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Abstract

A fall coloring of a graph G is a proper coloring of the vertex set of
G such that every vertex of G is a color dominating vertex in G (that is,
it has at least one neighbor in each of the other color classes). The fall
coloring number χf (G) of G is the minimum size of a fall color partition
of G (when it exists). Trivially, for any graph G, χ(G) ≤ χf (G).
In this paper, we show the existence of an infinite family of graphs
G with prescribed values for χ(G) and χf (G). We also obtain the
smallest non-fall colorable graphs with a given minimum degree δ and
determine their number. These answer two of the questions raised by
Dunbar et al.
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1. Introduction

Let G = (V,E) be a simple connected undirected graph. A proper coloring
of a graph G is a partition Π = {V1, V2, . . . , Vk} of the vertex set V of G
into independent subsets of V . Each Vi is called a color class of Π. A
vertex v ∈ Vi is a color dominating vertex (c.d.v.) with respect to Π, if
it is adjacent to at least one vertex in each color class Vj, j 6= i. A k-
coloring Π = {V1, V2, . . . , Vk} of G is a fall coloring of G if each vertex of
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G is a c.d.v. with respect to Π. In this case, Π is called a k-fall coloring

of G. The least positive integer k for which G has a k-fall coloring is the
fall chromatic number of G and denoted by χf (G). A graph G may or
may not have a fall coloring. For example, the cycle Cn has a fall coloring
if and only if n is multiple of 3 or even [3]. Trivially, χf (Kn) = n and
hence all complete graphs are fall colorable. Clearly, if G is fall colorable,
χ(G) ≤ χf (G) ≤ δ(G) + 1, where δ(G) is the minimum degree of G.

In Sections 2 and 3, we answer two of the questions raised by Dunbar
et al. — one relating to the existence of graphs with prescribed chromatic
and fall chromatic numbers and the other relating to the determination
of all smallest non-fall colorable graphs with prescribed minimum degree.
Notation and terminology not mentioned here can be found in [2].

2. Existence of Graphs G with Prescribed Values for χ and χf

In this section, we show that given any two positive integers a and b with
2 < a < b, there exists an infinite sequence of graphs {Hi} with χ(Hi) = a
and χf (Hi) = b. First we define a new graph G∗ from a given graph G.

Let V (G) = {x1, x2, . . . , xn}, and let G∗ be the graph with vertex set
V (G∗) = V (G)∪V ′(G), where V ′(G) = {yi : xi ∈ V (G)}, V (G)∩V ′(G) = ∅,
and edge set E(G∗) = E(G) ∪ {xiyj : i 6= j}.

Lemma 2.1 brings out the relation between the chromatic numbers of
G∗ and G. The proof is straightforward.

Lemma 2.1. If G is not complete, then χ(G∗) = χ(G) + 1.

The following remarks will be used to determine, for any graph G, the fall
chromatic number of G∗.

Remark 2.2. Let G be a graph having a fall coloring. Then G has a
universal vertex if and only if any fall color partition of G contains at least
one singleton color class.

Remark 2.3. Consider the partition {xi, yi}, i = 1, 2, . . . , |V (G)| of V (G∗).
Clearly this partition is a fall color partition of G∗. Thus the graph G∗

is fall colorable irrespective of G being fall colorable or not. Moreover,
χf (G∗) ≤ |V (G)|.
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Remark 2.4. In any fall coloring of G∗, all the vertices of V ′(G) either
receive the same color or else receive distinct colors. Also, V ′(G) is an
independent subset of G∗.

Theorem 2.5. If G has fall coloring and G has no universal vertex, then

χf (G∗) = χf (G) + 1.

Proof. As G has no universal vertex, by Remark 2.2, in any fall color
partition of G, each color class contains at least two vertices. Consequently,
if k = χf (G), then G has a k-fall color partition with each color class
containing at least two vertices. Give a new color k + 1 to all vertices of
V ′(G) which yields a (k + 1)-fall coloring of G∗. Thus χf (G∗) ≤ χf (G) + 1.

Suppose χf (G∗) ≤ χf (G). If l = χf (G∗), then l < n, where n = |V (G)|.
By Remark 2.4, all vertices of V ′(G) receive the same color, say, l. Then
the remaining (l − 1) colors must appear in G and this coloring induces
a (l − 1)-fall coloring of G and hence χf (G) ≤ l − 1, contradiction to the
assumption that χf (G∗) ≤ χf (G). Therefore χf (G∗) = χf (G) + 1.

Theorem 2.6. For any graph G, χf (G∗) = |V (G)| if and only if

(i) G has no fall coloring or

(ii) G has a fall coloring and contains a universal vertex.

Proof. Suppose χf (G∗) = |V (G)|. If G has no fall coloring, then we are
done. If not, G has a fall coloring. Suppose G has no universal vertex,
then by Theorem 2.5, χf (G∗) = χf (G) + 1 and by Remark 2.2, in any fall
color partition of G, each color class contains at least two vertices. Thus
|V (G)| ≥ 2χf (G) and |V (G)| ≥ 4. Therefore, χf (G∗) ≤ |V (G)|

2 + 1, a
contradiction to the fact that χf (G∗) = |V (G)|.

Conversely, assume (i) so that G has no fall coloring and k = χf (G∗) <
|V (G)|. Then by Remark 2.4, if Π is a k-fall coloring of G∗, then V ′(G) will
be a color class receiving the same color, say, k of Π. Now it is clear that
in a fall coloring of a graph H, the union S of any subset of color classes
will induce a fall coloring on the subgraph of H induced by S. Therefore,
Π − V ′(G) will be a fall coloring of G, a contradiction.

Now assume (ii) so that G has a fall coloring and that G has a universal
vertex. By Remark 2.2, any fall color partition of G contains at least one
singleton color class. Suppose k = χf (G∗) < |V (G)|. By Remark 2.4, in any
k-fall color partition of G∗, all vertices of V ′(G) receive the same color, say,
k, and the remaining (k − 1)-colors are present in G. These (k − 1) colors
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induce a (k− 1)-fall coloring of G, say Π. By our assumption, Π contains at
least one singleton color class, say, Vi = {x}, then its corresponding vertex
y in V ′(G) is not adjacent to the vertex x (the only vertex of color i), a
contradiction.

Corollary 2.7. For any positive integers a, b with 3 ≤ a < b, there is an

infinite sequence of graphs {Hi} with χ(Hi) = a and χf (Hi) = b.

Proof. Let Ga,b be a graph obtained by attaching b−a+1 pendant edges at
a vertex of Ka−1. Then |V (Ga,b)| = b. If a = 3, then Ga,b has a fall coloring
and being a star it has a universal vertex. If a ≥ 4, then Ga,b has no fall
coloring (as the condition χ ≤ δ +1 is violated). Therefore by Theorem 2.6,
χf (G∗) = b.

Since Ga,b is not complete and by Lemma 2.1, χ(G∗
a,b) = a (as χ(Ga,b) =

a − 1).

This construction can be used to generate an infinite sequence Ha,b =
{

Hi

}

of graphs with χ = a and χf = b as follows:

Start with Ga,b and get H1 = G∗
a,b. Form H2 by concatenating a copy

of G∗
a,b at a vertex of H1, and in general, form Hi by concatenating a copy

of G∗
a,b at a vertex of Hi−1 (Recall that a concatenation of a graph G with

a graph H is the graph got by linking G and H by the identification of a
vertex of G with a vertex of H). Each graph in Ha,b =

{

Hi

}

has χ(Hi) = a
and χf (Hi) = b.

3. Smallest Non-Fall Colorable Graphs with Given Minimum

Degree

In this section, we determine the smallest (with respect to both order and
size) non-fall colorable graphs with given minimum degree δ.

Theorem 3.1. The graph G = Cp1
∪ Cp2

∪ · · · ∪ Cpl
, (where ∪ stands for

disjoint union), has no fall coloring if and only if for at least one i, pi is odd

and pi ≥ 5.

Proof. Assume that G has no fall coloring and that no pi is odd and
greater than or equal to 5 (that is, if pi is odd, then pi = 3). Without loss
of generality, let p1, . . . , pr be even and pr+1, . . . , pl be odd. Then it is easy
to give a fall color partition of G as follows: Just pair off the consecutive
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vertices of Cpi
for each i, 1 ≤ i ≤ r, and treat each such part as a color class

(for instance, for C2k, color the vertices consecutively by 1, 1; 2, 2; . . . ; k, k),
and in the case when j ≥ r + 1, we can treat each of V (Cpj

) = V (C3) as a
color class. Thus, we get a contradiction.

Conversely, assume that for at least one i, pi ≥ 5 and odd. Then G
has no fall coloring, the reason being some vertex of Cpi

cannot be a c.d.v.
in G.

Theorem 3.2. Any graph G with |V (G)| ≤ δ(G) + 2, where δ(G) is the

minimum degree of G, has a fall coloring.

Proof. There are only two cases to consider.
(i) |V (G)| = δ(G) + 1. In this case G = Kδ(G)+1 and hence G has a fall

coloring.
(ii) |V (G)| = δ(G) + 2. Let S = {x ∈ V (G) : d(x) = δ(G)} and

T = V (G)−S. Then 〈T 〉, the subgraph induced by T , is a clique in G and for
every x ∈ S, there exists a unique vertex y (6= x) in S such that xy /∈ E(G).

Thus |S| must be even and there are exactly |S|
2 pairs of nonadjacent vertices

in G. For 1 ≤ i ≤ r := |S|
2 , let Si be the pair {xi, yi} of vertices in S such

that xiyi /∈ E(G). Let T = {u1, u2, . . . , uk}.
Define c : V (G) → {1, 2, . . . , r, r + 1, . . . , r + k} by

c(v) =

{

i if v ∈ Si,

r + j if v = uj for some j, 1 ≤ j ≤ k.

Clearly c is a proper coloring of G and every vertex of G is a c.d.v.. Thus
G has a fall coloring.

Hence a smallest non-fall colorable graph of minimum degree δ must be of
order at least δ + 3 and size at least δ(δ+3)

2 .
Naturally, any such graph G must be δ-regular graph and order δ + 3

and hence its complement must be a disjoint union of cycles.
We can take G = Cp1

∪ Cp2
∪ · · · ∪ Cpl

, where
∑l

i=1 pi = δ(G) + 3, all
pi ≥ 3 and at least one pi is odd and pi ≥ 5. Then, clearly, G is a δ(G)-
regular graph and by Theorem 3.1, G has no fall coloring. This G is our
required graph. Clearly, G is not unique if δ ≥ 6 and unique if δ = 5.
The smallest non-fall colorable graphs with δ ≤ 4 have been determined
earlier in [3]. The extremal graph, for δ = 2, is C5

∼= C5, and for δ = 4,
it is C7. These coincide with the extremal graphs given in [3]. For δ = 3,
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there are two smallest non-fall colorable graphs, namely, P3 ∪ K3 and the
wheel on 6 vertices and these are given in [3]. In this case, as δ + 3 = 6
does not have a partition in the way we required, we do not get the smallest
non-fall colorable graphs by our result. However, if we treat C5 ∪ C1 as a
degenerate case, we get the wheel on 6 vertices. For δ ≥ 4, our result gives
all the smallest non-fall colorable graphs. Their exact number (where δ ≥ 4)
can be obtained as follows: Let N(k) denote the number of partitions of k
in which each part is of size at least 3 and one part is odd and of size at
least 5. Then N(k) gives the number of smallest non-fall colorable graphs
of order k (with minimum degree k − 3).

Let p(n) be the well-known partition function of n [1]. Sort each parti-
tion from smallest part to largest part. Then, p(n) − p(n − 1) − p(n − 2) +
p(n − 3) gives the number of partitions of n not beginning with a 1 or 2.
Doubling each part of a partition of n

2 gives an even partition of n, and so
the number of even partitions which do not begin with 2 is p( n

2 )− p(n
2 − 1).

The remaining partitions to be excluded are those with smallest part equal
to 3, whose remaining parts are even. Removing the first m copies of 3 (a
fixed portion of the partition), the remaining even partitions can be given
by p

(

n−3m
2

)

, and to ensure that the even portion does not begin with two,

we subtract p
( (n−3m)

2 + 1
)

. Let p(n) = 0 if n is not an integer, and we have
the following expression for N(k):

N(k) = (p(k) − p(k − 1) − p(k − 2) + p(k − 3))

−

bk/3c
∑

m=0

(

p
(k − 3m

2

)

− p
(k − 3m

2
+ 1

))

.

For example, N(8) = 1 and N(11) = 4. N(8) corresponds to the unique
graph C3 ∪ C5, while N(11) corresponds to the four graphs C11, C4 ∪ C7,
C5 ∪ C6 and C3 ∪ C3 ∪ C5.
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