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Abstract

Let G = (V, E) be a graph. Set D ⊆ V (G) is a total outer-
connected dominating set of G if D is a total dominating set in G
and G[V (G)−D] is connected. The total outer-connected domination
number of G, denoted by γtc(G), is the smallest cardinality of a total
outer-connected dominating set of G. We show that if T is a tree of
order n, then γtc(T ) ≥ d 2n

3
e. Moreover, we constructively characterize

the family of extremal trees T of order n achieving this lower bound.
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1. Introduction

Graph theory terminology not presented here can be found in [1, 5].
Let G = (V,E) be a simple graph. The neighbourhood of a vertex v,

denoted by NG(v), is the set of all vertices adjacent to v in G and the integer
dG(v) = |NG(v)| is the degree of v in G. A vertex of degree one is called an
end-vertex. A support is the unique neighbour of an end-vertex.
Let Pn denotes the path of order n. For a vertex v of G, we shall use the

expression, attach a Pn at v, to refer to the operation of taking the union of
G and a path Pn and joining one of the end-vertices of this path to v with
an edge.
Set D ⊆ V (G) is a dominating set in G if NG(v) ∩ D 6= ∅ for every

vertex v ∈ V (G) − D. The domination number of G, denoted γ(G), is the
cardinality of a minimum dominating set of G.
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Set D ⊆ V (G) is a total dominating set of G if each vertex of V (G) has
a neighbour in D. The cardinality of a minimum total dominating set in
G is the total domination number of G and is denoted by γt(G). Total
domination in graphs is currently well studied in graph theory (for examples,
see [2, 6]).

Set D ⊆ V (G) is said to be a total outer-connected dominating set of G
if D is a total dominating set and G[V (G)−D] is connected. The cardinality
of a minimum total outer-connected dominating set in G is called the total
outer-connected domination number of G and is denoted by γtc(G). Observe
that every graph G without isolates has a total outer-connected dominating
set, since the set of all vertices of G is a total outer-connected dominating
set in G.

We will show that if T is a tree of order n, then γtc(T ) ≥ d2n
3 e. Moreover,

we will constructively characterize the extremal trees T of order n ≥ 3
achieving this lower bound.

Similar bounds for various domination numbers in trees are given in
[2, 6].

2. The Lower Bound

Theorem 1. If T is a tree of order n ≥ 2, then

γtc(T ) ≥

⌈

2n

3

⌉

.

Proof. The result is obvious for n = 2. Assume that n ≥ 3 and let D be
a minimum total outer-connected dominating set of T . Let us denote by S
any component of T [D]. Since T is a tree, no two vertices of V (T )−D have
a common neighbour in S. Hence |NT (S) ∩ (V (T ) − D)| ≤ 1. Moreover, D
is dominating in T and isolate free, and thus

n(T ) = |V (T ) − D| + |D|

≥ |V (T ) − D| + 2|V (T ) − D|

≥ n − γtc(T ) + 2n − 2γtc(T ).

Finally, we have γtc(T ) ≥ 2
3n, and so γtc(T ) ≥

⌈

2n
3

⌉

.
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3. The Characterization of the Extremal Trees

For n ≥ 2, let Tn = {T | T is a tree of order n such that γtc(T ) = d2n
3 e},

T =
⋃

n≥2 Tn. We will present a constructive characterization of the family
T . For this purpose, we define a type (1) operation on a tree T as attaching
P3 at v where v is a vertex of T not belonging to some minimum total outer-
connected dominating set of T , and a type (2) operation as attaching P1 at
v where v belongs to some minimum total outer-connected dominating set
of T .

We now define families of trees as follows. Let Cn = {T | T is a tree
of order n which can be obtained from the path P3 by a finite sequence of
operations of type (1) and (2), where the operation of type (2) appears in
the sequence exactly n (mod 3) times}, n ≥ 3, and C2 = {P2}.
We shall establish:

Theorem 2. For n ≥ 2, Tn = Cn.

We prove Theorem 2 by establishing eight lemmas.

Lemma 3. If D is a minimum total outer-connected dominating set of
a tree T of order at least 6 and T ∈ T , then every end-vertex of T and every
support of T belongs to D.

Lemma 4. If T ∈ T , then |Ω(T )| ≤ |S(T )| + 2, where Ω(T ) is the set of
all end-vertices of T and S(T ) is the set of all supports of T .

Proof. Let D be a minimum total outer-connected dominating set of a tree
T belonging to T . Then for some positive integer n we have T ∈ Tn and
|D| =

⌈

2n
3

⌉

. Suppose |Ω(T )| = |S(T )| + t, t > 2. Denote by s1, . . . , sm

the supports of T and by l1, . . . , lm, lm+1, . . . , lm+t the end-vertices of T ,
where li ∈ NT (si), 1 ≤ i ≤ m. Notice that D − {lm+1, lm+2, lm+3} is a total
outer-connected dominating set of a tree T ′ = T −{lm+1, lm+2, lm+3}. Hence
γtc(T

′) ≤ |D| − 3 =
⌈

2n−9
3

⌉

. On the other hand, by Theorem 1, we have

γtc(T
′) ≥

⌈

2(n−3)
3

⌉

and consequently
⌈

2(n−3)
3

⌉

≤ γtc(T
′) ≤

⌈

2n−9
3

⌉

, which is

impossible.

Thus we have what follows.

Corollary 1. If T ∈ T , then exactly one of the following conditions holds:
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(i) every support of T is a neighbour of exactly one end-vertex;

(ii) exactly one support of T is a neighbour of exactly two end-vertices,
while every other support is a neighbour of exactly one end-vertex;

(iii) exactly one support of T is a neighbour of three end-vertices, while evert
other support is a neighbour of exactly one end-vertex or exactly two
supports of T are the neighbours of exactly two end-vertices, while every
other support is a neighbour of exactly one end-vertex.

Lemma 5. If T ∈ Tn, n ≥ 3, and T ′ is obtained from T by a type (1)
operation, then T ′ ∈ Tn+3.

Proof. By definition of a type (1) operation on a tree T , there exists
a minimum total outer-connected dominating set of T such that adding
a new end-vertex of T ′ and a new support of T ′ to it produces a total outer-
connected dominating set of T ′. Hence, since T ∈ Tn, γtc(T

′) ≤ γtc(T ) +
2 =

⌈

2n+6
3

⌉

. However, T ′ is a tree of order n + 3, and so, by Theorem 1,

γtc(T
′) ≥

⌈2(n+3)
3

⌉

. Consequently, γtc(T
′) =

⌈2(n+3)
3

⌉

, and hence T ′ ∈ Tn+3.

Notice that C3 = {P3} = T3. Hence an immediate consequence of Lemma 5
now follows.

Lemma 6. If n ≥ 3 and n ≡ 0 (mod 3), then Cn ⊆ Tn.

We will now prove the inverse inclusion.

Lemma 7. If n ≥ 3 and n ≡ 0 (mod 3), then Tn ⊆ Cn.

Proof. We proceed by induction on n ≥ 3. Since T3 = {P3} = C3, the
result is true for n = 3. Let n ≥ 6 satisfy n ≡ 0 (mod 3) and assume that
Tk ⊆ Ck for all integers k ≡ 0 (mod 3), where 3 ≤ k < n. Let T ∈ Tn. We
show that T ∈ Cn. Let D be a minimum total outer-connected dominating
set of T . Let P = (v1, v2, . . . , vm) be a longest path in T . By Lemma 3,
{v1, v2, vm−1, vm} ⊆ D.
We will show that dT (v2) ≡ 2 and {v3, v4} ∩ D = ∅. Suppose that

v2 is adjacent to two end-vertices, say v1 and l1. Then D′ = D − {l1} is
a total outer-connected dominating set of T ′ = T − l1. Hence, since T ∈ Tn,
γtc(T

′) ≤
⌈

2n
3

⌉

− 1 = 2n
3 − 1. However, T ′ is a tree of order n − 1 ≡ 2

(mod 3), and so, by Theorem 1, γtc(T
′) ≥

⌈2(n−1)
3

⌉

= 2n
3 , a contradiction.
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Suppose now v3 ∈ D. Then the set D′ = D−{v1} is a total outer-connected
dominating set of T ′ = T − v1 and

2n
3 ≤ γtc(T

′) ≤ 2n
3 − 1— a contradiction.

Hence dT (v2) = 2 and v3 /∈ D. From Lemma 3 and from the fact that
V (T ) − D is a tree we conclude that m ≥ 6 and v4 /∈ D.
We will now prove that dT (v3) = 2. Since v3 /∈ D, v3 is not a support.

Suppose there exists a path P ′ = (u1, u2, v3) in T such that u2 /∈ {v2, v4}.
By Lemma 4, {u1, u2} ⊆ D. Moreover D′ = D − {u1, u2} is a total outer-
connected dominating set of T ′ = T −{u1, u2}. Hence γtc(T

′) ≤ γtc(T )−2 =
2n
3 − 2, which contradicts the fact that (by Theorem 1) γtc(T

′) ≥
⌈2(n−2)

3

⌉

.
Let us consider tree T ′ = T − {v1, v2, v3}. The set D′ = D − {v1, v2} is

a total outer-connected dominating set of T ′. Hence γtc(T
′) ≤ d2n

3 e − 2 =

d2n−6
3 e. Moreover by Theorem 1, γtc(T

′) ≥
⌈2(n−3)

3

⌉

and so T ′ ∈ Tn−3.
Thus, by the inductive hypothesis, T ′ ∈ Cn−3. Since v4 does not belong to
some minimum total outer-connected dominating set of T ′, namely D′, T is
constructed from T ′ by a type (1) operation. Hence T ∈ Cn.

Lemma 8. If T ∈ Tn, n ≥ 3, and n 6≡ 2 (mod 3), then a tree T ′ obtained
from T by a type (2) operation belongs to Tn+1.

Proof. By definition of a type (2) operation on a tree T , there exists
a minimum total outer-connected dominating set of T such that adding to
it the new end-vertex of T ′ produces a total outer-connected dominating
set of T ′. Hence, since T ∈ Tn and n 6≡ 2 (mod 3), γtc(T

′) ≤ γtc(T ) + 1 =
⌈

2n+3
3

⌉

=
⌈

2n+2
3

⌉

. However, T ′ is a tree of order n + 1, and so, by Theorem

1, γtc(T
′) ≥

⌈2(n+1)
3

⌉

. Consequently, γtc(T
′) =

⌈

2n+2
3

⌉

and T ′ ∈ Tn+1.

Lemma 9. If n ≥ 4 and n 6≡ 0 (mod 3), then Cn ⊆ Tn.

Proof. We proceed by induction on n ≥ 4. The base case is true since
C4 = {K1,3, P4} ⊆ T4 and C5 = {K1,4, P5, T1} ⊆ T5, where T1 is a tree
obtained from a star K1,3 by subdivision of exactly one of its edges.
Assume now that the result is true for k 6≡ 0 (mod 3), 4 ≤ k < n. Let T

be a tree belonging to the family Cn. Thus T can be obtained from a tree
T ′ by either one operation of type (1) or one operation of type (2). If T
is obtained from T ′ as a result of operation of type (1), then T ′ is a tree
of order n − 3 and by our induction hypothesis T ′ ∈ Tn−3. Therefore, by
Lemma 5, T ∈ Tn.
If T is obtained from T ′ by one operation of type (2), then T ′ is a tree

of order n − 1. We consider two cases:
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Case 1. If n = 1 (mod 3), then the construction of T ′ is accomplished by
using only type (1) operations starting with the path P3 and thus T

′ ∈ Cn−1.
From Lemma 6 we conclude that T ′ ∈ Tn−1. Hence, by Lemma 8, T ∈ Tn.

Case 2. If n ≡ 2 (mod 3), then T ′ ∈ Cn−1 and by our induction hypoth-
esis T ′ ∈ Tn−1. Finally, by Lemma 8, T ∈ Tn.

Lemma 10. If n ≥ 4 and n 6≡ 0 (mod 3), then Tn ⊆ Cn.

Proof. We proceed by induction on n ≥ 4. Since P4 = {P4,K1,3} = C4

and P5 = {K1,4, P5, T1} = C5, where T1 is a tree obtained from a starK1,3 by
subdivision of exactly one of its edges, the result is true for n = 4 and n = 5.
Let n ≥ 7 satisfy n 6≡ 0 (mod 3), and assume that Tk ⊆ Ck for all integers
k 6≡ 0 (mod 3), where 4 ≤ k < n. Let T ∈ Tn and let D be a minimum total
outer-connected dominating set of T . Let P = (v1, v2, . . . , vm) be the longest
path in T . By Lemma 3, {v1, v2, vm−1, vm} ⊆ D. We consider two cases:

Case 1. One of the vertices v2 or vm−1 is adjacent to at least two end-
vertices. Without loss of generality, we can assume that |NT (v2)∩Ω(T )| ≥ 2.
Let l1 ∈ NT (v2)∩Ω(T ), l1 6= v1. In this case D′ = D −{l1} is a total outer-
connected dominating set of T ′ = T − l1 and hence γtc(T

′) ≤ γtc(T ) − 1 =
⌈

2n−3
3

⌉

=
⌈

2n−2
3

⌉

. Thus, Theorem 1 implies γtc(T
′) =

⌈

2n−2
3

⌉

. Depending on
whether n ≡ 1 (mod 3) or n ≡ 2 (mod 3) we have T ′ ∈ Cn−1 from Lemma 7
or by our induction hypothesis, respectively. Hence we obtain T ∈ Cn.

Case 2. The vertices v2 and vm−1 have degree 2. Suppose that v3

or vm−2, say v3, belongs to D. Then for tree T ′ = T − v1 and for D′ =
D − {v1}, similarly to Case 1, we have that T ∈ Cn. Hence we can assume
that {v3, vm−2} ∩ D = ∅. Thus from connectivity of V (T ) − D we have
{v4, vm−3} ∩ D = ∅.
We will now show that v3 or vm−2 is of degree two. Suppose to the

contrary, that neither v3 nor vm−2 is of degree 2. Let y be the neighbour of
v3, y 6= v2 and y 6= v4, and let z be the neighbour of vm−2, z 6= vm−1 and z 6=
vm−3. Then neither y nor z is not an end-vertex – otherwise we would have
v3 ∈ D or vm−2 ∈ D. From that and from our choice of path (v1, v2, . . . , vm)
it is straightforward that y and z are supports andA = NT (y)−{v3} ⊆ Ω(T ),
B = NT (z) − {vm−2} ⊆ Ω(T ). We also have that D − (A ∪ B ∪ {y, z}) is
a total outer-connected dominating set of T ′ = T − (A∪B ∪ {y, z}), and so
⌈2(n−2−|A|−|B|)

3

⌉

≤ γtc(T
′) ≤ γtc(T )−2−|A|−|B| ≤

⌈

2n
3

⌉

−2−|A|−|B|, which
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is impossible. Therefore, without the loss of generality, we may assume that
degT (v3) = 2.
Let us consider T ′ = T − {v1, v2, v3}. The set D′ = D − {v1, v2} is

a total outer-connected dominating set of T ′, and hence γtc(T
′) ≤ d2n

3 e −

2 = d2n−6
3 e. Moreover, by Theorem 1, γtc(T

′) ≥
⌈2(n−3)

3

⌉

and so T ′ ∈
Tn−3. Therefore, by the inductive hypothesis, T ′ ∈ Cn−3. However, T is
constructed from T ′ by a type (1) operation. Hence T ∈ Cn.

Theorem 2 now follows immediately from Lemmas 6, 7, 9 and 10.
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