THE EDGE C_4 GRAPH OF SOME GRAPH CLASSES

MANJU K. MENON AND A. VIJAYAKUMAR

Department of Mathematics Cochin University of Science and Technology Cochin-682022, India e-mail: manjumenonk@gmail.com e-mail: vijay@cusat.ac.in

Abstract

The edge C_4 graph of a graph G, $E_4(G)$ is a graph whose vertices are the edges of G and two vertices in $E_4(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_4 . In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C_4 graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of $E_4(G)$. It is shown that for any graph G without isolated vertices, there exists a super graph H such that C(H) = G and $C(E_4(H)) = E_4(G)$. Also we give forbidden subgraph characterizations for $E_4(G)$ being a threshold graph, block graph, geodetic graph and weakly geodetic graph.

Keywords: edge C_4 graph, threshold graph, block graph, geodetic graph, weakly geodetic graph.

2010 Mathematics Subject Classification: 05C99.

1. INTRODUCTION

We consider the graph operator $E_4(G)$, whose vertices are the edges of G and two vertices in $E_4(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_4 . This graph class is also known by the name edge graph in [11]. In $E_4(G)$ any two vertices are adjacent if the union of the corresponding edges in G induce any one of the graphs P_3 , C_3 , C_4 , $K_4 - \{e\}$, K_4 . If $a_1 - a_2$ is an edge in G, the corresponding vertex in $E_4(G)$ is denoted by a_1a_2 . In [9], we obtained characterizations for $E_4(G)$ being connected, complete, bipartite etc and also some dynamical behaviour of $E_4(G)$ are studied. It was also proved that $E_4(G)$ has no forbidden subgraphs.

For a vertex $v \in V(G)$, N(v) denotes the set of all vertices in G which are adjacent to v and $N[v] = N(v) \cup \{v\}$. A vertex x dominates a vertex y if $N(y) \subseteq N[x]$. If x dominates y or y dominates x, then x and y are comparable. Otherwise, they are incomparable. The Dilworth number of a graph G, dilw(G) is the largest number of pairwise incomparable vertices of G. A vertex v is a universal vertex if it is adjacent to all the other vertices in G. A subset S of V is a dominating set if each vertex of G that is not in S is adjacent to at least one vertex of S. If S is a dominating set then N[S] = V. A dominating set of minimum cardinality is called a minimum dominating set, its cardinality is called the domination number of G and it is denoted by $\gamma(G)$. Many types of domination and its characteristics are discussed in [5]. In [4], it is observed that for graphs G without isolated vertices, $\gamma(G) \leq dilw(G)$.

All the graphs considered here are finite, undirected and simple. We denote by P_n (respectively C_n), a path (respectively cycle) on n vertices. The graph obtained by deleting any edge 'e' of K_n is denoted by $K_n - \{e\}$. The *join* of two graphs $G = (V_1, E_1)$ and $H = (V_2, E_2)$ is denoted by $G \vee H$ and has $V(G \vee H) = V_1 \cup V_2$ and $E(G \vee H) = E_1 \cup E_2 \cup \{(u, v) : u \in V_1 \text{ and } v \in V_2\}$. A 'bow' is $K_1 \vee 2K_2$. The graph obtained by attaching a pendant vertex to any vertex of C_n , is called an '*n*-pan' and a 'paw' is a 3-pan. The graph in Figure 1 is called a 'moth'.

A graph G is *H*-free if G does not contain H as an induced subgraph. A graph H is a forbidden subgraph for a property P, if any graph G which satisfies the property P cannot have H as an induced subgraph. The distance between any two vertices u and v of a connected graph G, $d_G(u, v)$ is the

length of a shortest path joining them. The eccentricity of a vertex $v \in V(G)$ is $e(v) = \max\{d(u, v) : u \in V(G)\}$. The radius and diameter of G are respectively $rad(G) = \min\{e(v) : v \in V(G)\}$, $diam(G) = \max\{e(v) : v \in V(G)\}$. A vertex v is called a *central* vertex of G if e(v) = rad(G). The center, C(G) of a connected graph G is the subgraph of G induced by its central vertices. The girth of G, g(G) is the length of a shortest cycle in G. A clique in G is a complete subgraph of G. For all basic concepts and notations not mentioned in this paper we refer [13].

The line graph L(G) of a graph G is a graph that has a vertex for every edge of G, and two vertices of L(G) are adjacent if and only if they correspond to two edges of G with a common end vertex. In [8], it is shown that for any graph G without isolated vertices, there is a graph H such that C(H) = G and C(L(H)) = L(G). It is further proved that $diam(L(G)) \leq$ diam(G) + 1 and $rad(L(G)) \leq rad(G) + 1$.

In [1], several graph classes and their forbidden subgraph characterizations for many properties are discussed in detail. We consider the graph classes — threshold graphs, cographs, block graphs, geodetic graphs and weakly geodetic graphs with regard to $E_4(G)$.

Threshold graphs were introduced by Chvátal and Hammer in [2]. It is known that a graph G is a threshold graph if and only if dilw(G) = 1 and that G is $\{2K_2, C_4, P_4\}$ -free graph [2, 5].

In [7], it is proved that a connected graph G is a block graph if and only if every maximal 2-connected subgraph (block) is complete. A cycle C of G is a *b*-cycle of G if C is not contained in a clique of G. The *bulge* of G, b(G) is the minimum length of a *b*-cycle in G if G contains a *b*-cycle and is ∞ otherwise. Also, G is a *block graph* if and only if $b(G) = \infty$ [6, 7].

A graph G is a geodetic graph [10] if any two vertices of G are joined by a unique shortest path and G is weakly geodetic if for every pair of vertices of distance two, there is a unique common neighbour [7]. A graph G is weakly geodetic if and only if $b(G) \ge 5$ [6, 7]. It is known that block graphs \subseteq geodetic graphs \subseteq weakly geodetic graphs [1].

 P_4 -free graphs are called *cographs* [3]. The domination number of cographs is at most two [12].

It is well known that $K_{1,3}$ and K_3 are the only non isomorphic graphs with isomorphic line graphs. Even though $L(G) \subseteq E_4(G)$, it is proved in this paper that there exist infinitely many pairs of non isomorphic graphs with isomorphic edge C_4 graphs. We study relations between $\gamma(G)$ and $\gamma(E_4(G))$, diam(G) and $diam(E_4(G))$, and rad(G) and $rad(E_4(G))$. We prove that for any graph G without isolated vertices, it is possible to construct a super graph H such that C(H) = G and $C(E_4(H)) = E_4(G)$. We also obtain forbidden subgraph characterizations for $E_4(G)$ being threshold graph, block graph, geodetic graph and weakly geodetic graph.

2. Some Properties of $E_4(G)$

Theorem 1. There exist infinitely many pairs of non isomorphic graphs whose edge C_4 graphs are isomorphic.

Proof. Let $G = K_{1,n}$. If n = 2k - 1, then take $H = K_2 \vee (k - 1)K_1$ and if n = 2k, then take $H = 2K_1 \vee kK_1$. Clearly G and H are non isomorphic graphs. But $E_4(G) = E_4(H) = K_n$.

Theorem 2. For a connected graph G, $diam(G) - 1 \le diam(E_4(G)) \le diam(G) + 1$ and $rad(G) - 1 \le rad(E_4(G)) \le rad(G) + 1$.

Proof. By the definition of $E_4(G)$ and L(G), $diam(E_4(G)) \leq diam(L(G))$ and $rad(E_4(G)) \leq rad(L(G))$. But, $diam(L(G)) \leq diam(G) + 1$ and $rad(L(G)) \leq rad(G) + 1$. Thus $diam(E_4(G)) \leq diam(G) + 1$ and $rad(E_4(G))$ $\leq rad(G) + 1$.

Next let diam(G) = k. We want to prove that $diam(E_4(G)) \ge k - 1$. On the contrary, assume that $diam(E_4(G)) < k - 1$. Let u and v be any two vertices in G and let u - u', v - v' be any two edges incident with u and vrespectively. But $d_{E_4(G)}(uu', vv') < k - 1$. So $d_G(u, v) \le d_{E_4(G)}(uu', vv') + 1 < k$, which is a contradiction to the fact that diam(G) = k.

Finally, let rad(G) = k. It is required to prove that $rad(E_4(G) \ge k - 1$. On the contrary, suppose that $rad(E_4(G)) < k - 1$. Then there exists a vertex uu' in $E_4(G)$ such that e(uu') < k - 1. Consider the vertex uin G. Let v be any vertex in G and vv' be any edge incident with v. Then $d_G(u, v) \le d_{E_4(G)}(uu', vv') + 1 < k$, and hence e(u) < k, which is a contradiction to the fact that rad(G) = k.

Note 1. The bounds in Theorem 2 are strict.

If G is a bow, then diam(G) = 2, $diam(E_4(G)) = 3$, rad(G) = 1 and $rad(E_4(G)) = 2$. If G is C_4 , then diam(G) = 2, $diam(E_4(G)) = 1$, rad(G) = 2 and $rad(E_4(G)) = 1$.

Theorem 3. For any graph G without isolated vertices, there exists a super graph H such that C(H) = G and $C(E_4(H)) = E_4(G)$.

Proof. Consider $G \vee 2K_2$. Let the K_2 's be a - a' and b - b'. Attach a'' - a''' to a - a' such that a is adjacent to a''' and a' is adjacent to a''. Similarly attach b'' - b''' to b - b' such that b is adjacent to b''' and b' is adjacent to b''. The graph so obtained is H.

Claim 1. C(H) = G. We prove that among the vertices in H, those vertices which are in G also have minimum eccentricity. e(u) = 2, if $u \in V(G)$. = 3, if $u \in \{a, a', b, b'\}$. = 4, if $u \in \{a'', a''', b'', b'''\}$. Hence Claim 1 is proved.

Let u_1, u_2, \ldots, u_m be the vertices in G. Consider $E_4(H)$). Let x be any vertex in $E_4(H)$.

Claim 2. $C(E_4(H)) = E_4(G)$. e(x) = 2, if $x \in \{u_i u_j / u_i \text{ is adjacent to } u_j \text{ in } G, i, j = 1, 2, \dots, m, i \neq j$. = 3, if $x \in \{aa', bb', au_i, a'u_i, bu_i, b'u_i\}, i = 1, 2, \dots, m$. = 4, if $x \in \{a'a'', aa''', b'b'', bb''', a''a''', b''b'''\}$.

Illustration: Let $G = P_3$. Then H:

3. A Bound on the Domination Number of $E_4(G)$

Theorem 4. For a connected graph G, $\gamma(G) \leq 2\gamma(E_4(G))$. Given any two integers a and b such that $a \leq 2b$, there exists a graph G such that $\gamma(G) = a$ and $\gamma(E_4(G)) = b$.

Proof. Let $\gamma(E_4(G)) = b$ and let $\{e_1 = v_1v'_1, e_2 = v_2v'_2, \ldots, e_b = v_bv'_b\}$ dominate $E_4(G)$. Consider $S = \{v_1, v'_1, v_2, v'_2, \ldots, v_b, v'_b\}$. Then $S \subseteq V(G)$. Let w be any vertex in V(G). Since G is a connected graph, w must be the end vertex of an edge w - w'. But the vertex ww' in $E_4(G)$ is dominated and hence is adjacent to at least one of the b vertices. Let e_i be adjacent to ww' in $E_4(G)$. Then in G, either e_i is incident with w - w'or e_i and w - w' are the opposite edges of some C_4 . In both the cases, w is dominated by v_i or v'_i . Thus S is a dominating set of G and hence $\gamma(G) \leq 2\gamma(E_4(G))$.

Construction

		Construction	Illustration
Case 1	$b \le a \le 2b$	Consider	a = 4; b = 3
		$P_{2b} = \{v_1, v_2, \dots, v_{2b}\}.$ Attach a pendant	
		vertex to each of	
		$v_{2i-1}, i = 1, 2, \dots, b.$	
		Then to each	
		of the v_{2i} 's, $i = 1, 2, \dots, a - b$,	
		$i = 1, 2, \dots, a = b,$ attach a	
		pendant vertex.	
Case 2	a < b	Consider $K_{1,a}$. Replace	a = 5; b = 6
		a pendant vertex of $K_{1,a}$	
		by $K_1 \vee (b - a + 1)K_2$. To all the other pendant	
		vertices of $K_{1,a}$,	
		attach a pendant vertex.	
			\sim
			0-0-0-0-0
			کم کی
			~ ~

4. Some Theorems on Graph Classes

Theorem 5 [9]. For a connected graph G, $E_4(G)$ is complete if and only if G is a complete multipartite graph.

Theorem 6. Let G be a connected graph such that $E_4(G)$ is a threshold graph. Then $\gamma(G) \leq 2$.

Proof. We know that $E_4(G)$ is a threshold graph if and only if $dilw(E_4(G)) = 1$. Also $dilw(E_4(G)) \ge \gamma(E_4(G))$. Then the theorem follows from Theorem 4.

The graph obtained from K_4 by attaching two pendant vertices to the same vertex of K_4 is denoted by H.

Theorem 7. If G is a threshold graph then $E_4(G)$ is a threshold graph if and only if G is $\{moth, H\}$ -free.

Proof. Let G be a threshold graph. If G contains a moth graph or H as an induced sub graph, then $E_4(G)$ contains a $2K_2$ and hence it cannot be threshold.

Conversely, suppose that G is a {moth, H}-free threshold graph. Since G is threshold, dilw(G) = 1 and hence $\gamma(G) = 1$. So G must have a universal vertex u.

If at most two vertices in N(u) are of degree greater than one, then $E_4(G)$ cannot contain an induced $2K_2$, C_4 or P_4 .

Now let $k, k \ge 3$ vertices in N(u) are of degree greater than one.

Claim: There exist three vertices u_1, u_2, u_3 such that the vertex u_2 is adjacent to u_1 and u_3 .

If k = 3, this claim holds true. If k > 3, let u_1, u_2, u_3 and u_4 be four vertices of degree greater than one in N(u) such that u_1 is adjacent to u_2 and u_3 is adjacent to u_4 . Since G is threshold, it can not contain an induced $2K_2$ and hence u_3 or u_4 must be adjacent to u_1 or u_2 . Let u_3 be adjacent to u_1 . Then u_2, u_1, u_3, u_4 forms an induced P_4 which is not possible since G is threshold. In this case, if u_4 is adjacent to u_2 , then G contains an induced C_4 which is again not possible. Hence the claim.

Further if u_1 and u_3 are adjacent, the vertex u can have at most one more neighbour since G is H-free. In this case also $E_4(G)$ is threshold since it is $\{2K_2, C_4, P_4\}$ -free. On the other hand if u_1 and u_3 are not adjacent, then since G is moth-free, the vertex u can have at most one more neighbour. In this case also $E_4(G)$ is threshold.

Remark. Let G be a connected graph such that $E_4(G)$ is a cograph. Then $\gamma(G) \leq 4$, which follows from Theorem 4 and the fact that the domination number of cographs is at most two.

Theorem 8. Let G be a connected graph. Then

- 1. $E_4(G)$ is a weakly geodetic graph if and only if G is $\{paw, 4-pan\}$ -free.
- 2. $E_4(G)$ is a geodetic graph if and only if G is $\{C_{2n} : n > 2\} \cup \{4-pan\} \cup \{2n-1 : n > 1\}$ -free.
- 3. $E_4(G)$ is a block graph if and only if G is $\{paw, 4\text{-}pan\} \cup \{C_n : n \ge 5\}$ -free.

Proof. 1. If G contains a paw in which $C_3 = (u_1, u_2, u_3)$ and a is a pendant vertex attached to u_1 , then in $E_4(G)$, $d(au_1, u_2u_3) = 2$, but they have two common neighbours u_1u_2 and u_1u_3 . Similarly if G contains a 4-pan in which $C_4 = (u_1, u_2, u_3, u_4)$ and a is a pendant vertex attached to u_1 , then in $E_4(G)$, $d(au_1, u_3u_4) = 2$, but they have two neighbours u_1u_2 and u_1u_4 .

Conversely, suppose that G is a {paw, 4-pan}-free graph. If G is an acyclic graph, there exists a unique shortest path joining any two vertices in $E_4(G)$. Thus $E_4(G)$ is weakly geodetic.

Next suppose that G contains cycles.

If g(G) = 3 then G contains a $C_3 = (u_1, u_2, u_3)$.

Claim. G is a cograph.

Suppose that G contains an induced $P_4 = (v_1, v_2, v_3, v_4)$. Let $u_1 \neq v_1$. Consider a shortest path $(u_1, a_1, a_2, \ldots, a_k, v_1)$ joining u_1 and v_1 . Since G is paw free a_1 must be adjacent to at least one more u_i , i = 2, 3. Proceeding like this, v_1 and then v_2 must be adjacent to at least two u_i 's. This implies that v_1 and v_2 must have a common neighbour among the u_i s. Let it be u_1 . Then (v_1, u_1, v_2) form a C_3 . Since G is paw-free, v_3 must be adjacent to at least one of v_1 and u_1 . But, since (v_1, v_2, v_3, v_4) is an induced P_4, v_3 must be adjacent to u_1 . Then (v_1, u_1, v_3) will form a C_3 in G. Again since G is paw-free, v_4 must be adjacent to u_1 . Now, consider (v_1, u_1, v_2) with the edge $u_1 - v_4$. Since G is paw-free, v_4 must be adjacent to v_1 or v_2 , which is a contradiction. But a paw-free cograph is a complete multipartite graph and hence by Theorem 5, $E_4(G)$ is complete and thus weakly geodetic.

If g(G) = 4, then G contains a $C_4 = (u_1, u_2, u_3, u_4)$. If $G = C_4$, then $E_4(G) = K_4$. If there exists a vertex v_1 in G which is adjacent to u_1 , v_1 must be adjacent to u_3 also since G is 4-pan-free. Similarly if there exists a vertex v_2 which is adjacent to u_2 , v_2 must be adjacent to u_4 . If there exists a vertex v'_1 which is adjacent to v_1 , it must be adjacent to both u_2 and u_4 . Hence G is a complete bipartite graph. Since g(G) = 4, G is paw-free. Again by Theorem 5, $E_4(G)$ is complete, and hence G is a weakly geodetic graph.

Finally, Let g(G) = k, k > 4. Let $(u_1, u_2, u_3, \ldots, u_k)$ be a C_k in G. Then $E_4(G)$ also contains a C_k . This C_k is not a part of any clique in $E_4(G)$ and hence $b(E_4(G)) \leq k$. Since G does not contain any C_4 , two vertices in $E_4(G)$ are adjacent if and only if the corresponding edges in G are adjacent. Thus $E_4(G)$ cannot contain a b-cycle of length less than k and so $b(E_4(G)) = k$ where k > 4. We know that a graph G is weakly geodetic if and only if $b(G) \geq 5$. Thus $E_4(G)$ is a weakly geodetic graph.

2. Let $E_4(G)$ be a geodetic graph. If G contains a 4-pan, there exists more than one shortest path joining two vertices in $E_4(G)$ as proved earlier. If G contains a $C_{2n} = (u_1, u_2, \ldots, u_{2n})$, then u_1u_2 and $u_{n+1}u_{n+2}$ in $E_4(G)$ are connected by more than one shortest path and hence $E_4(G)$ is not geodetic. If G contains a (2n-1)-pan in which $C_{2n-1} = (u_1, u_2, \ldots, u_{2n-1})$ and a is a pendant vertex attached to u_1 , then au_1 and u_nu_{n+1} in $E_4(G)$ are connected by more than one shortest path and hence $E_4(G)$ is not geodetic.

Conversely, assume that G is $\{4\text{-pan}, C_{2n}, (2n-1)\text{-pan}\}\$ -free. If G is an acyclic graph there exists a unique shortest path joining any two vertices in $E_4(G)$ and hence is geodetic. So consider the graphs G containing cycles.

Let g(G) = 3. Since G is paw-free, $E_4(G)$ is complete and hence is geodetic. If g(G) = 4, $E_4(G)$ is complete since G is 4-pan-free and thus geodetic. If g(G) = 2n - 1, n > 2, then G contains a $C_{2n-1} = (u_1, u_2, \ldots, u_{2n-1})$. If $G = C_{2n-1}$, then $E_4(G) = C_{2n-1}$ and hence geodetic. If a is a vertex attached to u_1 , since G is (2n - 1)-pan-free, a must be adjacent to at least one more u_i . But this is impossible since g(G) = 2n - 1. Since G is C_{2n} -free, $g(G) \neq 2n, n > 2$. Hence in all the cases, it follows that $E_4(G)$ is geodetic.

3. Let $E_4(G)$ be a block graph. If G contains a paw in which $C_3 = u_1, u_2, u_3$ and a is the pendant vertex adjacent to u_1 , then $E_4(G)$ contains a $C_4 = (au_1, u_1u_2, u_2u_3, u_3u_1)$ which is not a part of any clique. Thus $b(E_4(G)) \leq 4$. Similarly if G contains a 4-pan, in which $C_4 =$ (u_1, u_2, u_3, u_4) and a is a pendant vertex adjacent to u_1 , then $E_4(G)$ contains a $C_4 = (au_1, u_1u_2, u_3u_4, u_4u_1)$ which is not a part of any clique and hence $b(E_4(G)) \leq 4$. If G contains a C_n , n > 4, then $E_4(G)$ also contains a C_n , n > 4. This C_n forms a b-cycle and hence $b(E_4(G)) \leq n$ and hence $E_4(G)$ is not a block graph.

Conversely, suppose that G is $\{paw, 4-pan\} \cup \{C_n : n > 4\}$ -free. If G is an acyclic graph, then $E_4(G)$ cannot contain a b-cycle and hence is a block graph. Now, consider the graphs G containing cycles. Since G is $\{C_n : n \ge 5\}$ -free, g(G) = 3 or 4. But since G is $\{paw, 4-pan\}$ -free, $E_4(G)$ is complete as proved earlier and thus is a block graph.

Acknowledgement

The authors thank the referees for their suggestions for the improvement of this paper.

References

- [1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes (SIAM, 1999).
- [2] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1997) 145–162.
- [3] D.G. Corneil, Y. Perl and I.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926–934.
- [4] S. Foldes and P.L. Hammer, The Dilworth number of a graph, Ann. Discrete Math. 2 (1978) 211–219.
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988).
- [6] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory (B) 27 (1979) 67–74.
- [7] D.C. Kay and G. Chartrand, A characterization of certain Ptolemic graphs, Canad. J. Math. 17 (1965) 342–346.
- [8] M. Knor, L. Niepel and L. Soltes, *Centers in line graphs*, Math. Slovaca 43 (1993) 11–20.
- [9] M.K. Menon and A. Vijayakumar, The edge C₄ graph of a graph, in: Proc. International Conference on Discrete Math. Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008) 245–248.
- [10] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 38, (Providence R.I, 1962).

- [11] E. Prisner, Graph Dynamics (Longman, 1995).
- [12] S.B. Rao, A. Lakshmanan and A. Vijayakumar, *Cographic and global cographic domination number of a graph*, Ars Combin. (to appear).
- [13] D.B. West, Introduction to Graph Theory (Prentice Hall of India, 2003).

Received 5 September 2008 Revised 26 March 2009 Accepted 16 July 2009