" at r.

Clearly, C(w) = C'(w) # Cj(w). By (3) of Lemma 5, C}(w) = C4(w)
= (). Hence P3 = uvw is a component of T — z. Let ¢ be the number of
components P3 of T[D(x)] such that a leaf of every Ps is adjacent to x.
Note that T'[D(x)] possible has other components. We suppose T'[D(z)] has
s components P3 with its support vertex is adjacent to x, k components P,
and h components P;. By Lemmas 4 and 5, s,k € {0,1} and h € {0,1,2}.
Denote the t components P3 of T[D(x)] with one of its leaves is adjacent to
z in T by Py = uyv;w; (1 < i <t), where zw; € E(T) for 1 <i <t. We
prove the result according to the values of {s, k, h}.

Casel. s=k=h=0.

Then T[D[z]] = K(t),t > 1. Let T" =T — D[z]. Then 3 < |V(T")| < n.
Clearly, v(T") > %(T) — 2t. Let D be a ~a-set of T' such that D contains
as few vertices of T[D|x]] as possible. Then, x ¢ D and |D N Dz]| = 2¢
by the definition of ye-set. So DNV (T”) is a 2-dominating set of 7”. Thus
Y(T") > w(T) — 2t = w(T) — 2t = |DNV(T")| > 72(T). By Lemma 2,
Y(T") = 72(T") and DNV (T") is a vya-set of T'. So T’ € «/. Applying the
inductive hypothesis on 77, T" € A.

If t > 2, then it is obvious that T is obtained from T’ by Type-5 opera-
tion, and so T € 4.

If t =1, then T'[D[z]] = K(1) = Py = uwvwz, and so D N{u,v,w,z} =
{u,w}. To 2-dominate x, y € D, and so y € D N V(T’), which implies
that y is in some ~9-set of T”. Hence T can be obtained from 7" by Type-5
operation, and T € £, too.

Case 2. s # 0. By the proof procedure of Lemma 5, s = 1 and k = h = 0.
Denote the component Ps of T'[D[z]] whose support vertex is adjacent to =
in T by P3 = abc and let T" =T — {a,b,c}. Clearly, 3 < |V(T")| < n. Let
D be a ~ys-set of T" which does not contain b.
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We claim that z is not in any ~;-set of T’. Suppose that T’ has a ~;-set
containing x, denoted by S’, then S’ U {b} is a TDS of T. So v(I") >
v(T) — 1. Since b ¢ D, then DNV (T’) is a 2-dominating set of 7’. Hence
YW(T') > %(T)—1=%T)-1=|DNV(T)|+1 > %(T)+ 1, which
contradicts v4(T") < v2(T”"). The claim holds. Therefore, T' can be obtained
from 7" by Type-4 operation.

Now we prove that 7" € AB. Let S’ be a y-set of T'. By the above
claim, = ¢ S’. Since S’ U {x,b} is a TDS of T, v(T") > v(T) — 2. Since
b¢ D, DNV(T') is a 2-dominating set of T”. Hence 1 (T") > w(T) — 2 =
Y2 (T) =2 = |DNV(T")| > v (T"). By Lemma 2, 3(T") = ~2(T"), which
implies 77 € 7. Applying the inductive hypothesis on 7', T" € %, and so
T e

Case 3. k # 0. By the proof procedure of Lemma 5, s = h = 0.
Let 7" = T — U'_;{u;, v, w; }. It is clearly that 3 < |[V(T")] < n and T is
obtained from T" by Type-3 operation.

We only need to prove that 77 € #. Let S’ C V(T”) be a ~-set of
T’, then S" U (U {v;,w;}) is a TDS of T. So v(T") > w(T) — 2t. Since
T — z has a component P, = ab, we can choose D C V(T') as a ya-set
of T containing z. Then D N V(T') is a 2-dominating set of 7", and so
29(T) = |D| = 2+ |DAV(T')| > 2 +3(T’). By %(T) = (T), we have
Y(T") = v2(T"), and so T” € «7. Applying the inductive hypothesis on 7",
T € A.

Case 4. h # 0. By Lemmas 4 and 5, h € {1,2} and s = k = 0.
We claim that h = 1. If not, then h = 2. We denote the two components
Py of T[D(z)] by 2’ and 2. Let 7" =T — 2. Clearly, 1(T") = v(T'). Let
D be a 7z-set of T containing {wy,...,w;}. By Lemma 3, {z/,2"} C D.
Since D N V(T") is 2-dominating set of 77 with |[D NV(T")| = v(T) — 1,
we have 1 (T") = 7(T) = 7(T) > ¥(T) — 1 > 42(T"), which contradicts
W(T") < 72 (T).

Case 4.1. t > 2.
Let 7" = T — Ul_o{u;,v;,w;}, then T is obtained from 7" by Type-3 op-
eration. By the definitions of ~;-set and ~s-set, it is easy to see that
(') +2(t—1) = (T and 3o (T") +2(t ~1) = 2 (T). Hence 1(T") = 1a(T")
and 7" € /. Applying the inductive hypothesis on T’, T/ € %, and so
TecHA.
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Case 4.2. t = 1. Denote the component P; of T[D(z)] by P, = «'.

Case 4.2.1. If T[D(y) \ D[z]] has a component H € {P», P3, P5}, then
let T" = T — D[z]. We can easily check that T' is obtained from 7" by Type-6
operation. By the definition of vyo-set, y2(T") + 3 = 42(T"). For any 7;-set
S of T, 8" U{v,w,z} is a TDS of T. So v(T") > w(T) —3 =(T) -3 =
v2(T"). By Lemma 2, v(T") = 72(T") and T" € «/. Applying the inductive
hypothesis on T, T € %, and so T € A.

Case 4.2.2. If T[D(y)\ D|x]] has no component P, P3 or Ps, we consider
the structure of T'[D(y)]. By the above discussion, T[D(y)] consists of a
component P; = uvwza’ and £ components Pj, denoted by {y1,...,ys}. By
Lemma 4, ¢ < 2. However, if £ = 2, then let 7" =T — D[y]. It can be easily
checked that v(T") + 4 > % (T) = v(T) = v(T") + 5, which contradicts
Y(T") < v2(T"). Hence £ < 1.

Let 7" =T — {u,2'}. Then we can easily check that v¢(T") + 1 = (7).
Let D be a 7ys-set of T such that D contains as few vertices of D[y| as
possible and D N D[z] = {u,w,z'}. Then D' = (D \ {u,w,2'}) U{v,x} is a
2-dominating set of T77. So y(T") =% (T) — 1 = %(T) — 1 = |D'| > v2(T"),
which implies that v(T") = 42(7”) and D’ is a yo-set of T”. By %(T") =
v2(T"), T" € o/ . Applying the inductive hypothesis to 7', T" € 2.

If £ =0, then degr(y) = 2. Since x ¢ D, to 2-dominate y, y € D. Thus
y is in the v9-set D’ of T". Hence T is obtained from T’ by Type-1 operation.
Thus T' € 4.

If ¢ =1, then degr(y) = 3. Since x ¢ D, to 2-dominate y, we have
y ¢ D and z € D by the choice of D. Thus z is in the yo-set D’ of T7’. Hence
T is obtained from T” by Type-1 operation. Thus T € 4.

This completes the proof of Lemma 7. [ |

Note that {Ps, Ps} C /. Lemma 6 implies that  C & and Lemma 7
implies that &/ C 2 U {P,}. Hence Theorem 1 is true.
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