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Abstract

The edge C4 graph of a graph G, E4(G) is a graph whose vertices
are the edges of G and two vertices in E4(G) are adjacent if the corre-
sponding edges in G are either incident or are opposite edges of some
C4. In this paper, we show that there exist infinitely many pairs of non
isomorphic graphs whose edge C4 graphs are isomorphic. We study the
relationship between the diameter, radius and domination number of
G and those of E4(G). It is shown that for any graph G without iso-
lated vertices, there exists a super graph H such that C(H) = G and
C(E4(H)) = E4(G). Also we give forbidden subgraph characteriza-
tions for E4(G) being a threshold graph, block graph, geodetic graph
and weakly geodetic graph.
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1. Introduction

We consider the graph operator E4(G), whose vertices are the edges of G and
two vertices in E4(G) are adjacent if the corresponding edges in G are either
incident or are opposite edges of some C4. This graph class is also known
by the name edge graph in [11]. In E4(G) any two vertices are adjacent
if the union of the corresponding edges in G induce any one of the graphs
P3, C3, C4, K4 − {e}, K4. If a1 − a2 is an edge in G, the corresponding
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vertex in E4(G) is denoted by a1a2. In [9], we obtained characterizations
for E4(G) being connected, complete, bipartite etc and also some dynamical
behaviour of E4(G) are studied. It was also proved that E4(G) has no
forbidden subgraphs.

For a vertex v ∈ V (G), N(v) denotes the set of all vertices in G which
are adjacent to v and N [v] = N(v) ∪ {v}. A vertex x dominates a vertex
y if N(y) ⊆ N [x]. If x dominates y or y dominates x, then x and y are
comparable. Otherwise, they are incomparable. The Dilworth number of a
graph G, dilw(G) is the largest number of pairwise incomparable vertices of
G. A vertex v is a universal vertex if it is adjacent to all the other vertices
in G. A subset S of V is a dominating set if each vertex of G that is not
in S is adjacent to at least one vertex of S. If S is a dominating set then
N [S] = V . A dominating set of minimum cardinality is called a minimum

dominating set, its cardinality is called the domination number of G and it
is denoted by γ(G). Many types of domination and its characteristics are
discussed in [5]. In [4], it is observed that for graphs G without isolated
vertices, γ(G) ≤ dilw(G).

All the graphs considered here are finite, undirected and simple. We
denote by Pn (respectively Cn), a path (respectively cycle) on n vertices.
The graph obtained by deleting any edge ‘e’ of Kn is denoted by Kn − {e}.
The join of two graphs G = (V1, E1) and H = (V2, E2) is denoted by G∨H
and has V (G∨H) = V1 ∪V2 and E(G∨H) = E1 ∪E2 ∪{(u, v) : u ∈ V1 and
v ∈ V2}. A ‘bow’ is K1 ∨ 2K2. The graph obtained by attaching a pendant
vertex to any vertex of Cn, is called an ‘n-pan’ and a ‘paw’ is a 3-pan. The
graph in Figure 1 is called a ‘moth’.
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Figure 1

A graph G is H-free if G does not contain H as an induced subgraph. A
graph H is a forbidden subgraph for a property P , if any graph G which
satisfies the property P cannot have H as an induced subgraph. The distance

between any two vertices u and v of a connected graph G, dG(u, v) is the
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length of a shortest path joining them. The eccentricity of a vertex v ∈ V (G)
is e(v) = max{d(u, v) : u ∈ V (G)}. The radius and diameter of G are
respectively rad(G) = min{e(v) : v ∈ V (G)}, diam(G) = max{e(v) : v ∈
V (G)}. A vertex v is called a central vertex of G if e(v) = rad(G). The
center, C(G) of a connected graph G is the subgraph of G induced by its
central vertices. The girth of G, g(G) is the length of a shortest cycle in
G. A clique in G is a complete subgraph of G. For all basic concepts and
notations not mentioned in this paper we refer [13].

The line graph L(G) of a graph G is a graph that has a vertex for
every edge of G, and two vertices of L(G) are adjacent if and only if they
correspond to two edges of G with a common end vertex. In [8], it is shown
that for any graph G without isolated vertices, there is a graph H such that
C(H) = G and C(L(H)) = L(G). It is further proved that diam(L(G)) ≤
diam(G) + 1 and rad(L(G)) ≤ rad(G) + 1.

In [1], several graph classes and their forbidden subgraph characteriza-
tions for many properties are discussed in detail. We consider the graph
classes — threshold graphs, cographs, block graphs, geodetic graphs and
weakly geodetic graphs with regard to E4(G).

Threshold graphs were introduced by Chvátal and Hammer in [2]. It is
known that a graph G is a threshold graph if and only if dilw(G) = 1 and
that G is {2K2, C4, P4}-free graph [2, 5].

In [7], it is proved that a connected graph G is a block graph if and only
if every maximal 2-connected subgraph (block) is complete. A cycle C of
G is a b-cycle of G if C is not contained in a clique of G. The bulge of G,
b(G) is the minimum length of a b-cycle in G if G contains a b-cycle and is
∞ otherwise. Also, G is a block graph if and only if b(G) = ∞ [6, 7].

A graph G is a geodetic graph [10] if any two vertices of G are joined by
a unique shortest path and G is weakly geodetic if for every pair of vertices of
distance two, there is a unique common neighbour [7]. A graph G is weakly
geodetic if and only if b(G) ≥ 5 [6, 7]. It is known that block graphs ⊆
geodetic graphs ⊆ weakly geodetic graphs [1].

P4-free graphs are called cographs [3]. The domination number of
cographs is at most two [12].

It is well known that K1,3 and K3 are the only non isomorphic graphs
with isomorphic line graphs. Even though L(G) ⊆ E4(G), it is proved in this
paper that there exist infinitely many pairs of non isomorphic graphs with
isomorphic edge C4 graphs. We study relations between γ(G) and γ(E4(G)),
diam(G) and diam(E4(G)), and rad(G) and rad(E4(G)). We prove that for
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any graph G without isolated vertices, it is possible to construct a super
graph H such that C(H) = G and C(E4(H)) = E4(G). We also obtain
forbidden subgraph characterizations for E4(G) being threshold graph, block
graph, geodetic graph and weakly geodetic graph.

2. Some Properties of E4(G)

Theorem 1. There exist infinitely many pairs of non isomorphic graphs

whose edge C4 graphs are isomorphic.

Proof. Let G = K1,n. If n = 2k − 1, then take H = K2 ∨ (k − 1)K1 and
if n = 2k, then take H = 2K1 ∨ kK1. Clearly G and H are non isomorphic
graphs. But E4(G) = E4(H) = Kn.

Theorem 2. For a connected graph G, diam(G) − 1 ≤ diam(E4(G)) ≤
diam(G) + 1 and rad(G) − 1 ≤ rad(E4(G)) ≤ rad(G) + 1.

Proof. By the definition of E4(G) and L(G), diam(E4(G)) ≤ diam(L(G))
and rad(E4(G)) ≤ rad(L(G)). But, diam(L(G)) ≤ diam(G) + 1 and
rad(L(G)) ≤ rad(G)+1. Thus diam(E4(G)) ≤ diam(G)+1 and rad(E4(G))
≤ rad(G) + 1.

Next let diam(G) = k. We want to prove that diam(E4(G)) ≥ k − 1.
On the contrary, assume that diam(E4(G)) < k−1. Let u and v be any two
vertices in G and let u − u′, v − v′ be any two edges incident with u and v
respectively. But dE4(G)(uu′, vv′) < k − 1. So dG(u, v) ≤ dE4(G)(uu′, vv′) +
1 < k, which is a contradiction to the fact that diam(G) = k.

Finally, let rad(G) = k. It is required to prove that rad(E4(G) ≥ k − 1.
On the contrary, suppose that rad(E4(G)) < k − 1. Then there exists
a vertex uu′ in E4(G) such that e(uu′) < k − 1. Consider the vertex u
in G. Let v be any vertex in G and vv′ be any edge incident with v.
Then dG(u, v) ≤ dE4(G)(uu′, vv′) + 1 < k, and hence e(u) < k, which is
a contradiction to the fact that rad(G) = k.

Note 1. The bounds in Theorem 2 are strict.

If G is a bow, then diam(G) = 2, diam(E4(G)) = 3, rad(G) = 1 and
rad(E4(G)) = 2.

If G is C4, then diam(G) = 2, diam(E4(G)) = 1, rad(G) = 2 and
rad(E4(G)) = 1.
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Theorem 3. For any graph G without isolated vertices, there exists a super

graph H such that C(H) = G and C(E4(H)) = E4(G).

Proof. Consider G∨2K2. Let the K2’s be a−a′ and b−b′. Attach a′′−a′′′

to a − a′ such that a is adjacent to a′′′ and a′ is adjacent to a′′. Similarly
attach b′′ − b′′′ to b − b′ such that b is adjacent to b′′′ and b′ is adjacent to
b′′. The graph so obtained is H.

Claim 1. C(H) = G.

We prove that among the vertices in H, those vertices which are in G also
have minimum eccentricity.

e(u) = 2, if u ∈ V (G).
= 3, if u ∈ {a, a′, b, b′}.
= 4, if u ∈ {a′′, a′′′, b′′, b′′′}.
Hence Claim 1 is proved. �

Let u1, u2, . . . , um be the vertices in G. Consider E4(H)). Let x be any
vertex in E4(H).

Claim 2. C(E4(H)) = E4(G).
e(x) = 2, if x ∈ {uiuj/ui is adjacent to uj in G, i, j = 1, 2, . . . ,m, i 6= j.
= 3, if x ∈ {aa′, bb′, aui, a

′ui, bui, b
′ui}, i = 1, 2, . . . ,m.

= 4, if x ∈ {a′a′′, aa′′′, b′b′′, bb′′′, a′′a′′′, b′′b′′′}. �

Illustration: Let G = P3. Then H:

3. A Bound on the Domination Number of E4(G)

Theorem 4. For a connected graph G, γ(G) ≤ 2γ(E4(G)). Given any two

integers a and b such that a ≤ 2b, there exists a graph G such that γ(G) = a
and γ(E4(G)) = b.
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Proof. Let γ(E4(G)) = b and let {e1 = v1v
′

1, e2 = v2v
′

2, . . . , eb = vbv
′

b}
dominate E4(G). Consider S = {v1, v

′

1, v2, v
′

2, . . . , vb, v
′

b}. Then S ⊆ V (G).
Let w be any vertex in V (G). Since G is a connected graph, w must be
the end vertex of an edge w − w′. But the vertex ww′ in E4(G) is dom-
inated and hence is adjacent to at least one of the b vertices. Let ei be
adjacent to ww′ in E4(G). Then in G, either ei is incident with w − w′

or ei and w − w′ are the opposite edges of some C4. In both the cases,
w is dominated by vi or v′i. Thus S is a dominating set of G and hence
γ(G) ≤ 2γ(E4(G)).

Construction

Construction Illustration
Case 1 b ≤ a ≤ 2b Consider a = 4; b = 3

P2b = {v1, v2, . . . , v2b}.
Attach a pendant
vertex to each of

v2i−1, i = 1, 2, . . . , b.
Then to each
of the v2i’s,

i = 1, 2, . . . , a − b,
attach a

pendant vertex.

Case 2 a < b Consider K1,a. Replace a = 5; b = 6
a pendant vertex of K1,a

by K1 ∨ (b − a + 1)K2.
To all the other pendant

vertices of K1,a,
attach a pendant vertex.
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4. Some Theorems on Graph Classes

Theorem 5 [9]. For a connected graph G, E4(G) is complete if and only if

G is a complete multipartite graph.

Theorem 6. Let G be a connected graph such that E4(G) is a threshold

graph. Then γ(G) ≤ 2.

Proof. We know that E4(G) is a threshold graph if and only if dilw(E4(G))
= 1. Also dilw(E4(G)) ≥ γ(E4(G)). Then the theorem follows from Theo-
rem 4.

The graph obtained from K4 by attaching two pendant vertices to the same
vertex of K4 is denoted by H.

Theorem 7. If G is a threshold graph then E4(G) is a threshold graph if

and only if G is {moth, H}-free.

Proof. Let G be a threshold graph. If G contains a moth graph or H as
an induced sub graph, then E4(G) contains a 2K2 and hence it cannot be
threshold.

Conversely, suppose that G is a {moth, H}-free threshold graph. Since
G is threshold, dilw(G) = 1 and hence γ(G) = 1. So G must have a universal
vertex u.

If at most two vertices in N(u) are of degree greater than one, then
E4(G) cannot contain an induced 2K2, C4 or P4.

Now let k, k ≥ 3 vertices in N(u) are of degree greater than one.

Claim: There exist three vertices u1, u2, u3 such that the vertex u2 is adja-
cent to u1 and u3.

If k = 3, this claim holds true. If k > 3, let u1, u2, u3 and u4 be four
vertices of degree greater than one in N(u) such that u1 is adjacent to u2

and u3 is adjacent to u4. Since G is threshold, it can not contain an induced
2K2 and hence u3 or u4 must be adjacent to u1 or u2. Let u3 be adjacent to
u1. Then u2, u1, u3, u4 forms an induced P4 which is not possible since G is
threshold. In this case, if u4 is adjacent to u2, then G contains an induced
C4 which is again not possible. Hence the claim.

Further if u1 and u3 are adjacent, the vertex u can have at most one
more neighbour since G is H-free. In this case also E4(G) is threshold since
it is {2K2, C4, P4}-free. On the other hand if u1 and u3 are not adjacent,
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then since G is moth-free, the vertex u can have at most one more neighbour.
In this case also E4(G) is threshold.

Remark. Let G be a connected graph such that E4(G) is a cograph. Then
γ(G) ≤ 4, which follows from Theorem 4 and the fact that the domination
number of cographs is at most two.

Theorem 8. Let G be a connected graph. Then

1. E4(G) is a weakly geodetic graph if and only if G is {paw, 4-pan}-free.

2. E4(G) is a geodetic graph if and only if G is {C2n : n > 2} ∪ {4-
pan} ∪ {2n − 1 : n > 1}-free.

3. E4(G) is a block graph if and only if G is {paw, 4-pan} ∪ {Cn : n ≥ 5}-
free.

Proof. 1. If G contains a paw in which C3 = (u1, u2, u3) and a is a
pendant vertex attached to u1, then in E4(G), d(au1, u2u3) = 2, but they
have two common neighbours u1u2 and u1u3. Similarly if G contains a 4-pan
in which C4 = (u1, u2, u3, u4) and a is a pendant vertex attached to u1, then
in E4(G), d(au1, u3u4) = 2, but they have two neighbours u1u2 and u1u4.

Conversely, suppose that G is a {paw, 4-pan}-free graph. If G is an
acyclic graph, there exists a unique shortest path joining any two vertices
in E4(G). Thus E4(G) is weakly geodetic.

Next suppose that G contains cycles.

If g(G) = 3 then G contains a C3 = (u1, u2, u3).

Claim. G is a cograph.

Suppose that G contains an induced P4 = (v1, v2, v3, v4). Let u1 6= v1.
Consider a shortest path (u1, a1, a2, . . . , ak, v1) joining u1 and v1. Since G is
paw free a1 must be adjacent to at least one more ui, i = 2, 3. Proceeding
like this, v1 and then v2 must be adjacent to at least two ui’s. This implies
that v1 and v2 must have a common neighbour among the uis. Let it be
u1. Then (v1, u1, v2) form a C3. Since G is paw-free, v3 must be adjacent
to at least one of v1 and u1. But, since (v1, v2, v3, v4) is an induced P4, v3

must be adjacent to u1. Then (v1, u1, v3) will form a C3 in G. Again since
G is paw-free, v4 must be adjacent to u1. Now, consider (v1, u1, v2) with the
edge u1 − v4. Since G is paw-free, v4 must be adjacent to v1 or v2, which is
a contradiction.
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But a paw-free cograph is a complete multipartite graph and hence by The-
orem 5, E4(G) is complete and thus weakly geodetic.

If g(G) = 4, then G contains a C4 = (u1, u2, u3, u4). If G = C4, then
E4(G) = K4. If there exists a vertex v1 in G which is adjacent to u1, v1

must be adjacent to u3 also since G is 4-pan-free. Similarly if there exists a
vertex v2 which is adjacent to u2, v2 must be adjacent to u4. If there exists
a vertex v′1 which is adjacent to v1, it must be adjacent to both u2 and
u4. Hence G is a complete bipartite graph. Since g(G) = 4, G is paw-free.
Again by Theorem 5, E4(G) is complete, and hence G is a weakly geodetic
graph.

Finally, Let g(G) = k, k > 4. Let (u1, u2, u3, . . . , uk) be a Ck in G. Then
E4(G) also contains a Ck. This Ck is not a part of any clique in E4(G) and
hence b(E4(G)) ≤ k. Since G does not contain any C4, two vertices in E4(G)
are adjacent if and only if the corresponding edges in G are adjacent. Thus
E4(G) cannot contain a b-cycle of length less than k and so b(E4(G)) = k
where k > 4. We know that a graph G is weakly geodetic if and only if
b(G) ≥ 5. Thus E4(G) is a weakly geodetic graph.

2. Let E4(G) be a geodetic graph. If G contains a 4-pan, there exists
more than one shortest path joining two vertices in E4(G) as proved earlier.
If G contains a C2n = (u1, u2, . . . , u2n), then u1u2 and un+1un+2 in E4(G) are
connected by more than one shortest path and hence E4(G) is not geodetic.
If G contains a (2n− 1)-pan in which C2n−1 = (u1, u2, . . . , u2n−1) and a is a
pendant vertex attached to u1, then au1 and unun+1 in E4(G) are connected
by more than one shortest path and hence E4(G) is not geodetic.

Conversely, assume that G is {4-pan, C2n, (2n−1)-pan}-free. If G is an
acyclic graph there exists a unique shortest path joining any two vertices in
E4(G) and hence is geodetic. So consider the graphs G containing cycles.

Let g(G) = 3. Since G is paw-free, E4(G) is complete and hence is geode-
tic. If g(G) = 4, E4(G) is complete since G is 4-pan-free and thus geodetic.
If g(G) = 2n − 1, n > 2, then G contains a C2n−1 = (u1, u2, . . . , u2n−1).
If G = C2n−1, then E4(G) = C2n−1 and hence geodetic. If a is a vertex
attached to u1, since G is (2n − 1)-pan-free, a must be adjacent to at least
one more ui. But this is impossible since g(G) = 2n−1. Since G is C2n-free,
g(G) 6= 2n, n > 2. Hence in all the cases, it follows that E4(G) is geodetic.

3. Let E4(G) be a block graph. If G contains a paw in which C3 =
u1, u2, u3 and a is the pendant vertex adjacent to u1, then E4(G) con-
tains a C4 = (au1, u1u2, u2u3, u3u1) which is not a part of any clique.
Thus b(E4(G)) ≤ 4. Similarly if G contains a 4-pan, in which C4 =
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(u1, u2, u3, u4} and a is a pendant vertex adjacent to u1, then E4(G) con-
tains a C4 = (au1, u1u2, u3u4, u4u1) which is not a part of any clique and
hence b(E4(G)) ≤ 4. If G contains a Cn, n > 4, then E4(G) also contains
a Cn, n > 4. This Cn forms a b-cycle and hence b(E4(G)) ≤ n and hence
E4(G) is not a block graph.

Conversely, suppose that G is {paw, 4-pan} ∪ {Cn : n > 4}-free. If
G is an acyclic graph, then E4(G) cannot contain a b-cycle and hence is
a block graph. Now, consider the graphs G containing cycles. Since G is
{Cn : n ≥ 5}-free, g(G) = 3 or 4. But since G is {paw, 4-pan}-free, E4(G)
is complete as proved earlier and thus is a block graph.
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