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1. Introduction

By a graph G = (V,E), we mean a finite undirected graph which does not
contain loops and multiple edges. In this paper, unless specified otherwise,
we follow the terminology of D.B. West [9]. Total domination, as an analogue
to domination, is well studied by many graph theorists. For the terms and
definitions related to domination, which are not given in this paper, readers
may refer the books Fundamentals of Domination and Domination in Graphs
— Advanced Topics [5, 6]. A total dominating set of G = (V,E) is a subset
S of V such that every vertex of V is adjacent to at least one vertex in S.
Smallest such set is called a minimal total dominating set. The characteristic
functions of the dominating set is a 0−1 valued function such that, the sum
of the function values over the open neighborhood of each vertex is at least
one.

Fractional analog of the total dominating set is a total dominating func-

tion (TDF) defined as the real valued function f : V → [0, 1] such that

∑

x∈N(v)

f(x) ≥ 1

for all v ∈ V , where N(v) is the open neighborhood of v. This definition
was first given by Hedetniemi and Wimer [3] in 1994. A minimal total

dominating function (MTDF) is a TDF such that f is not a TDF if for any
v ∈ V , the value of f(v) is decreased.

For an MTDF f of G, denote
∑

x∈N(v) f(x) by f(N(v)). The boundary

of f or Bf is {v ∈ V :
∑

x∈N(v) f(x) = 1} and the positive set of f or Pf

is {v ∈ V : f(v) > 0}. For two subsets A and B of V , we write A →t B
if every vertex in B is adjacent to some vertex in A. Identifying BMTDFs
from a collection of MTDFs is not a difficult task, if we use the following
theorem.

Theorem 1.1 [3]. A total dominating function f of the graph G is a mini-

mal total dominating function if and only if Bf →t Pf .

An interpolation problem motivated to define the convex combination of
minimal dominating functions. This problem can be stated as follows.
“Given two minimal dominating functions f and g of the graph G and for any
real number x, such that ag(f) < x < ag(g), where ag(f) =

∑

v∈V f(v), does
there exist a minimal dominating function h of G such that ag(h) = x?”.
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A similar question raised about total domination, motivated to define the
convex combination of two MTDFs. Let f and g be two MTDFs of G, a
convex combination of f and g is hλ = λf + (1 − λ)g where 0 < λ < 1.
This function is clearly a TDF. Hence the set of all TDFs forms a con-
vex set. However it is evident from the following theorem that the convex
combination of two MTDFs need not always be an MTDF.

Theorem 1.2 [3]. A convex combination of two MTDFs f and g is minimal

if and only if Bf ∩ Bg →t Pf ∪ Pg.

An MTDF f of G is called a universal minimal total dominating function if
and only if every convex combination of f and any other MTDF is minimal.
Theorem 1.2 is true for any finite number of MTDFs.

Theorem 1.3 [7]. A convex combination of n MTDFs f1, f2, . . . fn is min-

imal if and only if Bf1
∩ Bf2

∩ · · · ∩ Bfn
→t Pf1

∪ Pf2
∪ · · · ∪ Pfn

.

Fractional version of total domination, convexity of two MTDFs and the
existence of universal MTDFs have been studied by many authors [2, 3, 4].
Since the set of TDFs is convex, some TDFs cannot be expressed as a convex
combination two or more TDFs. Motivated by this, in 2000 K. Reji Kumar
introduced basic total dominating functions (BTDFs) and basic minimal
total dominating functions (BMTDFs) [7]. An MTDF is called a basic min-

imal total dominating function or BMTDF, if it cannot be expressed as a
proper convex combination of two distinct MTDFs. A necessary and suffi-
cient condition for an MTDF to be a basic MTDF is known and based on
this we have developed an algorithm to decide whether a given MTDF is
basic.

Theorem 1.4 [7]. Let f be an MTDF. Then f is a BMTDF if and only if

there does not exist an MTDF g such that Bf = Bg and Pf = Pg.

Theorem 1.5 [7]. Let f be an MTDF of a graph G = (V,E) with Bf =
{v1, v2, . . . , vm} and P ′

f = {u ∈ V : 0 < f(u) < 1} = {u1, u2, . . . , un}. Let

A = (aij) be an m × n matrix defined by

aij =

{

1 if vi is adjacent to uj,

0 otherwise.
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Consider the system of linear equations given by

∑

j

aijxj = 0, where 1 ≤ i ≤ m.(1.1)

Then f is a BMTDF if and only if (1.1) does not have a non-trivial solution.

Corollary 1.6 [7]. If f(v) ∈ {0, 1} for all v ∈ V , then the MTDF f of G
is a BMTDF.

Let G be a graph. We define

C0(G) = {v ∈ V : f(v) = 0 for any MTDF f of G}, and

C1(G) = {v ∈ V : f(v) = 1 for any MTDF f of G}.

The set of leaves of G is, L = {v ∈ V : d(v) = 1} and the set of remote

vertices is defined by R = {v ∈ V : v ∈ N(u) for u ∈ L}. Here d(v) is the
number of vertices adjacent to a vertex v ∈ V . Nice characterizations of the
sets C0(G) and C1(G) of a graph G are given by Cockayne et al. in [3].

Proposition 1.7 [3]. For any graph G and vertex v,

1. v ∈ C0(G) if and only if v is in no MTDS of G;

2. v ∈ C1(G) if and only if v is in every MTDS of G.

Theorem 1.8 [3]. A graph G has either a unique MTDF or infinitely many

MTDFs.

Theorem 1.9 [3]. For any graph G, C1(G) = R.

Theorem 1.10 [3]. The vertex v ∈ C0(G), if and only if for any u ∈ N(v)
there exists a vertex w such that N(w) ⊆ N(u) − v.

Let K be a convex subset of Rn. A point x ∈ K is an extreme point of K
if y, z ∈ K, 0 < λ < 1, and x = λy + (1 − λ)z imply x = y = z. The set of
all extreme points of K is denoted by ext(K). A set F ⊆ K is a face of K
if either F = ∅ or F = K or there exists a supporting hyperplane H of K
such that F = K ∩ H. An n-simplex in the Euclidean space is the convex
hull of n + 1 affinely independent points. A convex polytope is the convex
hull of a finite set. A finite family B of convex polytopes in Rn is called a
simplicial complex if it satisfies the following conditions
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1. Every face of a member of B is itself a member of B;

2. The intersection of any two members of B is a face of each of them.

For further study of simplices, polytopes and complexes, the reader is re-
ferred to [1]. We use the notations FT (G) and FBT (G) to denote the set of
all MTDFs and the set of all BMTDFs of a graph G, respectively.

Theorem 1.11 [8]. Let A ⊆ FBT (G) such that the convex combination fAi

of all BMTDFs in Ai ⊆ A is an MTDF for any subset Ai and BA1
6= BA2

or PA1
6= PA2

for any two nonempty subsets A1 and A2. Then the convex

combination fA is a simplex with dimension |A| − 1.

Theorem 1.12 [8]. Let G be a graph with |V | = n. Then the Euclidian

dimension of FT (G) is at most n.

Theorem 1.13 [8]. Let G be a graph having order n such that |FBT (G)| =
r, and FT (G) is convex.

1. If r ≤ (n+1) and for all different subsets A1 and A2 of FBT (G), BfA1
6=

BfA2
or PfA1

6= PfA2
then FT (G) is an r-1 simplex. Otherwise FT (G) is

a convex polytope having dimension at most n − 1.

2. If r > (n+1), FT (G) is a convex polytope having dimension at most n and

there exists two subsets A1 and A2 of FBT (G), such that BfA1
= BfA2

and PfA1
= PfA2

.

Theorem 1.14 [8]. If FT (G) is not convex, then it is a simplicial complex.

Theorem 1.15 [8]. For the complete bipartite graph G = Km,n, the set

FT (Km,n) is isomorphic to

1. the n-1-simplex if m = 1 and n ≥ 2.

2. a convex polytope otherwise.

2. Structure of the Set of all MTDFs of Some Classes of

Graphs

In this section, our focus is on the study of the structure of the set of all
MTDFs of cycles and paths. We shall show that, FT (Cn) is convex only if
n = 4 or 8 and FT (Pn) is convex only if n ≤ 8. There exists a bijection
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from the set of all functions f : V → [0, 1] of the graph G = (V,E) to the
n dimensional cube (In) in R

n. So the set of all TDFs is isomorphic to a
subset of In.

Theorem 2.1. Let G be a vertex transitive graph. The set FT (G) is convex

if and only if Bf = V for all MTDF f of G.

Proof. Suppose that FT (G) is convex. Assume that Bf 6= V for some
MTDF f of G. Let fv be an MTDF of G such that, v /∈ Bf . Since the
graph is vertex transitive, there exists a function fu such that, u /∈ Bfu

for
each u ∈ V . Now, by the convexity of FT (G), there must exist an MTDF
g such that, Bg = ∅. This is a contradiction. Conversely, if Bf = V for all
MTDF f of G, then it directly follows that, FT (G) is a convex set.

Lemma 2.2. If f is a BMTDF of an even cycle or a path, then f is a

0 − 1 BMTDF. The odd cycle has exactly one BMTDF which is not a 0− 1
BMTDF.

Proof. Suppose that f is not a 0-1 BMTDF. Then there exist vertices
u1, u2, . . . , ur ∈ P ′

f . Now consider the corresponding system of equations
(1.1), (Theorem 1.5). In this system, each equation should contain exactly
two ui’s and each should appear in at most two equations. Rank of all
possible system of equations obeying this rule, is less than the number of
equations used in it, except when the graph is a cycle and P ′

f = V . Using
row echelon form, we can prove that, the system has trivial solution only if
the graph is an odd cycle and P ′

f = V . If the graph is a path or an even
cycle, the system has a non-trivial solution. Then f is not basic, which is a
contradiction. Hence the function f of the odd cycle defined by, f(v) = 1

n

for all v ∈ V is a BMTDF.

Theorem 2.3. The set FT (Cn) is convex only if n = 4 or 8.

Proof. First we shall show that, Cn except when n = 4 or 8 have one
MTDF f with Bf 6= V . Since cycles are vertex transitive, by Theorem
2.1 it follows that FT (Cn) is not convex when n 6= 4 or 8. Let V (Cn) =
{v1, v2, . . . , vn}.

Case 1. When n = 3, the required function has the following values
f(v1) = 1, f(v2) = 1 and f(v3) = 0.
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Case 2. When n = 5, f is defined as f(v1) = 1, f(v2) = 1, f(v3) = 1,
f(v4) = 0 and f(v5) = 0.

Case 3. When n = 6, f has the values f(v1) = 1, f(v2) = 1, f(v3) = 0,
f(v4) = 1, f(v5) = 1 and f(v6) = 0.

Case 4. When n = 7, the function is defined as f(v1) = 1, f(v2) = 1,
f(v3) = 0, f(v4) = 1, f(v5) = 1, f(v6) = 0 and f(v7) = 0.

Case 5. When n = 9, f(v1) = 1, f(v2) = 1, f(v3) = 0, f(v4) = 0,
f(v5) = 1, f(v6) = 1, f(v7) = 1, f(v8) = 0 and f(v9) = 0 are the function
values.

Case 6. When n = 10, f(v1) = 1, f(v2) = 1, f(v3) = 0, f(v4) = 1,
f(v5) = 1, f(v6) = 0, f(v7) = 1, f(v8) = 1, f(v9) = 0 and f(v10) = 0 are
the function values.

Case 7. When n = 11, f takes the values, f(v1) = 1, f(v2) = 1,
f(v3) = 0, f(v4) = 1, f(v5) = 1, f(v6) = 0, f(v7) = 0, f(v8) = 1, f(v9) = 1,
f(v10) = 0, and f(v11) = 0.

Case 8. When n = 12, f(v1) = 1, f(v2) = 1, f(v3) = 0, f(v4) = 1,
f(v5) = 1, f(v6) = 0, f(v7) = 1, f(v8) = 1, f(v9) = 0, f(v10) = 1, f(v11) = 1
and f(v12) = 0 are the values at different vertices.

Next we shall show that, if Cn has an MTDF f such that, f(vi) = 0,
f(vi+1) = 1, f(vi+2) = 1, f(vi+3) = 0 and Bf 6= V (Cn), then f can be
extended to an MTDF f ′ of Cn+4 satisfying Bf ′ 6= V (Cn+4). We can make
Cn+4 from Cn by joining the path u1, u2, u3 and u4 between the vertices
vi+1 and vi+2. Consider the function f ′ : V (Cn+4) → [0, 1], defined by
f ′(vi) = f(vi) for all i, f ′(u1) = 1, f ′(u2) = 0, f ′(u3) = 0 and f ′(u4) = 1.
Now the function f ′ has the property, Bf ′ 6= V (Cn+4).

Since Cn, when n = 9, 10, 11, and 12 has an MTDF f such that Bf 6=
V (Cn), we can apply the above procedure repeatedly over these cycles and
get similar kind of MTDFs for higher order cycles. Hence for Cn where
n ≥ 9 has at least one MTDF f with Bf 6= V (Cn).

When n = 4, let us denote the four 0-1 MTDFs of C4 by f1 = (1, 1, 0, 0),
f2 = (0, 1, 1, 0), f3 = (0, 0, 1, 1) and f4 = (1, 0, 0, 1). Let g be any MTDF
of C4. We shall show that, g can be expressed as a convex combination of
these four MTDFs. Clearly Bg(C4) = V . If g(v1) = δ then g(v3) = (1 − δ)
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and if g(v2) = ∆ then g(v4) = (1 − ∆). By equating the function values at
each vertex, we get the following system of equations.

λ1 + λ4 = δ,

λ1 + λ2 = ∆,

λ2 + λ3 = (1 − δ) and

λ3 + λ4 = (1 − ∆).

This system is consistent. To get the solution, assign an arbitrary value to
one of the λis. By Theorem 1.5, g is a non-basic MTDF. Convex combina-
tions of the BMTDFs taken two, three or four at a time have same pairs of
boundary and positive sets except for the convex combination of the pairs
of functions (f1, f2), (f2, f3), (f3, f4) and (f4, f1). So the set FT (C4) is iso-
morphic to I2.

When n = 8, we claim that P8 has no MTDF f such that Bf 6= V .
Otherwise, it must have a BMTDF g such that Bg 6= V . But by Lemma 2.2,
it must be a 0-1 BMTDF. Without loss of generality let us assume that, v1 /∈
Bg. Then the function values at the vertices v2, v4, v8 and v6 are 1, 0, 1 and
0 respectively. Consequently we get g(N(v5)) = 0, which is a contradiction.
Thus it is clear that FT (C8) is a convex set. To know more about the
structure of this set, we have to consider all 0-1 MTDFs of the graph. The
0-1 MTDFs are f1 = (1, 1, 0, 0, 1, 1, 0, 0), f2 = (0, 1, 1, 0, 0, 1, 1, 0), f3 =
(0, 0, 1, 1, 0, 0, 1, 1) and f4 = (1, 0, 0, 1, 1, 0, 0, 1). Their convex combinations
taken two, three or four at a time, have same pairs of boundary and positive
sets except for the pairs of functions (f1, f2), (f2, f3), (f3, f4) and (f4, f1).
So the set FT (C8) is isomorphic to I2.

Theorem 2.4. For a path Pn,

1. if n = 2 or 4, then FT (Pn) is a 0-simplex,

2. if n = 3 or 5, then FT (Pn) is a 1-simplex,

3. FT (Pn) ∼= I2 if n = 6 or 8,

4. if n = 7, then FT (Pn) is a 2-simplex and

5. the set FT (Pn) is not a convex set if n = 9 or n ≥ 11.

Proof. Let the vertices of Pn be labeled as v1, v2, . . . , vn. One can easily
verify that Pn, when n = 2 and 4, has unique MTDF. The case n = 3
follows from Theorem 1.15. When n = 5, let g be an arbitrary MTDF
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of P5. Then g(v2) = g(v4) = 1. Let g(v1) = ∆. Then v2 ∈ Bg and g(v3) =
(1−∆). Consequently, g(v5) > 0 and hence v4 ∈ Bg. So g(v5) = ∆. Clearly
g = λf1 + (1 − λ)f2, where f1 and f2 are defined by f1(v1) = f1(v5) = 1,
f1(v3) = 0, f2(v1) = f2(v5) = 0, f2(v3) = 1 and fi(v2) = fi(v4) = 1 for i = 1
and 2.

When n = 7, let g be an arbitrary MTDF of the graph. Then v1, v2, v6,
v7 ∈ Bg. The vertex v3 /∈ Bg. Otherwise, g(v4) > 0 and there is no vertex in
Bg to dominate v4 and this contradicts the assumption that g is an MTDF.
Similarly, v5 ∈ Bg. The set

⋂

g Bg can dominate any vertex in P7. Hence
the set FT (P7) is convex. To find all BMTDFs of P7, we have to consider
two cases.

First case: when v4 ∈ Bg. We have two 0-1 MTDFs, having this prop-
erty. They are f1 = (0, 1, 1, 0, 0, 1, 1) and f2 = (1, 1, 0, 0, 1, 1, 0). Let g be
an arbitrary MTDF such that v4 ∈ Bg and g(v3) = ∆ and g(v5) = (1 − ∆).
We get f1 and f2 when ∆ = 1 and ∆ = 0 respectively. If 0 < ∆ < 1, then
g(v1) = (1 − ∆) and g(v7) = ∆. Hence, g = ∆f1 + (1 − ∆)f2. Second case:
when v4 /∈ Bg. There exists only one 0 - 1 MTDF having this property. Let
that function be f3 = (0, 1, 1, 0, 1, 1, 0). If g is not a 0-1 MTDF, we take
g(v3) = δ and g(v5) = ∆. Consequently, g(v1) = (1−δ) and g(v7) = (1−∆).
Next, assume that g =

∑

i λifi. Then by equating the function values at
different vertices, we get the system of equations.

λ1 + λ3 = δ,

λ2 + λ3 = ∆,

λ2 = (1 − δ) and

λ1 = (1 − ∆).

Solving them, we get δ = ∆ and subsequently the values of λis. So FT (P7)
is isomorphic to a two simplex.

When n = 6, take an arbitrary MTDF, say g. If g(v1) = ∆, then
g(v3) = (1 − ∆). Similarly, if g(v4) = δ, then g(v6) = (1 − δ). The
function g is a convex combination of the BMTDFs f1 = (1, 1, 0, 0, 1, 1),
f2 = (1, 1, 0, 1, 1, 0), f3 = (0, 1, 1, 0, 1, 1) and f4 = (0, 1, 1, 1, 1, 0). The
boundary and positive sets of all possible convex combinations of these func-
tions are same, except for the pairs of functions (f1, f2), (f2, f4), (f4, f3) and
(f3, f1). So FT (P6) is isomorphic to I2.

When n = 8, the set of vertices {v1, v2, v7, v8} ⊆ Bf for all MTDF f
of P8. Next let g be an arbitrary MTDF of P8 and g(v4) = ∆. If ∆ = 0
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then g(v6) = 1 and g(v8) = 0. If ∆ = 1 then g(v6) = 0 and g(v8) = 1.
If 0 < ∆ < 1 then v5 ∈ Bg. So g(v6) = (1 − ∆) and g(v8) = ∆. Let as
define f1 and f2 such that, f1(v4) = 1, f1(v6) = 0, f1(v8) = 1, f2(v4) = 0,
f2(v6) = 1, f2(v8) = 0 and fi(v) = g(v) for all other vertices. The functions
f1 and f2 are MTDFs. Also g = ∆f1 + (1 − ∆)f2. Next by considering the
function f1 at the place of g and starting with the vertex v5 and applying
the same procedure, we can show that f1 = δf11 +(1− δ)f12. The functions
f11 and f12 are defined as, f11(v5) = 1, f11(v3) = 0, f11(v1) = 1, f12(v5) = 0,
f12(v3) = 1 and f12(v1) = 0. Also when i = 1 or 2, f1i(v) = f1(v) for all
remaining vertices.

Similarly we can express the function f2 as a convex combination of
two MTDFs f21 and f22 having functions values, f21 = (1, 1, 0, 0, 1, 1, 1, 0)
and f22 = (0, 1, 1, 1, 0, 0, 1, 1). Now, the MTDF g = ∆(δf11 + (1 − δ)f12) +
(1 − ∆)(δf21+ (1 − δ)f22) and hence g is the convex combination of the
MTDFs fij where i, j = 1, 2. Exactly as in the case of P6, we can verify that
the boundary and positive sets of all possible convex combinations of these
functions are same, except for the pairs of functions (f11, f12), (f11, f21),
(f21, f22) and (f12, f22). Hence the result.

When n = 10, the vertices v1, v2, v9 and v10 are in Bf for every MTDF
f of P10. We shall show that, the vertices v5 and v6 are also in Bf . Suppose
that v5 /∈ Bf . Then f(v4) > 0 and f(v6) > 0 and the vertex v3 must be in the
boundary of f . Otherwise Bf cannot dominate Pf . But this is impossible
as f(v2) = 0 for all MTDF f of P10. Similarly we can show that v6 ∈ Bf

for all MTDFs f of P10. Consequently, the set {v1, v2, v5, v6, v9, v10} ⊆
⋂

f Bf , where the intersection is taken over all MTDFs of P10. Since the set
{v1, v2, v5, v6, v9, v10} dominates V (P10), the convex combination of any two
MTDFs is an MTDF and hence FT (P10) is convex.

Next we proceed to prove that P9 and P12 have two MTDFs, whose
convex combinations are not MTDFs. For any MTDF of a path, the function
values of odd labeled vertices are independent of the function values of even
labeled vertices. In other words, if f and g are any two MTDFs of Pn,
the new function h — defined by h(x) = f(x) if x is an odd vertex and
h(x) = g(x) if x is an even vertex — is an MTDF. So, if necessary we
can concentrate on either odd vertices or even vertices, without mentioning
the other set of vertices. In P9, let f and g be any two MTDFs such that
f(v1) = 0, f(v3) = 1, f(v5) = 1, f(v7) = 0, f(v9) = 1, g(v1) = 1, g(v3) = 0,
g(v5) = 1, g(v7) = 1 and g(v9) = 0. Convex combinations of f and g are
not MTDFs. So FT (P9) is not a convex set. Similarly in P12, consider any
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two MTDFs f and g such that, f(v1) = 1, f(v3) = 0, f(v5) = 1, f(v7) = 1,
f(v9) = 0, f(v11) = 1, g(v1) = 0, g(v3) = 1, g(v5) = 1, g(v7) = 0, g(v9) = 1
and g(v11) = 1. Again the convex combination of f and g is not an MTDF,
implying that FT (P12) is not a convex set.

Finally, we shall show that if f is a 0-1 MTDF of Pn, then it can
be extend to an MTDF of Pn+2. The values of f(v(n+1)) and f(v(n+2)) are
decided depending upon f(v(n−1)) and f(vn). As an example, let f(v(n−1)) =
0 and f(v(n)) = 1. Then f(v(n+1)) = 1 and f(v(n+2)) = 0. Similarly we can
always find two values for the vertices vn+1 and vn+2. So the set of all
MTDFs of the paths P(9+i) and P(12+i) for i = 2, 4, 6, . . . are not convex.

3. Graphs Having F Isomorphic to a Product of Simplicial

Complexes

Let A ⊆ V (G). The subgraph of G induced by A is denoted by 〈A〉. Let G
be a graph and V1, V2 ⊂ V (G) such that V1 ∪ V2 = V (G). Note that, the
possibility of V1 ∩ V2 6= ∅ is not eliminated. Let W ⊂ V and f is an MTDF
of G. We denote the restriction of f to W by f/W . A graph G is a function

reducible graph with respect to a partition V1 and V2, if F(〈Vi〉) = {f/Vi : f
is an MTDF of G} for i = 1 and 2 and if for any f1 ∈ F(V1) and f2 ∈ F(V2)
the new function defined by

f(v) =

{

f1(v), if v ∈ V1,

f2(v), if v ∈ V2

is an MTDF of the whole graph.
Clearly for all v ∈ (V1 ∩ V2) and any MTDF f of G, f(v) must be a

constant. Disconnected graphs are examples. But the following example
shows that some connected graphs also possess this property.

Lemma 3.1. If f(v) is a constant for all MTDF f of a graph G, then

f(v) = 0 or 1.

Proof. Suppose that, 0 < f(v) = ∆ < 1. We know that every graph has
at least one MTDS. If we take the characteristic function of an MTDS, then
the function value at v is either 0 or 1. This is a contradiction.

Lemma 3.2. If the graph G is function reducible with respect to the pair

V1, V2 and V1 ∩ V2 6= ∅, then V1 ∩ V2 ⊆ C0 ∪ C1.
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Proof. By the definition of function reducible graphs, if f is an arbitrary
MTDF of G then f(v) = 0 or 1 for all v ∈ V1 ∩ V2.

Example 3.3. Take two star graphs K(1,n) and K(1,m) where n,m ≥ 2. The

graph G is made by joining one pendant vertex from each star, by an edge.
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Consider the partition V1 = {u, u1, u2, . . . , um} and V2 = {v, v1, v2, . . . , vn}
of the graph. The vertices u, v ∈ C1. We can change the function values

at the vertices ui’s without affecting the function values at vi’s, such that

u ∈ Bg for any MTDF g of the graph.

Next we consider the graphs having at least two MTDFs. We call the graph
G a function separable graph, if V (G) has at least one partition, say {V1, V2}
such that for any two MTDFs f and g of G, the functions defined by

(f, g)(v) =

{

f(v), if v ∈ V1,

g(v), if v ∈ V2

and

(g, f)(v) =

{

g(v), if v ∈ V1,

f(v), if v ∈ V2

are MTDFs of G. Let the graph G be function separable with respect to a
partition {V1, V2}, we shall call the function fV1

: V1 → [0, 1], a basic function

of V1 if and only if there exists a BMTDF f of G such that, f/V1 = fV1
.
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We avoid the words “minimal dominating” because, the basic functions may
not always be a minimal dominating function. Next we proceed to prove
some properties of basic functions. We define a convex combination of the
functions f/V1 and g/V1 if and only if the convex combination of the MTDFs
f and g of G is minimal.

Theorem 3.4. The function fV1
is a basic function if and only if there

does not exist functions f i
V1

where i = 1, 2, . . . , r such that, fV1
=

∑

i λif
i
V1

,
∑

i λi = 1 and 0 < λi < 1.

Proof. Let the function fV1
be a basic function on the set V1. Suppose that,

there exist functions f i
V1

where i = 1, 2, . . . , r such that, fV1
=

∑

i λif
i
V1

,
where

∑

i λi = 1 and 0 < λi < 1. By the definition of basic function, there
exists a BMTDF f of G such that f/V1 = fV1

. The functions fi : V → [0, 1]
are defined such that

fi(v) =

{

f i
V1

(v), if v ∈ V1,

f(v), if v ∈ V2.

It is an easy exercise to show that f =
∑

i(λifi), where
∑

i λi = 1 and
0 < λi < 1. This contradicts the fact that f is a BMTDF.

To prove the converse, we have to show that if fV1
cannot be expressed

as a convex combination of a set of functions over V1, then f is a BMTDF.
Suppose on the contrary that f is not basic. Then there exist MTDFS
f1, f2, . . . , fr such that f =

∑

i λifi, where
∑

i λi = 1 and 0 < λi < 1. This
implies that fV1

is a convex combination of fi/V1, a contradiction.

Theorem 3.5. Let G be a function separable graph with respect to a par-

tition {V1, V2}. If the sets of all basic functions over V1 and V2 are A =
{f1, f2, . . . , fr} and B = {g1, g2, . . . , gs} respectively, then the set of all

BMTDFs of G is A × B = {(fi, gj) : i = 1, 2, . . . r and j = 1, 2, . . . s}.

Proof. If f ∈ FBT (G), then f/V1 and f/V2 are basic functions and f =
(f/V1, f/V2). So f ∈ FBT (G) ⊆ A × B. To prove the converse, let (f, g) ∈
A × B. We have to show that (f, g) is a BMTDF of G. Suppose not.
Since (f, g) is an MTDF, there exists MTDFs f1, f2, . . . , fr such that f is a
convex combination of these functions. Then f/V1 is a convex combination
of the restrictions, f1/V1, f2/V1, . . . , fr/V1 and by Theorem 3.4 we get a
contradiction.
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Theorem 3.6. Let f and g be two MTDFs of a function separable graph G.

These functions are basic if and only if both MTDFs (f, g) and (g, f) are

BMTDFs.

Proof. Let the function f and g be BMTDFs of G and let G be function
separable with respect to the partition {V1, V2}. Then f/V1 is a basic func-
tion over V1. Suppose that (f, g) is not basic. Then there exists MTDFs
f1, f2, . . . fr of G such that (f, g) =

∑

i λifi. Using the Theorem 3.4, we
get that f/V1 is not a basic function. This is a contradiction. Proof of the
function (g, f) and that of the converse are similar.

Theorem 3.7. All bipartite graphs are function separable.

Proof. Let V1 and V2 be the partition of V (G). Consider any two MTDFs
say, f and g of G and the new function (f, g). We claim that this function
is an MTDF of G. First note that, (f, g)(N(v)) = g(N(v)) if v ∈ V1 and
(f, g)(N(v)) = f(N(v)) if v ∈ V2. Also V2 ∩ Bf → V1 ∩ Pf and V1 ∩ Bg →
V2 ∩ Pg. Thus B(f,g) → P(f,g) and hence the result.

It is interesting to note that if G is a function reducible graph, then it is a
function separable graph. The previous theorem provides an example, which
shows the converse is not always true.

Theorem 3.8. Function reducible graphs are function separable graphs.

Proof. Let G be a function reducible graph with respect to the vertex
subsets V1 and V2. Then consider the new vertex subsets V ′

1 = V1−(V1∩V2)
and V ′

2 = V2. With respect to the partition {V ′

1 , V ′

2}, the graph is function
separable.

Theorem 3.9. Cycles are not function reducible.

Proof. Suppose that the cycle G is function reducible with respect to
the vertex subsets V1 and V2. Since we consider only connected induced
subgraphs, 〈V1〉 and 〈V2〉 must be paths. Then V (〈Vi〉) ∩ C1(〈Vi〉) 6= ∅. But
C1(G) = ∅. These are not possible simultaneously.

This result shows that, bipartite graphs are not function reducible graphs
in general, because even cycles are bipartite graphs. Next we discuss some
necessary conditions for a graph to be function reducible. In the result we use
the following sets. C ′

1 = {x ∈ C1 : x is adjacent to at least one vertex in C1},
L′ = {x ∈ L : x ∈ N(y) and y ∈ C ′

1} and C = C ′

1 ∪ L′.
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Theorem 3.10. Let G be a connected graph containing at least three ver-

tices. It has two disjoint vertex subsets V1 and V2, where V1 ∪ V2 ∪ C = V
such that, for any path between the vertices u ∈ V1 and v ∈ V2, there exist

at least two adjacent vertices which are common to the path and the set C ′

1.

Then the graph G is function reducible.

Proof. Let G be a connected graph containing at least three vertices.
Also let V1 and V2 be two vertex subsets, satisfying the condition given
above. There exists C ′ ⊆ C such that C ′ is a cut set of G. We claim that,
V ′

1 = V1 ∪C and V ′

2 = V2 ∪C are two partitions of G, with respect to which
the graph is function reducible.

Claim 1. If f is an MTDF of G, then fV ′

1
is an MTDF of 〈V ′

1〉.
Take a vertex x ∈ V ′

1 .

Case 1. x ∈ V1. Then N(x) ⊂ V ′

1 . So fV ′

1
(N(x)) = f(N(x)) ≥ 1. Sup-

pose on the contrary that y ∈ N(x) ∩ V2. We get a contradiction because
there exists a path connecting x and y which does not contain any elements
of C ′

1. Also for any y ∈ N(x), N(y) ⊂ V ′

1 . Suppose not. Let z ∈ N(y) ∩ V2.
Then the path xyz can contain at most one vertex from C ′

1. We get con-
tradiction again. Thus for all x ∈ V1, fV ′

1
(N(x)) ≥ 1 and if fV ′

1
(x) ≥ 0 then

Bf
V ′

1

→t {x}. Hence fV ′

1
is an MTDF of 〈V ′

1〉. Similarly we can prove that

fV ′

2
is an MTDF of 〈V ′

2〉.

Case 2. x ∈ C ′

1. Since N(x) ∩ C ′

1 6= ∅, fV ′

1
(N(x)) ≥ 1 and N(x)∩

L′ 6= ∅. As in case one we get Bf
V ′

1

→t {x}. Hence fV ′

1
is an MTDF of 〈V ′

1〉.

Similarly we can prove that fV ′

2
is an MTDF of 〈V ′

2〉.
Next let f and g be any MTDFs of 〈V ′

1〉 and 〈V ′

2〉 respectively. First we
shall prove that f(x) = g(x) for all x ∈ C. Take an arbitrary MTDF f of
〈V ′

1〉. If x ∈ C ′

1, there exists y ∈ C ′

1 such that x and y are adjacent. Since
N(x) ∩ L′ 6= ∅ and N(y) ∩ L′ 6= ∅, x ∈ C1(〈V1〉). If x ∈ L′, then f(x) = 0
because, the only vertex adjacent to x, in 〈V ′

1〉 is not an element of Bf . So
f(x) = 1 for all x ∈ C ′

1 and f(x) = 0 for all x ∈ L′. The same is true
for any MTDF g of 〈V ′

2〉. So f(x) = g(x) for all x ∈ C. Define a function
h : V → [0, 1] as follows.

h(v) =

{

f(v), if v ∈ V ′

1 ,

g(v), if v ∈ V2.
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Claim 2. h is an MTDF of G. Since f and g are MTDFs of the induced
subgraphs, h is an MDF of G. By suitably reproducing the steps in the
above paragraph, we can show that Bh →t Ph.

Theorem 3.11. Let G be a function reducible graph with respect to the

vertex subsets V1 and V2. Then the set F(G) is the product of the sets

F(〈V1〉) and F(〈V2〉).

Proof. Obvious.

4. Problems for Further Research

Structure of the set of all minimal total dominating functions of many fam-
ilies of graphs are still unknown. A characterization is known for only those
graphs G, for which FT (G) is isomorphic to one simplex. Characterization of
graphs, such that F(G) is isomorphic to other higher dimensional simplexes
is quite open. The first step to study the structure of F(G) is to find all
BMTDFs of a graph. Only a little research is done in this area.
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