THE EDGE C_{4} GRAPH OF SOME GRAPH CLASSES

Manju K. Menon and A. Vijayakumar
Department of Mathematics
Cochin University of Science and Technology
Cochin-682022, India
e-mail: manjumenonk@gmail.com
e-mail: vijay@cusat.ac.in

Abstract

The edge C_{4} graph of a graph $G, E_{4}(G)$ is a graph whose vertices are the edges of G and two vertices in $E_{4}(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_{4}. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C_{4} graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of $E_{4}(G)$. It is shown that for any graph G without isolated vertices, there exists a super graph H such that $C(H)=G$ and $C\left(E_{4}(H)\right)=E_{4}(G)$. Also we give forbidden subgraph characterizations for $E_{4}(G)$ being a threshold graph, block graph, geodetic graph and weakly geodetic graph.

Keywords: edge C_{4} graph, threshold graph, block graph, geodetic graph, weakly geodetic graph.
2010 Mathematics Subject Classification: 05C99.

1. Introduction

We consider the graph operator $E_{4}(G)$, whose vertices are the edges of G and two vertices in $E_{4}(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_{4}. This graph class is also known by the name edge graph in [11]. In $E_{4}(G)$ any two vertices are adjacent if the union of the corresponding edges in G induce any one of the graphs $P_{3}, C_{3}, C_{4}, K_{4}-\{e\}, K_{4}$. If $a_{1}-a_{2}$ is an edge in G, the corresponding
vertex in $E_{4}(G)$ is denoted by $a_{1} a_{2}$. In [9], we obtained characterizations for $E_{4}(G)$ being connected, complete, bipartite etc and also some dynamical behaviour of $E_{4}(G)$ are studied. It was also proved that $E_{4}(G)$ has no forbidden subgraphs.

For a vertex $v \in V(G), N(v)$ denotes the set of all vertices in G which are adjacent to v and $N[v]=N(v) \cup\{v\}$. A vertex x dominates a vertex y if $N(y) \subseteq N[x]$. If x dominates y or y dominates x, then x and y are comparable. Otherwise, they are incomparable. The Dilworth number of a graph $G, \operatorname{dilw}(G)$ is the largest number of pairwise incomparable vertices of G. A vertex v is a universal vertex if it is adjacent to all the other vertices in G. A subset S of V is a dominating set if each vertex of G that is not in S is adjacent to at least one vertex of S. If S is a dominating set then $N[S]=V$. A dominating set of minimum cardinality is called a minimum dominating set, its cardinality is called the domination number of G and it is denoted by $\gamma(G)$. Many types of domination and its characteristics are discussed in [5]. In [4], it is observed that for graphs G without isolated vertices, $\gamma(G) \leq \operatorname{dilw}(G)$.

All the graphs considered here are finite, undirected and simple. We denote by P_{n} (respectively C_{n}), a path (respectively cycle) on n vertices. The graph obtained by deleting any edge ' e ' of K_{n} is denoted by $K_{n}-\{e\}$. The join of two graphs $G=\left(V_{1}, E_{1}\right)$ and $H=\left(V_{2}, E_{2}\right)$ is denoted by $G \vee H$ and has $V(G \vee H)=V_{1} \cup V_{2}$ and $E(G \vee H)=E_{1} \cup E_{2} \cup\left\{(u, v): u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$. A 'bow' is $K_{1} \vee 2 K_{2}$. The graph obtained by attaching a pendant vertex to any vertex of C_{n}, is called an ' n-pan' and a 'paw' is a 3 -pan. The graph in Figure 1 is called a 'moth'.

Figure 1
A graph G is H-free if G does not contain H as an induced subgraph. A graph H is a forbidden subgraph for a property P, if any graph G which satisfies the property P cannot have H as an induced subgraph. The distance between any two vertices u and v of a connected graph $G, d_{G}(u, v)$ is the
length of a shortest path joining them. The eccentricity of a vertex $v \in V(G)$ is $e(v)=\max \{d(u, v): u \in V(G)\}$. The radius and diameter of G are respectively $\operatorname{rad}(G)=\min \{e(v): v \in V(G)\}, \operatorname{diam}(G)=\max \{e(v): v \in$ $V(G)\}$. A vertex v is called a central vertex of G if $e(v)=\operatorname{rad}(G)$. The center, $C(G)$ of a connected graph G is the subgraph of G induced by its central vertices. The girth of $G, g(G)$ is the length of a shortest cycle in G. A clique in G is a complete subgraph of G. For all basic concepts and notations not mentioned in this paper we refer [13].

The line graph $L(G)$ of a graph G is a graph that has a vertex for every edge of G, and two vertices of $L(G)$ are adjacent if and only if they correspond to two edges of G with a common end vertex. In [8], it is shown that for any graph G without isolated vertices, there is a graph H such that $C(H)=G$ and $C(L(H))=L(G)$. It is further proved that $\operatorname{diam}(L(G)) \leq$ $\operatorname{diam}(G)+1$ and $\operatorname{rad}(L(G)) \leq \operatorname{rad}(G)+1$.

In [1], several graph classes and their forbidden subgraph characterizations for many properties are discussed in detail. We consider the graph classes - threshold graphs, cographs, block graphs, geodetic graphs and weakly geodetic graphs with regard to $E_{4}(G)$.

Threshold graphs were introduced by Chvátal and Hammer in [2]. It is known that a graph G is a threshold graph if and only if $\operatorname{dilw}(G)=1$ and that G is $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free graph $[2,5]$.

In [7], it is proved that a connected graph G is a block graph if and only if every maximal 2 -connected subgraph (block) is complete. A cycle C of G is a b-cycle of G if C is not contained in a clique of G. The bulge of G, $b(G)$ is the minimum length of a b-cycle in G if G contains a b-cycle and is ∞ otherwise. Also, G is a block graph if and only if $b(G)=\infty[6,7]$.

A graph G is a geodetic graph [10] if any two vertices of G are joined by a unique shortest path and G is weakly geodetic if for every pair of vertices of distance two, there is a unique common neighbour [7]. A graph G is weakly geodetic if and only if $b(G) \geq 5[6,7]$. It is known that block graphs \subseteq geodetic graphs \subseteq weakly geodetic graphs [1].
P_{4}-free graphs are called cographs [3]. The domination number of cographs is at most two [12].

It is well known that $K_{1,3}$ and K_{3} are the only non isomorphic graphs with isomorphic line graphs. Even though $L(G) \subseteq E_{4}(G)$, it is proved in this paper that there exist infinitely many pairs of non isomorphic graphs with isomorphic edge C_{4} graphs. We study relations between $\gamma(G)$ and $\gamma\left(E_{4}(G)\right.$), $\operatorname{diam}(G)$ and $\operatorname{diam}\left(E_{4}(G)\right)$, and $\operatorname{rad}(G)$ and $\operatorname{rad}\left(E_{4}(G)\right)$. We prove that for
any graph G without isolated vertices, it is possible to construct a super graph H such that $C(H)=G$ and $C\left(E_{4}(H)\right)=E_{4}(G)$. We also obtain forbidden subgraph characterizations for $E_{4}(G)$ being threshold graph, block graph, geodetic graph and weakly geodetic graph.

2. Some Properties of $E_{4}(G)$

Theorem 1. There exist infinitely many pairs of non isomorphic graphs whose edge C_{4} graphs are isomorphic.

Proof. Let $G=K_{1, n}$. If $n=2 k-1$, then take $H=K_{2} \vee(k-1) K_{1}$ and if $n=2 k$, then take $H=2 K_{1} \vee k K_{1}$. Clearly G and H are non isomorphic graphs. But $E_{4}(G)=E_{4}(H)=K_{n}$.

Theorem 2. For a connected graph G, $\operatorname{diam}(G)-1 \leq \operatorname{diam}\left(E_{4}(G)\right) \leq$ $\operatorname{diam}(G)+1$ and $\operatorname{rad}(G)-1 \leq \operatorname{rad}\left(E_{4}(G)\right) \leq \operatorname{rad}(G)+1$.

Proof. By the definition of $E_{4}(G)$ and $L(G), \operatorname{diam}\left(E_{4}(G)\right) \leq \operatorname{diam}(L(G))$ and $\operatorname{rad}\left(E_{4}(G)\right) \leq \operatorname{rad}(L(G))$. But, $\operatorname{diam}(L(G)) \leq \operatorname{diam}(G)+1$ and $\operatorname{rad}(L(G)) \leq \operatorname{rad}(G)+1$. Thus $\operatorname{diam}\left(E_{4}(G)\right) \leq \operatorname{diam}(G)+1$ and $\operatorname{rad}\left(E_{4}(G)\right)$ $\leq \operatorname{rad}(G)+1$.

Next let $\operatorname{diam}(G)=k$. We want to prove that $\operatorname{diam}\left(E_{4}(G)\right) \geq k-1$. On the contrary, assume that $\operatorname{diam}\left(E_{4}(G)\right)<k-1$. Let u and v be any two vertices in G and let $u-u^{\prime}, v-v^{\prime}$ be any two edges incident with u and v respectively. But $d_{E_{4}(G)}\left(u u^{\prime}, v v^{\prime}\right)<k-1$. So $d_{G}(u, v) \leq d_{E_{4}(G)}\left(u u^{\prime}, v v^{\prime}\right)+$ $1<k$, which is a contradiction to the fact that $\operatorname{diam}(G)=k$.

Finally, let $\operatorname{rad}(G)=k$. It is required to prove that $\operatorname{rad}\left(E_{4}(G) \geq k-1\right.$. On the contrary, suppose that $\operatorname{rad}\left(E_{4}(G)\right)<k-1$. Then there exists a vertex $u u^{\prime}$ in $E_{4}(G)$ such that $e\left(u u^{\prime}\right)<k-1$. Consider the vertex u in G. Let v be any vertex in G and $v v^{\prime}$ be any edge incident with v. Then $d_{G}(u, v) \leq d_{E_{4}(G)}\left(u u^{\prime}, v v^{\prime}\right)+1<k$, and hence $e(u)<k$, which is a contradiction to the fact that $\operatorname{rad}(G)=k$.

Note 1. The bounds in Theorem 2 are strict.
If G is a bow, then $\operatorname{diam}(G)=2, \operatorname{diam}\left(E_{4}(G)\right)=3, \operatorname{rad}(G)=1$ and $\operatorname{rad}\left(E_{4}(G)\right)=2$.
If G is C_{4}, then $\operatorname{diam}(G)=2, \operatorname{diam}\left(E_{4}(G)\right)=1, \operatorname{rad}(G)=2$ and $\operatorname{rad}\left(E_{4}(G)\right)=1$.

Theorem 3. For any graph G without isolated vertices, there exists a super graph H such that $C(H)=G$ and $C\left(E_{4}(H)\right)=E_{4}(G)$.

Proof. Consider $G \vee 2 K_{2}$. Let the K_{2} 's be $a-a^{\prime}$ and $b-b^{\prime}$. Attach $a^{\prime \prime}-a^{\prime \prime \prime}$ to $a-a^{\prime}$ such that a is adjacent to $a^{\prime \prime \prime}$ and a^{\prime} is adjacent to $a^{\prime \prime}$. Similarly attach $b^{\prime \prime}-b^{\prime \prime \prime}$ to $b-b^{\prime}$ such that b is adjacent to $b^{\prime \prime \prime}$ and b^{\prime} is adjacent to $b^{\prime \prime}$. The graph so obtained is H.

Claim 1. $C(H)=G$.
We prove that among the vertices in H, those vertices which are in G also have minimum eccentricity.
$e(u)=2$, if $u \in V(G)$.
$=3$, if $u \in\left\{a, a^{\prime}, b, b^{\prime}\right\}$.
$=4$, if $u \in\left\{a^{\prime \prime}, a^{\prime \prime \prime}, b^{\prime \prime}, b^{\prime \prime \prime}\right\}$.
Hence Claim 1 is proved.
Let $u_{1}, u_{2}, \ldots, u_{m}$ be the vertices in G. Consider $\left.E_{4}(H)\right)$. Let x be any vertex in $E_{4}(H)$.

Claim 2. $C\left(E_{4}(H)\right)=E_{4}(G)$.
$e(x)=2$, if $x \in\left\{u_{i} u_{j} / u_{i}\right.$ is adjacent to u_{j} in $G, i, j=1,2, \ldots, m, i \neq j$.
$=3$, if $x \in\left\{a a^{\prime}, b b^{\prime}, a u_{i}, a^{\prime} u_{i}, b u_{i}, b^{\prime} u_{i}\right\}, i=1,2, \ldots, m$.
$=4$, if $x \in\left\{a^{\prime} a^{\prime \prime}, a a^{\prime \prime \prime}, b^{\prime} b^{\prime \prime}, b b^{\prime \prime \prime}, a^{\prime \prime} a^{\prime \prime \prime}, b^{\prime \prime} b^{\prime \prime \prime}\right\}$.
Illustration: Let $G=P_{3}$. Then H :

3. A Bound on the Domination Number of $E_{4}(G)$

Theorem 4. For a connected graph $G, \gamma(G) \leq 2 \gamma\left(E_{4}(G)\right)$. Given any two integers a and b such that $a \leq 2 b$, there exists a graph G such that $\gamma(G)=a$ and $\gamma\left(E_{4}(G)\right)=b$.

Proof. Let $\gamma\left(E_{4}(G)\right)=b$ and let $\left\{e_{1}=v_{1} v_{1}^{\prime}, e_{2}=v_{2} v_{2}^{\prime}, \ldots, e_{b}=v_{b} v_{b}^{\prime}\right\}$ dominate $E_{4}(G)$. Consider $S=\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}, \ldots, v_{b}, v_{b}^{\prime}\right\}$. Then $S \subseteq V(G)$. Let w be any vertex in $V(G)$. Since G is a connected graph, w must be the end vertex of an edge $w-w^{\prime}$. But the vertex $w w^{\prime}$ in $E_{4}(G)$ is dominated and hence is adjacent to at least one of the b vertices. Let e_{i} be adjacent to $w w^{\prime}$ in $E_{4}(G)$. Then in G, either e_{i} is incident with $w-w^{\prime}$ or e_{i} and $w-w^{\prime}$ are the opposite edges of some C_{4}. In both the cases, w is dominated by v_{i} or v_{i}^{\prime}. Thus S is a dominating set of G and hence $\gamma(G) \leq 2 \gamma\left(E_{4}(G)\right)$.

Construction

		Construction	Illustration
Case 1	$b \leq a \leq 2 b$	Consider $P_{2 b}=\left\{v_{1}, v_{2}, \ldots, v_{2 b}\right\} .$ Attach a pendant vertex to each of $v_{2 i-1}, i=1,2, \ldots, b$. Then to each of the $v_{2 i}$'s, $i=1,2, \ldots, a-b,$ attach a pendant vertex.	$a=4 ; b=3$
Case 2	$a<b$	Consider $K_{1, a}$. Replace a pendant vertex of $K_{1, a}$ by $K_{1} \vee(b-a+1) K_{2}$. To all the other pendant vertices of $K_{1, a}$, attach a pendant vertex.	$a=5 ; b=6$

4. Some Theorems on Graph Classes

Theorem 5 [9]. For a connected graph $G, E_{4}(G)$ is complete if and only if G is a complete multipartite graph.

Theorem 6. Let G be a connected graph such that $E_{4}(G)$ is a threshold graph. Then $\gamma(G) \leq 2$.

Proof. We know that $E_{4}(G)$ is a threshold graph if and only if $\operatorname{dilw}\left(E_{4}(G)\right)$ $=1$. Also $\operatorname{dilw}\left(E_{4}(G)\right) \geq \gamma\left(E_{4}(G)\right)$. Then the theorem follows from Theorem 4.

The graph obtained from K_{4} by attaching two pendant vertices to the same vertex of K_{4} is denoted by H.

Theorem 7. If G is a threshold graph then $E_{4}(G)$ is a threshold graph if and only if G is $\{$ moth, $H\}$-free.

Proof. Let G be a threshold graph. If G contains a moth graph or H as an induced sub graph, then $E_{4}(G)$ contains a $2 K_{2}$ and hence it cannot be threshold.

Conversely, suppose that G is a $\{\operatorname{moth}, H\}$-free threshold graph. Since G is threshold, $\operatorname{dilw}(G)=1$ and hence $\gamma(G)=1$. So G must have a universal vertex u.

If at most two vertices in $N(u)$ are of degree greater than one, then $E_{4}(G)$ cannot contain an induced $2 K_{2}, C_{4}$ or P_{4}.

Now let $k, k \geq 3$ vertices in $N(u)$ are of degree greater than one.
Claim: There exist three vertices u_{1}, u_{2}, u_{3} such that the vertex u_{2} is adjacent to u_{1} and u_{3}.

If $k=3$, this claim holds true. If $k>3$, let u_{1}, u_{2}, u_{3} and u_{4} be four vertices of degree greater than one in $N(u)$ such that u_{1} is adjacent to u_{2} and u_{3} is adjacent to u_{4}. Since G is threshold, it can not contain an induced $2 K_{2}$ and hence u_{3} or u_{4} must be adjacent to u_{1} or u_{2}. Let u_{3} be adjacent to u_{1}. Then $u_{2}, u_{1}, u_{3}, u_{4}$ forms an induced P_{4} which is not possible since G is threshold. In this case, if u_{4} is adjacent to u_{2}, then G contains an induced C_{4} which is again not possible. Hence the claim.

Further if u_{1} and u_{3} are adjacent, the vertex u can have at most one more neighbour since G is H-free. In this case also $E_{4}(G)$ is threshold since it is $\left\{2 K_{2}, C_{4}, P_{4}\right\}$-free. On the other hand if u_{1} and u_{3} are not adjacent,
then since G is moth-free, the vertex u can have at most one more neighbour. In this case also $E_{4}(G)$ is threshold.

Remark. Let G be a connected graph such that $E_{4}(G)$ is a cograph. Then $\gamma(G) \leq 4$, which follows from Theorem 4 and the fact that the domination number of cographs is at most two.

Theorem 8. Let G be a connected graph. Then

1. $E_{4}(G)$ is a weakly geodetic graph if and only if G is $\{$ paw, 4-pan\}-free.
2. $E_{4}(G)$ is a geodetic graph if and only if G is $\left\{C_{2 n}: n>2\right\} \cup\{4$ pan $\} \cup\{2 n-1: n>1\}$-free.
3. $E_{4}(G)$ is a block graph if and only if G is $\{$ paw, 4-pan $\} \cup\left\{C_{n}: n \geq 5\right\}$ free.

Proof. 1. If G contains a paw in which $C_{3}=\left(u_{1}, u_{2}, u_{3}\right)$ and a is a pendant vertex attached to u_{1}, then in $E_{4}(G), d\left(a u_{1}, u_{2} u_{3}\right)=2$, but they have two common neighbours $u_{1} u_{2}$ and $u_{1} u_{3}$. Similarly if G contains a 4-pan in which $C_{4}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ and a is a pendant vertex attached to u_{1}, then in $E_{4}(G), d\left(a u_{1}, u_{3} u_{4}\right)=2$, but they have two neighbours $u_{1} u_{2}$ and $u_{1} u_{4}$.

Conversely, suppose that G is a \{paw, 4-pan\}-free graph. If G is an acyclic graph, there exists a unique shortest path joining any two vertices in $E_{4}(G)$. Thus $E_{4}(G)$ is weakly geodetic.

Next suppose that G contains cycles.
If $g(G)=3$ then G contains a $C_{3}=\left(u_{1}, u_{2}, u_{3}\right)$.
Claim. G is a cograph.
Suppose that G contains an induced $P_{4}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$. Let $u_{1} \neq v_{1}$. Consider a shortest path $\left(u_{1}, a_{1}, a_{2}, \ldots, a_{k}, v_{1}\right)$ joining u_{1} and v_{1}. Since G is paw free a_{1} must be adjacent to at least one more $u_{i}, i=2,3$. Proceeding like this, v_{1} and then v_{2} must be adjacent to at least two u_{i} 's. This implies that v_{1} and v_{2} must have a common neighbour among the $u_{i} s$. Let it be u_{1}. Then $\left(v_{1}, u_{1}, v_{2}\right)$ form a C_{3}. Since G is paw-free, v_{3} must be adjacent to at least one of v_{1} and u_{1}. But, since $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is an induced P_{4}, v_{3} must be adjacent to u_{1}. Then $\left(v_{1}, u_{1}, v_{3}\right)$ will form a C_{3} in G. Again since G is paw-free, v_{4} must be adjacent to u_{1}. Now, consider $\left(v_{1}, u_{1}, v_{2}\right)$ with the edge $u_{1}-v_{4}$. Since G is paw-free, v_{4} must be adjacent to v_{1} or v_{2}, which is a contradiction.

But a paw-free cograph is a complete multipartite graph and hence by Theorem $5, E_{4}(G)$ is complete and thus weakly geodetic.

If $g(G)=4$, then G contains a $C_{4}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. If $G=C_{4}$, then $E_{4}(G)=K_{4}$. If there exists a vertex v_{1} in G which is adjacent to u_{1}, v_{1} must be adjacent to u_{3} also since G is 4 -pan-free. Similarly if there exists a vertex v_{2} which is adjacent to u_{2}, v_{2} must be adjacent to u_{4}. If there exists a vertex v_{1}^{\prime} which is adjacent to v_{1}, it must be adjacent to both u_{2} and u_{4}. Hence G is a complete bipartite graph. Since $g(G)=4, G$ is paw-free. Again by Theorem $5, E_{4}(G)$ is complete, and hence G is a weakly geodetic graph.

Finally, Let $g(G)=k, k>4$. Let $\left(u_{1}, u_{2}, u_{3}, \ldots, u_{k}\right)$ be a C_{k} in G. Then $E_{4}(G)$ also contains a C_{k}. This C_{k} is not a part of any clique in $E_{4}(G)$ and hence $b\left(E_{4}(G)\right) \leq k$. Since G does not contain any C_{4}, two vertices in $E_{4}(G)$ are adjacent if and only if the corresponding edges in G are adjacent. Thus $E_{4}(G)$ cannot contain a b-cycle of length less than k and so $b\left(E_{4}(G)\right)=k$ where $k>4$. We know that a graph G is weakly geodetic if and only if $b(G) \geq 5$. Thus $E_{4}(G)$ is a weakly geodetic graph.
2. Let $E_{4}(G)$ be a geodetic graph. If G contains a 4-pan, there exists more than one shortest path joining two vertices in $E_{4}(G)$ as proved earlier. If G contains a $C_{2 n}=\left(u_{1}, u_{2}, \ldots, u_{2 n}\right)$, then $u_{1} u_{2}$ and $u_{n+1} u_{n+2}$ in $E_{4}(G)$ are connected by more than one shortest path and hence $E_{4}(G)$ is not geodetic. If G contains a $(2 n-1)$-pan in which $C_{2 n-1}=\left(u_{1}, u_{2}, \ldots, u_{2 n-1}\right)$ and a is a pendant vertex attached to u_{1}, then $a u_{1}$ and $u_{n} u_{n+1}$ in $E_{4}(G)$ are connected by more than one shortest path and hence $E_{4}(G)$ is not geodetic.

Conversely, assume that G is $\left\{4\right.$-pan, $C_{2 n},(2 n-1)$-pan $\}$-free. If G is an acyclic graph there exists a unique shortest path joining any two vertices in $E_{4}(G)$ and hence is geodetic. So consider the graphs G containing cycles.

Let $g(G)=3$. Since G is paw-free, $E_{4}(G)$ is complete and hence is geodetic. If $g(G)=4, E_{4}(G)$ is complete since G is 4-pan-free and thus geodetic. If $g(G)=2 n-1, n>2$, then G contains a $C_{2 n-1}=\left(u_{1}, u_{2}, \ldots, u_{2 n-1}\right)$. If $G=C_{2 n-1}$, then $E_{4}(G)=C_{2 n-1}$ and hence geodetic. If a is a vertex attached to u_{1}, since G is $(2 n-1)$-pan-free, a must be adjacent to at least one more u_{i}. But this is impossible since $g(G)=2 n-1$. Since G is $C_{2 n}$-free, $g(G) \neq 2 n, n>2$. Hence in all the cases, it follows that $E_{4}(G)$ is geodetic.
3. Let $E_{4}(G)$ be a block graph. If G contains a paw in which $C_{3}=$ u_{1}, u_{2}, u_{3} and a is the pendant vertex adjacent to u_{1}, then $E_{4}(G)$ contains a $C_{4}=\left(a u_{1}, u_{1} u_{2}, u_{2} u_{3}, u_{3} u_{1}\right)$ which is not a part of any clique. Thus $b\left(E_{4}(G)\right) \leq 4$. Similarly if G contains a 4-pan, in which $C_{4}=$
$\left(u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and a is a pendant vertex adjacent to u_{1}, then $E_{4}(G)$ contains a $C_{4}=\left(a u_{1}, u_{1} u_{2}, u_{3} u_{4}, u_{4} u_{1}\right)$ which is not a part of any clique and hence $b\left(E_{4}(G)\right) \leq 4$. If G contains a $C_{n}, n>4$, then $E_{4}(G)$ also contains a $C_{n}, n>4$. This C_{n} forms a b-cycle and hence $b\left(E_{4}(G)\right) \leq n$ and hence $E_{4}(G)$ is not a block graph.

Conversely, suppose that G is \{paw, 4-pan $\} \cup\left\{C_{n}: n>4\right\}$-free. If G is an acyclic graph, then $E_{4}(G)$ cannot contain a b-cycle and hence is a block graph. Now, consider the graphs G containing cycles. Since G is $\left\{C_{n}: n \geq 5\right\}$-free, $g(G)=3$ or 4 . But since G is \{paw, 4-pan\}-free, $E_{4}(G)$ is complete as proved earlier and thus is a block graph.

Acknowledgement

The authors thank the referees for their suggestions for the improvement of this paper.

References

[1] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes (SIAM, 1999).
[2] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1997) 145-162.
[3] D.G. Corneil, Y. Perl and I.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934.
[4] S. Foldes and P.L. Hammer, The Dilworth number of a graph, Ann. Discrete Math. 2 (1978) 211-219.
[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988).
[6] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory (B) 27 (1979) 67-74.
[7] D.C. Kay and G. Chartrand, A characterization of certain Ptolemic graphs, Canad. J. Math. 17 (1965) 342-346.
[8] M. Knor, L. Niepel and L. Soltes, Centers in line graphs, Math. Slovaca 43 (1993) 11-20.
[9] M.K. Menon and A. Vijayakumar, The edge C_{4} graph of a graph, in: Proc. International Conference on Discrete Math. Ramanujan Math. Soc. Lect. Notes Ser. 7 (2008) 245-248.
[10] O. Ore, Theory of Graphs, Amer. Math. Soc. Coll. Publ. 38, (Providence R.I, 1962).
[11] E. Prisner, Graph Dynamics (Longman, 1995).
[12] S.B. Rao, A. Lakshmanan and A. Vijayakumar, Cographic and global cographic domination number of a graph, Ars Combin. (to appear).
[13] D.B. West, Introduction to Graph Theory (Prentice Hall of India, 2003).
Received 5 September 2008 Revised 26 March 2009 Accepted 16 July 2009

