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1. Introduction

Motivated by various new developments in the theory of graph and hy-
pergraph coloring, in this note we introduce the notion of 3-consecutive
C-coloring of graphs. For a given graph G = (V,E), a mapping

ϕ : V → N

is called a 3-consecutive C-coloring — abbreviated as 3CC-coloring for short
— if there exists no 3-colored path on three vertices; that is, among every
three consecutive vertices there exist two having the same color.

Obviously, the trivial coloring that assigns the same color to all vertices
of G is 3-consecutive. Therefore, we are interested in the maximum number
of colors that can occur in a 3CC-coloring of G. This number will be called
the 3-consecutive upper chromatic number of G, denoted by χ̄3CC(G).

It is immediate by definition that, in any 3CC-coloring with more than
one color, replacing two color classes with their union results in a 3CC-
coloring and the number of colors decreases by precisely one. Consequently,
for each integer k between 1 and χ̄3CC(G) there exists a 3CC-coloring of G
with exactly k colors. Moreover, by the pigeon-hole principle, every coloring
with only one or two colors is a 3CC-coloring; that is, χ̄3CC(G) ≥ 2 holds for
each graph having at least two vertices. Note further that χ̄3CC(G) = |V (G)|
if and only if each connected component of G is an isolated vertex or an
isolated edge.

If H is a spanning subgraph of a graph G, then any three consecutive
vertices of H are also consecutive in G. Hence any 3CC-coloring of G is also
a 3CC-coloring of H, thus

χ̄3CC(G) ≤ χ̄3CC(H).

But a maximum 3CC-coloring of G need not be a maximum 3CC-coloring
of H, therefore strict inequality may hold.

Moreover, χ̄3CC is additive with respect to vertex-disjoint union; that
is, the 3-consecutive upper chromatic number of a disconnected graph G is
equal to the sum of χ̄3CC over the connected components of G.

Previous models. Our new coloring model is closely related to the fol-
lowing earlier ones, which also served as motivation for the present study.
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• A 3-consecutive coloring of a graph G = (V,E) is a coloring of vertices
of G such that if uvw is a path on 3 vertices, then v receives the color
of u or w. The 3-consecutive coloring number χ3c(G) is the maximum
number of colors which can be used in such a coloring. This invariant
was introduced in [7] and studied in some detail in [8]. Clearly, any
3-consecutive coloring is a 3CC-coloring, and hence

χ3c(G) ≤ χ̄3CC(G).

• A hypergraph is a pair H = (V, E), where E is a set system over V , and
∅ /∈ E . The elements of V and E are called vertices and edges of H,
respectively. A C-coloring of H is a mapping ϕ : V → N such that every
edge E ∈ E contains at least two vertices with a common color; that
is, |ϕ(E)| < |E|. The upper chromatic number, denoted by χ̄(H), is the
largest possible number of colors that can be used in a C-coloring of H.

The roots of this notion date back to the early 1970’s in the works
of Berge (unpublished, cf. [1, p. 151]) and Sterboul [11]; moreover,
C-coloring is a particular case of Voloshin’s mixed hypergraph model
(introduced in [12]) where it exactly means coloring of C-hypergraphs.

The 3CC-colorings of a graph G = (V,E) can be interpreted as C-
colorings of the hypergraph H = (V, E) where E consists of all 3-element
sets {u, v, w} ⊆ V inducing a connected subgraph of G.

• A color-bounded hypergraph H = (V, E , s, t) is a hypergraph with E =
{E1, . . . , Em} where each edge Ei is associated with two integers si and ti
such that 1 ≤ si ≤ ti ≤ |Ei|. A vertex coloring ϕ : X → N is considered
to be proper if for each edge Ei there occur at least si and at most
ti different colors on it; that is, the inequalities si ≤ |ϕ(Ei)| ≤ ti are
satisfied, for every Ei ∈ E , [2, 3].

If G = (V,E) is a graph with V = {v1, . . . , vn}, then its 3CC-
colorings are precisely the colorings of the color-bounded hypergraph
H = (V, E , s, t) with E = {E1, . . . , En}, where each hyperedge Ei (1 ≤
i ≤ n) is the closed neighborhood of vertex vi in G, and the color bounds
are s(Ei) = 1 and t(Ei) = 2.

Our results. In this paper we study 3CC-colorings of connected graphs.
In Section 2 we prove upper bounds on χ̄3CC(G) in terms of several param-
eters of G and, particularly, we obtain tight bounds for trees and unicyclic
graphs. In Section 3 we give characterizations for graphs admitting proper
3CC-colorings with exactly 3 and exactly 4 colors. These theorems also yield
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necessary conditions for graphs having 3-consecutive colorings with exactly
3 and 4 colors, respectively, because of the inequality χ3c(G) ≤ χ̄3CC(G).

Standard notation. As usual, we write N [v] for the closed neighborhood

of vertex v, and d(x, y) for the distance of vertices x and y. In the latter, we
sometimes put subscript as dG(x, y), if the graph under consideration has
to be emphasized.

2. Bounds

Theorem 1. For any graph G = (V,E) of order p and minimum degree δ,
we have χ̄3CC(G) ≤ b 2p

δ+1
c.

Proof. Consider a 3CC-coloring of G with exactly k colors. Let us call a
color class or its color “small” if it contains fewer than δ+1

2
vertices, otherwise

call it “big”. If all colors are big, then we immediately obtain that the
number of colors is at most 2p/(δ + 1).

Hence, we can assume that there are ` ≥ 1 small color classes. Choose
one vertex from each. In this way we have vertices v1, . . . , v` with small
colors c1, . . . , c`, respectively. The closed neighborhood N [vi] of each vi

contains at least δ + 1 vertices, from exactly two colors, namely ci and
another one, say αi. Since ci is a small color, αi is a big one. Moreover, the
sets N [v1], . . . , N [v`] are mutually disjoint. Indeed, a common vertex with
a small color would imply the identity αi = cj for a big and a small color,
whilst a common vertex with a big color would yield a polychromatic P3.

Now, the set A =
⋃

1≤i≤` N [vi] contains at least `(δ + 1) vertices and at
most 2` different colors. Thus, the average size of color classes intersecting
A is at least δ+1

2
, and all the remaining classes are big, of size at least δ+1

2

each. This implies χ̄3CC(G) ≤ b 2p
δ+1

c.

In a graph G = (V,E) a set S ⊆ V is a neighborhood set if
⋃

v∈S(〈N [v]〉) = G,
where 〈N(v)〉 is the subgraph induced by N [v], the closed neighborhood of v.
The neighborhood number of a graph G, denoted by n0(G), is the minimum
cardinality of a neighborhood set in G (see [9]). For short, we shall write
N -set for neighborhood set in general, and N0-set for neighborhood set of
minimum cardinality.

Theorem 2. Let G be a connected graph. Then, χ̄3CC(G) ≤ n0(G) + 1.
Further, for a tree T , χ̄3CC(T ) = n0(T ) + 1.
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Proof. Let k = n0(G) and S = {v1, . . . , vk} be an N0-set. Suppose that
the vertices of S are labeled in such a way that (N [vi] ∩

⋃
1≤j<i N [vj ]) 6= ∅

for all 2 ≤ i ≤ k. Such an order on S exists because G is connected.

Since each N [vi] can have at most two colors, and at least one of them
occurs in

⋃
1≤j<i N [vj ] if i 6= 1, G cannot be colored with more than |S|+1 =

n0(G) + 1 colors. This completes the proof of the first statement.

To prove the second part, we first fix a root in the tree T and choose
a smallest N -set S∗ with |S∗| = n0(T ). If S∗ contains some vertex v all
of whose children also belong to S∗ (or, in particular, if v is a leaf) then
v can be replaced by its parent in the N -set. Repeatedly applying this
replacement, an N -set S is obtained, in which every vertex has at least one
child not contained in S.

Next, we show a procedure which yields a proper 3CC-coloring of T
with exactly n0(T ) + 1 colors. First, assign color 1 to the root, and then in
every step choose a vertex v which has already got a color but its children
have not yet. To color its children, we apply the following rules:

(i) If v /∈ S then every child of v receives the color of v.

(ii) If v ∈ S then we choose precisely one child u not contained in S. In
the coloring, u will receive its dedicated color, whilst all the remaining
children will get the color of v.

The number of used colors remains the same when we color the children of
a vertex v /∈ S, whilst it increases by precisely one when v ∈ S. Moreover,
there is no leaf belonging to S. Taking also into account the color of the
root, this means exactly n0(T ) + 1 colors.

The obtained vertex coloring of T is a proper 3CC-coloring. Indeed, for
every vertex v, in the neighborhood N [v] there occur at most two different
colors because if u gets its dedicated color then u /∈ S is assumed, hence its
parent v ∈ S has monochromatic N [v] \ {u}.

This coloring algorithm proves that for a tree T the inequality χ̄3CC(T ) ≥
n0(T ) + 1 holds. We have already proved that also χ̄3CC(T ) ≤ n0(T ) + 1 is
valid, hence the second statement follows.

We remark that the algorithm described in the proof actually yields a 3-
consecutive coloring. Moreover, it is known that n0(G) does not exceed the
vertex covering number α0(G), moreover n0(G) = α0(G) for every triangle-
free graph (see [9]; characterizations for other graph classes and complexity
results on n0(G) can be found in [6] and [4]). As a consequence, we have



398 Cs. Bujtás, E. Sampathkumar, Zs. Tuza, ...

Corollary 1.

(i) For a connected graph G, χ̄3CC(G) ≤ α0(G) + 1.

(ii) For a tree T , χ3c(T ) = χ̄3CC(T ) = α0(T ) + 1 = β1(T ) + 1 where β1(T )
is the edge independence number.

(iii) For trees, both χ3c and χ̄3CC can be determined and an optimal coloring

can be found in linear time.

A set S ⊂ V of vertices in a connected graph G = (V,E) is called a connected

dominating set if (i) every vertex v ∈ V \S is adjacent to at least one vertex
in S, and (ii) the subgraph G[S] induced by S is connected (see [10]). The
minimum cardinality of a connected dominating set S is called the connected

domination number, and is denoted by γc(G); such a set S is called a γc-

set. Condition (i) alone defines the notion of dominating set, the minimum
cardinality of which is called domination number and is denoted by γ(G).

Bounds on χ̄3CC(G) involving γc and γ are as follows.

Theorem 3. For any connected graph G, χ̄3CC(G) ≤ γc(G) + 1 holds,

moreover χ̄3CC(G) ≤ 2γ(G).

Proof. If S is a connected dominating set of G, its vertices have an ordering
v1, . . . , v|S| such that (N [vi]∩

⋃
1≤j<i N [vj ]) 6= ∅ for all 2 ≤ i ≤ |S|. Similarly

to the proof of the first part of Theorem 2, it can be proved that χ̄3CC(G) ≤
|S| + 1. Hence, choosing S to be a γc-set, the first inequality follows.

Since the closed neighborhood of each vertex contains at most two col-
ors in any 3CC-coloring, and the closed neighborhoods of the vertices in
a dominating set cover the entire vertex set, the second upper bound also
holds.

A relation between χ̄3CC(G) and the chromatic number χ(G) is as follows:

It is known that for a connected graph G of order p, γc(G) ≤ p−∆(G), where
∆(G) is the maximum degree of a vertex in G (cf. [5]) and χ(G) ≤ ∆(G)+1.
Therefore we have the following:

Corollary 2. For any connected graph G of order p ≥ 3, χ̄3CC(G) ≤
p − χ(G) + 2.

Theorem 4. For a unicyclic graph of order p ≥ 3,

α0(G) − 1 ≤ χ̄3CC(G) ≤ α0(G) + 1.
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Proof. In view of Corollary 1 we need to establish only the lower bound.
Let C be the cycle in G and e be an edge of C. Then G − e is a tree and,
again by Corollary 1, χ̄3CC(G − e) = α0(G − e) + 1. Since G is unicyclic,
either α0(G−e) = α0(G)−1, or α0(G−e) = α0(G). Therefore, α0(G−e) ≥
α0(G) − 1. Also, χ̄3CC(G) = χ̄3CC(G − e) or χ̄3CC(G) = χ̄3CC(G − e) − 1
and hence χ̄3CC(G) ≥ χ̄3CC(G − e) − 1. Thus, χ̄3CC(G) ≥ α0(G) − 1.

The upper bound is attained e.g. if G is a cycle with exactly one pendant
edge at each of its vertices. The lower bound is attained e.g. if G is an odd
cycle of length at least 5.

3. Characterizations

3.1. Three-colorability

Theorem 5. A connected graph G = (V,E) has a 3-consecutive C-coloring

with exactly three colors — that is, χ̄3CC(G) ≥ 3 — if and only if its diam-

eter is at least 3.

Proof. To prove necessity by a contradiction, assume a connected graph
G with diameter at most 2 and its proper 3CC-coloring ϕ using exactly 3
colors.

Since G is connected, there exist two adjacent vertices x and y having
different colors, say ϕ(x) = 1 and ϕ(y) = 2. Moreover, consider a vertex
z colored differently from each of them: ϕ(z) = 3. There cannot occur
multicolored P3 and hence, vertex z is adjacent neither with x nor with y.
Since the diameter equals 2, there exist common neighbors x′ and y′ for
the vertex pairs x, z and y, z, respectively. Now, consider the P3 subgraphs
x′xy and xx′z. The former one forces that x′ does not have color 3, whilst
the latter forbids color 2. Therefore, the color of x′ should be 1, and by a
similar argument we obtain that y′ has color 2. (This implies that x′ and
y′ are different vertices.) But in this case the forbidden multicolored P3

x′zy′ would appear. Consequently, if χ̄3CC(G) ≥ 3, then the diameter is at
least 3.

Proving the opposite direction, we consider a graph G containing two
vertices x and y at distance 3 apart. Let the vertex coloring ϕ assign color
1 to x, color 3 to y, and all the remaining vertices receive color 2. Since x
and y cannot belong to a common P3, every three consecutive vertices can
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get at most two different colors. Therefore, ϕ is a proper 3CC-coloring and
χ̄3CC(G) ≥ 3 holds.

3.2. Four-colorability

Here we characterize the graphs admitting a 3-consecutive C-coloring with
at least four colors. In the proof, the following notion will be used.

Definition 1. Let ϕ be a vertex coloring of a connected graph G. The color-

graph of G with respect to coloring ϕ, denoted by Cϕ(G), has the colors
occurring in ϕ as its vertices — called color-vertices — and two distinct
color-vertices are adjacent in Cϕ(G) if and only if there exist two adjacent
vertices in G having the corresponding two colors.

Theorem 6. A connected graph G = (V,E) admits a 3-consecutive C-

coloring with exactly four colors — that is, χ̄3CC(G) ≥ 4 — if and only if it

satisfies at least one of the following properties:

(i) There exist three vertices x, y, z ∈ V such that any two of them are at

distance at least 3 apart.

(ii) G has diameter at least 5.

(iii) There exists a cycle C of length eight in G such that, for each vertex

v ∈ V , there exists a vertex u in C for which dG(u, v) = 4 holds.

Proof. (⇒) To prove necessity, we assume a 3CC-coloring ϕ of G with
exactly four colors. In this case, Cϕ(G) has vertex set {1, 2, 3, 4}. Since
G is connected and all the four colors are used in ϕ, the graph Cϕ(G) is
connected, too. We distinguish three cases on the basis of vertex degrees
occurring in Cϕ(G).

1. First, we assume that there exists a color-vertex in Cϕ(G) whose de-
gree is 3. We suppose without loss of generality that this color-vertex is 1.

That is, there exist three vertices x, y and z in G with colors 2, 3 and
4, respectively, such that each of them is adjacent to a vertex from color
class 1. We will prove that any two of the vertices x, y, z have distance
at least 3. In a 3CC-coloring the closed neighborhood of any vertex can
contain at most two different colors. This implies that x and y cannot have
a common neighbor with color 1 or 4. On the other hand, if their common
neighbor had color 2 (or 3) then in N [y] (or in N [x]) there would occur
three colors 1, 2, and 3. Therefore, the distance between x and y cannot
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be smaller than 3. The analogous statement is true for the pairs (x, z) and
(y, z) as well. Hence, condition (i) is fulfilled. In the sequel, we refer to
three vertices with this property as three distant vertices.

2. Second, we suppose that the color-graph Cϕ(G) is a path, where we
assume the order 1, 2, 3, 4.

Choose a vertex x ∈ V with color 1 and a vertex y ∈ V with color 4.
Due to the assumed structure of Cϕ(G), every path connecting x and y
contains vertices with colors 2 and 3 as well. Moreover, there occur at least
two vertices with color 2 in it. Indeed, assuming only one vertex from color-
class 2 in this path, this would have neighbors colored with 1 and also with
3, yielding a forbidden multicolored P3. Hence, every x–y path has at least
two internal vertices from color class 2 and, similarly, there exist at least
two internal vertices with color 3. Consequently, dG(x, y) ≥ 5, complying
with condition (ii).

3. In the remaining cases, every vertex of Cϕ(G) has degree two; that
is, Cϕ(G) is a cycle. We assume the cyclic order 1-2-3-4-1 of colors, and
all additions concerning them will be taken modulo 4. Also in this case, (i)
and/or (ii) may be satisfied. But we assume throughout that none of the
first two properties is valid for G, and then prove that (iii) necessarily holds
under this assumption.

We can partition each color class α (1 ≤ α ≤ 4) into two parts:

• Vα,α+1 contains the vertices colored with α and having a neighbor of color
α + 1.

• Vα,α−1 contains the vertices colored with α and having a neighbor of color
α − 1.

Both Vα,α−1 and Vα,α+1 are nonempty, but Vα,α−1 ∩ Vα,α+1 = ∅. Now,
suppose for a contradiction that there exists a vertex v of color α which is
not contained in Vα,α−1 ∪ Vα,α+1. Choose a vertex u ∈ Vα+1,α+2. All the
neighbors of v have color α, therefore any v–u path contains an internal
vertex with color α, while u has no neighbor of color α, forcing one more
internal vertex. Consequently, dG(v, u) ≥ 3. Similarly, any vertex w ∈
Vα−1,α−2 has distance at least 3 from both vertices v and u. This would
mean three distant vertices complying with property (i), but this contradicts
our present assumption.

Hence,
⋃

4

α=1
(Vα,α−1∪Vα,α+1) = V holds. In other words, the vertex set

of G is partitioned into eight nonempty disjoint sets admitting a cyclic order.
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For the sake of simpler discussion, let us introduce the notation Q1 = V1,2,
Q2 = V2,1, Q3 = V2,3, Q4 = V3,2, Q5 = V3,4, Q6 = V4,3, Q7 = V4,1, Q8 = V1,4.
Subscripts of the sets Qi will be considered modulo 8.

Every edge of G must have its endpoints either in the same class Qi

or in two cyclically consecutive classes. Thus, any two vertices x ∈ Qi and
y ∈ Qj (i < j) are at distance at least min {j − i, 8 − (j − i)} apart. On
the other hand, we claim that any two vertices from the same or from two
consecutive classes have distance at most 2. Indeed, if dG(x, y) ≥ 3 for some
x ∈ Qi and y ∈ Qj , where j = i or j = i + 1, then x and y together with
any vertex from Qj+3 would be three distant vertices, what does not meet
the present requirements.

Now, choose one vertex qi from each class Qi. Due to the previous
observation, any two vertices qi and qi+1 are adjacent or have a common
neighbor which received the color of qi or qi+1. Hence, joining every two
consecutive vertices by a shortest path, we obtain a cycle (or a closed walk),
where all the four colors occur and, for each 1 ≤ α ≤ 4, the vertices having
color α form a connected arc (subpath). Hence, we can consider a shortest
cycle with this property. This cycle C contains some vertex from each class
Qi; thus, its length is at least 8. By minimality and the structure of Cϕ(G),
for any two x, y ∈ C, the equality dC(x, y) = dG(x, y) holds. Consequently,
if cycle C had nine or more vertices, we could choose three distant vertices,
and they would have distances at least 3 not only in C but also in G. Hence,
under the assumed conditions, C ∼= C8 and it involves exactly one vertex ri

from each class Qi.

Any vertex v ∈ V is contained in a uniquely determined class Qj . Since
property (ii) is not valid for G, we have dG(v, rj+4) ≤ 4. On the other hand,
every path from Qj to Qj+4 has to involve vertices either from Qj+1, Qj+2

and Qj+3, or from Qj−1, Qj−2 and Qj−3, hence we obtain dG(v, rj+4) = 4,
what completes the proof of necessity.

(⇐) To prove sufficiency, we will construct appropriate 3CC-colorings for
graphs G having property (i) or (ii), and also for graphs G satisfying only
(iii) from the three constraints.

(I ) Assume that there exist three vertices x, y, z having mutual dis-
tances at least 3. By this property, there is no P3 involving at least two
of them. Therefore, we can assign colors 1, 2 and 3 to the vertices x, y and
z, respectively. If all the remaining vertices receive color 4, the assignment
obtained is a proper 3CC-coloring with four colors, hence χ̄3CC(G) ≥ 4.
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(II ) Assuming property (ii), there exist two vertices x and y at distance
5 apart. Consider the following coloring ϕ :

• ϕ(x) = 1; ϕ(y) = 4;

• ϕ(v) = 2 if 1 ≤ dG(x, v) ≤ 2;

• ϕ(v) = 3 if dG(x, v) > 2 and v 6= y.

This yields a proper 3CC-coloring, since color 1 can occur together only
with color 2 in a P3, and similarly, color 4 appears only with color 3. Con-
sequently, no multicolored P3 can arise.

(III ) Assume that the graph G satisfies (iii) but none of the conditions
(i) and (ii). Let the cycle corresponding to (iii) be C8 = r1r2r3r4r5r6r7r8.

Consider a vertex v ∈ V . By condition (iii), there exists a vertex ri in the
cycle whose distance from v equals 4. Since 4 = dG(v, ri) ≤ dG(v, ri+1) + 1,
we obtain dG(v, ri+1) ≥ 3 and, similarly, dG(v, ri−1) ≥ 3 must hold for the
other neighbor of ri, too. Let us assume that there exists a further vertex
rj in the cycle whose distance from v is at least 3. In this case ri−1, rj , v
or ri+1, rj , v would be three distant vertices. Since (i) is supposed to be
not valid, this is a contradiction. Therefore, for all vertices rk distinct from
ri−1, ri and ri+1, the inequality dG(v, rk) ≤ 2 holds. Taking into account
that the relations dG(v, ri) ≥ 4 and dG(v, ri±2) ≤ 2 imply dG(v, ri±1) = 3,
the above argument also yields that for every v there exists precisely one
ri ∈ C8 at distance 4.

This uniqueness makes it possible to define the partition of the vertex
set into eight disjoint classes (subscript addition taken modulo 8):

v ∈ Qj ⇐⇒ dG(v, rj+4) = 4, for all 1 ≤ j ≤ 8.

Since rj ∈ Qj holds for every j, none of the partition classes is empty.
Summarizing the previous observations:

If v ∈ Qj,

• dG(v, rj+4) = 4;

• dG(v, rj+3) = dG(v, rj+5) = 3;

• dG(v, rk) ≤ 2 otherwise.

Next, we prove that any two adjacent vertices x and y belong either to the
same Qi or to two consecutive partition classes.
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Assume x ∈ Qi, y ∈ Qj , and dG(x, y) = 1. By the properties of the distance
function we obtain

dG(x, y) + dG(y, ri+4) ≥ dG(x, ri+4) = 4,

dG(y, ri+4) ≥ 3.

The inequalities can be fulfilled only if i + 4 equals either j + 4 or j + 3 or
j + 5. These correspond to the cases where i = j, i = j − 1 or i = j + 1;
that is, when x and y belong either to the same or two consecutive partition
classes.

Now, we can define an appropriate 3CC-coloring ϕ with four colors:

• ϕ(v) = k if v ∈ Q2k−1 ∪ Q2k, for all 1 ≤ k ≤ 4.

As we have shown, there occur edges only between consecutive partition
classes and inside one class, hence no multicolored P3 can arise. This proves
the assertion for the last case.

Remark 1. As it can be read out from the proof, in Theorem 6 the pre-
scribed property (iii) can be replaced by other statements without changing
validity:

• C8 can be assumed to be an induced subgraph of G.

• We can prescribe that for every vertex v ∈ V there exists precisely one
vertex u ∈ C8 at distance 4.
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