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Abstract

Let G = (V,E) be a graph. Set D C V(G) is a total outer-
connected dominating set of G if D is a total dominating set in G
and G[V(G) — D] is connected. The total outer-connected domination
number of G, denoted by 7:.(G), is the smallest cardinality of a total
outer-connected dominating set of G. We show that if T" is a tree of
order n, then 7;c(T) > [%]. Moreover, we constructively characterize
the family of extremal trees T of order n achieving this lower bound.
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1. INTRODUCTION

Graph theory terminology not presented here can be found in [1, 5].

Let G = (V, E) be a simple graph. The neighbourhood of a vertex v,
denoted by N¢(v), is the set of all vertices adjacent to v in G and the integer
da(v) = |[Ng(v)| is the degree of v in G. A vertex of degree one is called an
end-verter. A support is the unique neighbour of an end-vertex.

Let P, denotes the path of order n. For a vertex v of G, we shall use the
expression, attach a P, at v, to refer to the operation of taking the union of
G and a path P, and joining one of the end-vertices of this path to v with
an edge.

Set D C V(G) is a dominating set in G if Ng(v) N D # 0 for every
vertex v € V(G) — D. The domination number of G, denoted v(G), is the
cardinality of a minimum dominating set of G.
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Set D C V(G) is a total dominating set of G if each vertex of V(G) has
a neighbour in D. The cardinality of a minimum total dominating set in
G is the total domination number of G and is denoted by ~¢(G). Total
domination in graphs is currently well studied in graph theory (for examples,
see [2, 6]).

Set D C V(G) is said to be a total outer-connected dominating set of G
if D is a total dominating set and G[V (G)— D] is connected. The cardinality
of a minimum total outer-connected dominating set in G is called the total
outer-connected domination number of G and is denoted by v.(G). Observe
that every graph G without isolates has a total outer-connected dominating
set, since the set of all vertices of GG is a total outer-connected dominating
set in G.

We will show that if T'is a tree of order n, then v;.(T) > [%]. Moreover,
we will constructively characterize the extremal trees T of order n > 3
achieving this lower bound.

Similar bounds for various domination numbers in trees are given in

2, 6].
2. THE LOWER BOUND

Theorem 1. If T is a tree of order n > 2, then
2n
’Vtc(T) Z ’7?—‘ .

Proof. The result is obvious for n = 2. Assume that n > 3 and let D be
a minimum total outer-connected dominating set of 1. Let us denote by S
any component of T'[D]. Since T is a tree, no two vertices of V(T') — D have
a common neighbour in S. Hence |N7(S) N (V(T) — D)| < 1. Moreover, D
is dominating in 7" and isolate free, and thus

n(T) = |V(T) = D[ + D

\V(T) — D[ +2|V(T) — D|
n—Yee(T) + 2n — 279 (T).

(AVARAY

Finally, we have v, (T') > 2n, and so y.(T) > [%]. |

wino
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3. THE CHARACTERIZATION OF THE EXTREMAL TREES

For n > 2, let T,, = {T | T is a tree of order n such that v,.(T) = [2]},
T =,;>9 7. We will present a constructive characterization of the family
7. For this purpose, we define a type (1) operation on a tree T' as attaching
P3 at v where v is a vertex of T not belonging to some minimum total outer-
connected dominating set of T', and a type (2) operation as attaching P; at
v where v belongs to some minimum total outer-connected dominating set
of T.

We now define families of trees as follows. Let C,, = {T' | T is a tree
of order n which can be obtained from the path Ps by a finite sequence of
operations of type (1) and (2), where the operation of type (2) appears in
the sequence exactly n (mod 3) times}, n > 3, and Co = {P»}.

We shall establish:

Theorem 2. For n > 2, 7, = C,.
We prove Theorem 2 by establishing eight lemmas.

Lemma 3. If D is a minimum total outer-connected dominating set of
a tree T of order at least 6 and T' € T, then every end-vertex of T and every
support of T' belongs to D.

Lemma 4. If T € T, then |QUT)| < |S(T)| + 2, where Q(T') is the set of
all end-vertices of T and S(T) is the set of all supports of T

Proof. Let D be a minimum total outer-connected dominating set of a tree
T belonging to 7. Then for some positive integer n we have T' € 7,, and
|D| = [%"] Suppose |Q(T)| = |S(T)| +t, t > 2. Denote by s1,...,5m
the supports of T and by l1,...,lm,lm+1,-- -, lm+e the end-vertices of T,
where I; € Np(s;), 1 <i < m. Notice that D — {l;, 41, lm+2,lm+3} is a total
outer-connected dominating set of a tree 7" = T'—{l,, 41, lm+2, lm+3 }. Hence
Ye(T') < |D| =3 = [222]. On the other hand, by Theorem 1, we have

Yee(T') > {@—‘ and consequently {@—‘ < Ye(T") < [252], which is
impossible. [ |

Thus we have what follows.

Corollary 1. If T € T, then exactly one of the following conditions holds:
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(i) every support of T is a neighbour of exactly one end-vertex;

(ii) exactly one support of T is a neighbour of exactly two end-vertices,
while every other support is a neighbour of exactly one end-vertex;

(iii) ezactly one support of T is a neighbour of three end-vertices, while evert
other support is a neighbour of exactly one end-vertex or exactly two
supports of T' are the neighbours of exactly two end-vertices, while every
other support is a neighbour of exactly one end-vertez.

Lemma 5. If T € T,, n > 3, and T’ is obtained from T by a type (1)
operation, then T" € T, 3.

Proof. By definition of a type (1) operation on a tree T, there exists
a minimum total outer-connected dominating set of 1" such that adding
a new end-vertex of 77 and a new support of 7" to it produces a total outer-
connected dominating set of 77. Hence, since T € T, Y1(T") < ve(T) +

2 = {@] However, T" is a tree of order n + 3, and so, by Theorem 1,

Yee(T) > [@1 Consequently, v.(T") = [@17 and hence T" € T, 3.
|

Notice that C3 = {Ps} = 73. Hence an immediate consequence of Lemma 5
now follows.

Lemma 6. If n >3 and n = 0 (mod 3), then C,, C 7,.
We will now prove the inverse inclusion.
Lemma 7. If n > 3 and n = 0 (mod 3), then 7,, C C,.

Proof. We proceed by induction on n > 3. Since 73 = {P3} = Cs, the
result is true for n = 3. Let n > 6 satisfy n = 0 (mod 3) and assume that
T C Ci for all integers k = 0 (mod 3), where 3 <k <n. Let T € 7,,. We
show that T" € C,,. Let D be a minimum total outer-connected dominating
set of T. Let P = (v1,v2,...,Vy) be a longest path in 7. By Lemma 3,
{v1,v2, Vm—1,0m} C D.

We will show that dr(ve) = 2 and {vs,v4} N D = (. Suppose that
v9 is adjacent to two end-vertices, say vy and ly. Then D' = D — {l1} is
a total outer-connected dominating set of 7/ = T —l;. Hence, since T' € 7,,,
Yee(T') < [%"] -1 = %" — 1. However, T" is a tree of order n — 1 = 2

mod 3), and so, by Theorem 1, v:.(T") > 2n=D) = 2n 5 contradiction.
3 3
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Suppose now v3 € D. Then the set D’ = D —{v;} is a total outer-connected
dominating set of T/ = T — v and %" < (T < %" — 1 — a contradiction.
Hence dr(v2) = 2 and vs ¢ D. From Lemma 3 and from the fact that
V(T) — D is a tree we conclude that m > 6 and vq ¢ D.

We will now prove that dp(vs) = 2. Since vs ¢ D, v is not a support.
Suppose there exists a path P’ = (u1, ug,v3) in T such that us ¢ {vg,v4}.
By Lemma 4, {uj,us} € D. Moreover D' = D — {uy,us} is a total outer-
connected dominating set of 77 = T — {uy, us}. Hence v (T") < 74c(T)—2 =
20 _ 2, which contradicts the fact that (by Theorem 1) (") > (z(n—?’_z)}

Let us consider tree T" =T — {vy,v9,v3}. The set D' = D — {vy,v9} is
a total outer-connected dominating set of 7”. Hence v,(T") < [#] — 2 =
[22-67. Moreover by Theorem 1, v (T") > {z(n—g—?’)w and so T" € T,_s.
Thus, by the inductive hypothesis, T € C,,_3. Since v4 does not belong to
some minimum total outer-connected dominating set of 77, namely D', T is
constructed from T by a type (1) operation. Hence T € C,,. [ |

Lemma 8. If T € 7,, n > 3, and n # 2 (mod 3), then a tree T' obtained
from T by a type (2) operation belongs to Tp41.

Proof. By definition of a type (2) operation on a tree T, there exists
a minimum total outer-connected dominating set of T such that adding to
it the new end-vertex of T produces a total outer-connected dominating

set of T'. Hence, since T € 7,, and n # 2 (mod 3), (T") < %(T) +1 =

{%w = {%1 However, T” is a tree of order n + 1, and so, by Theorem

1, %(T") > {%w Consequently, v,(T") = [2%t2] and T € T41. [ ]
Lemma 9. Ifn >4 and n # 0 (mod 3), then C,, C 7,.

Proof. We proceed by induction on n > 4. The base case is true since
C4 = {K173,P4} Q 721 and C5 = {K174,P5,T1} Q 7'5, where T1 is a tree
obtained from a star K 3 by subdivision of exactly one of its edges.

Assume now that the result is true for £ # 0 (mod 3), 4 <k <n. Let T
be a tree belonging to the family C,. Thus T can be obtained from a tree
T’ by either one operation of type (1) or one operation of type (2). If T
is obtained from T” as a result of operation of type (1), then T” is a tree
of order n — 3 and by our induction hypothesis T/ € 7,_3. Therefore, by
Lemma 5, T € 7,,.

If T is obtained from T’ by one operation of type (2), then T is a tree
of order n — 1. We consider two cases:
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Case 1. If n = 1 (mod 3), then the construction of 7" is accomplished by
using only type (1) operations starting with the path P3 and thus 77 € C,,—1.
From Lemma 6 we conclude that 77 € 7,,_;. Hence, by Lemma 8, T' € 7,,.

Case 2. If n = 2 (mod 3), then 77 € C,—1 and by our induction hypoth-
esis T € 7,,_1. Finally, by Lemma 8, T € 7,,. [ ]

Lemma 10. If n >4 and n # 0 (mod 3), then 7,, C C,.

Proof. We proceed by induction on n > 4. Since Py = {Py, K13} = Cs
and Ps = {Kj 4, P5, 11} = Cs, where T} is a tree obtained from a star K 3 by
subdivision of exactly one of its edges, the result is true for n = 4 and n = 5.
Let n > 7 satisfy n # 0(mod 3), and assume that 7 C Cj for all integers
k # 0(mod 3), where 4 < k < n. Let T' € 7,, and let D be a minimum total
outer-connected dominating set of T'. Let P = (v1,va,. .., vy ) be the longest
path in 7. By Lemma 3, {v1,v2, Vym—1,vm} € D. We consider two cases:

Case 1. One of the vertices vy or v,,_1 is adjacent to at least two end-
vertices. Without loss of generality, we can assume that | N7 (v2)NQ(T)| > 2.
Let I3 € Np(ve) NQ(T), I # v1. In this case D' = D — {11} is a total outer-
connected dominating set of 7" = T — [ and hence v (T') < v (T) — 1 =
{%w = {%1 Thus, Theorem 1 implies v4.(T") = {2"—3721 Depending on
whether n = 1 (mod 3) or n = 2 (mod 3) we have T’ € C,,_1 from Lemma 7

or by our induction hypothesis, respectively. Hence we obtain T' € C,.

Case 2. The vertices vo and v,,_1 have degree 2. Suppose that vg
or v,,_g, say vs, belongs to D. Then for tree T/ = T — vy and for D' =
D — {v}, similarly to Case 1, we have that T € C,,. Hence we can assume
that {vs,vm—2} N D = (. Thus from connectivity of V(T) — D we have
{U4, Umfg} ND=40.

We will now show that v or v,_o is of degree two. Suppose to the
contrary, that neither vs nor v,,_o is of degree 2. Let y be the neighbour of
v3, Yy # Vg and y # v4, and let z be the neighbour of v, 9, z # v,,,—1 and z #
Um—3. Then neither y nor z is not an end-vertex — otherwise we would have
v3 € D or v,—o € D. From that and from our choice of path (v, ve,...,vy)
it is straightforward that y and z are supports and A = N (y)—{vs} C Q(T),
B = Np(z) — {vm—2} C Q(T'). We also have that D — (AU B U {y, z}) is
a total outer-connected dominating set of 7" =T — (AU BU{y, z}), and so
(22 AP0 < 5 (1) < 5o (T) 2~ | A|~ | B| < [2] ~2~| |~ | B, which
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is impossible. Therefore, without the loss of generality, we may assume that
degy(vs) = 2.

Let us consider 77 = T — {v1,v2,v3}. The set D' = D — {v1,v2} is
a total outer-connected dominating set of 7", and hence v.(T") < [%ﬂ —
2 = [22287 Moreover, by Theorem 1, (1) > [@1 and so T €
7T,._3. Therefore, by the inductive hypothesis, T’ € C,_3. However, T is
constructed from T by a type (1) operation. Hence T € C,,. [ |

Theorem 2 now follows immediately from Lemmas 6, 7, 9 and 10.
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