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Abstract

Systems of consistent linear equations with symmetric positive
semidefinite matrices arise naturally while solving many scientific and
engineering problems. In case of a “floating” static structure, the
boundary conditions are not sufficient to prevent its rigid body mo-
tions.

Traditional solvers based on Cholesky decomposition can be adapted
to these systems by recognition of zero rows or columns and also by
setting up a well conditioned regular submatrix of the problem that is
used for implementation of a generalised inverse. Conditioning such a
submatrix seems to be related with detection of so called fixing nodes
such that the related boundary conditions make the structure as stiff as
possible. We can consider the matrix of the problem as an unweighted
non-oriented graph. Now we search for nodes that stabilize the solu-
tion well-fixing nodes (such nodes are sufficiently far away from each
other and are not placed near any straight line). The set of such nodes
corresponds to one type of graph center.
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1. Numerical Motivation

Systems of consistent linear equations with symmetric positive semidefinite
(SPS) matrices arise naturally in the solution of many scientific and engi-
neering problems. A typical example is the stress analysis of a “floating”
static structure whose essential boundary conditions are not sufficient to
prevent its rigid body motions [5, 12, 13, 14].

The consistent systems with a semidefinite matrix A can be solved ei-
ther by an iterative method, such as the preconditioned conjugate gradient
method [1], whose performance depends on the distribution of the spectrum
of A, or by a direct method, typically based on a decomposition, whose per-
formance depends on the sparsity pattern of A. Assuming exact arithmetic,
it is rather easy to adapt standard direct methods for the solution of sys-
tems with positive definite matrices, such as the Cholesky decomposition,
to the solution of systems with only positive semidefinite matrix [8]. The
only modification comprises assigning zero to the columns which correspond
to zero pivots. However, in agreement with the theoretical results of Pan
[11], it turns out that it is very difficult to recognize the positions of such
pivots in the presence of rounding errors when the nonsingular part of A
is ill-conditioned. Moreover, even if the zero pivots are recognized, it turns
out that the ill-conditioning of the nonsingular submatrix defined by the
nonzero pivots can have a devastating effect on the precision of the solution.

1.1. Numerical solution

For more information about generalized inverse and Cholesky decomposition
in exact arithmetic we refer to the paper [2]. Here, we would like to present
only a simplified form of the numerical solution with regard to future needs.

As we consider contact problems, one of the method solving this type
of problems is Finite Element Tearing and Interconnecting (FETI) method
and its modifications. For background see [6], Total-FETI modification is
presented in [4]. Our primal problem is

(1) min

(
1

2
uT Ku − uT f

)
, BIu ≤ cI , BEu = 0,

where K is a stiffness matrix of the given contact problem, f is a vector
of forces, u is a vector of solution and matrices BI , BE represent boundary
conditions.
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Let us simplify the problem to solve Ax = b, thus x = A+b. A is a
symmetric positive semidefinite matrix of order n and b ∈ ImA, such that
the solution x exists. A+ denotes the generalised inverse matrix. We are
particularly interested in the case when the problem is solved many times
with varying right hand sides. We shall assume that the sparsity pattern of
A enables its effective triangular decomposition A = LLT . The method of
evaluation of the factor L is known as the Cholesky factorization:

(2) PAP T =

[
ÃJJ ÃJI

ÃIJ ÃII

]
=

[
LJJ O
LIJ Id

] [
LT

JJ LT
IJ

O S

]
,

where LJJ ∈ RJ×J is a lower factor of the Cholesky factorization of ÃJJ ,
LIJ ∈ RI×J , LIJ = ÃIJL−T

JJ , S ∈ RI×I is a singular matrix of the defect d,
Id ∈ RI×I is the identity matrix. Indices I, J satisfy I + J = n, I is very
much smaller than n. Finally, P is a permutation matrix which corresponds
to both preserving sparsity and fixing nodes reordering.

Then

(3) A+ = P T

[
L−T

JJ −L−T
JJ LT

IJS†

O S†

] [
L−1

JJ O

−LIJL−1
JJ Id

]
P,

where S† denotes the (Moore-Penrose) generalized inverse. As we consider a
symmetric matrix A, the matrix S is also trivially symmetric. Thus, S † can
be computed by the symmetric form of the Singular value decomposition of
matrix S, S† = V Σ†V T , where V ∈ RI×I is orthogonal matrix, V V T = Id,
Σ† = diag{σ−1

1 , . . . , σ−1
I−d, 0, . . . , 0} ∈ RI×I and σ1 ≥ · · · ≥ σI−d > σI−d+1 =

· · · = σI = 0 are singular values of S.

2. Graph Theory

Let us now consider the matrix A of the problem as an unweighted non-
oriented graph. In this paper, the the adjacency matrix of the original mesh
is used. The adjacency matrix A of a finite unweighted non-oriented graph
without loops or multiple edges on n vertices is the n× n matrix where the
nondiagonal entry aij is the number of edges from vertex i to vertex j, and
the diagonal entry aii is equal zero.

Conditioning of a matrix is strongly related to computational demand-
ingness of an inverse or generalised inverse matrix. Conditioning of A seems
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to be related with detection of so called “fixing nodes” such that the related
boundary conditions make the structure as stiff as possible. Once we have
the “fixing nodes”, the matrix A is reordered so that the rows corresponding
to these nodes are at the bottom of the matrix.

Definition 1. Fixing nodes.

We define i-fixing nodes to be the set of i nodes that make the matrix
of a given problem nonsingular and well conditioned, i.e., the removing of
these i nodes makes the regular condition number of the matrix finite and
sufficiently small.

The best choice of i-fixing nodes is then the set of fixing nodes, that
make the numerical solution as stable as possible, i.e., the removing of these
i nodes makes the regular condition number of the matrix of a given problem
minimal.

From mechanical interpretation, the fixing nodes cannot lay on a straight
line and therefore, they are at least three.

In notion of Equation (2), the permutation martix P reorders the matrix
A so that the rows corresponding to fixing nodes are at the bottom of matrix
A. Thus, the singular matrix ÃII corresponds to i-fixing nodes. Regular
condition number κ is then computed as κ = cond(ÃJJ) = |λmax|/|λmin|,
where λmax and λmin correspond to the largest and to the nonzero smallest
eigenvalue of regular matrix ÃJJ , respectively.

Now, the problem is to identify such fixing nodes in the graph.

2.1. Identifying the fixing nodes

For testing purposes, we have chosen an object called “pyramid”, see Fig-
ure 1. It is covered by three-dimensional mesh with five nodes in each
direction. As we can see, the structure and the mesh are irregular (edges
have not the same geometric length) with refinement on the top.

We have tested various placement of the fixing nodes in the mesh. The
testing criterion was the condition number κ. The smaller condition number
the faster computation of the generalised inverse matrix will be. We have de-
cided to present the test with 4-fixing nodes. As we have a three-dimensional
problem, the minimum number of fixing nodes is three to prevent rigid body
motions in all three directions. Natural requirement is that the nodes are
not near any straight line. When using four nodes, it turns out that nodes
should not be coplanar.
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(a) κ = 1.42× 1020 (b) κ = 129471

(c) κ = 27015 (d) κ = 2622

(e) κ = 1140 (f) κ = 587

(g) κ = 527 (h) κ = 435, the best choice

Figure 1. Pyramid: Finding the fixing nodes.
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The upper bound on the number of fixing nodes is not exactly limited. As
we increase the number of fixing nodes the condition number of matrix A
decreases but we have to consider that the computational complexity of
a generalised inverse increases. It turned out, that the 4-fixing nodes are
sufficiently enough as long as we choose a proper set of nodes.

As we can see in Figure 1, the best choice of 4-fixing nodes is obtained
when we place the 4-fixing nodes not coplanar in the interior of the object.
This result lead to the idea to consider the problem or its generalization of
finding fixing nodes as the problem of finding graph centers.

3. Graph Centers

In this section we present the definitions of graph centers related to our
problem.

The definition of graph center for one vertex is the follows.

Definition 2. Let us define the graph center of a graph G as a vertex x,
for which

(4) min
x∈V (G)

max
v∈V (G)

dist(x, v),

where V (G) is the vertex set of a graph G, dist(x, v) is the distance between
vertices x and v (length of the shortest path between these vertices).

The path in a graph G is a sequence of vertices (v1, v2, . . . , vk), v1, v2, . . . ,
vk ∈ V (G), such that all edges vivi+1 are in the graph G for all i =
1, 2, . . . , k − 1. The shortest path between vertices v1vk is such a path,
that the number of edges between the vertices v1vk is minimal.

There are several ways how to generalize the notion of a graph center.
One is the following.

Definition 3. Let us define the graph k-center of a graph G as a set C of
k vertices, for which

(5) min
C⊂V (G)
|C|=k

max
v∈V (G)

dist(C, v) = min
C⊂V (G)
|C|=k

max
v∈V (G)

(
min
x∈C

dist(x, v)

)
,
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where k is number of number of vertices in the center C, V (G) is the vertex
set of a graph G, dist(x, v) is the distance between vertices x and v (length
of the shortest path between these vertices).

We have tested if the graph k-center satisfy the requirement on the best
choice of k-fixing nodes in sense of Definition 1. When we tested object
covered by regular mesh (all edges of the same geometrical length), graph
k-center satisfied the best choice of k-fixing nodes, i.e., the regular condition
number was minimal.

Remark 4. For regular meshes, we can consider the best choice of k-fixing
nodes as graph k-center.

Problem arises, when the object is covered by an irregular mesh. In general,
there could be more k-sets of vertices that satisfy Definition 3 but not all of
them satisfy Definition 1.

(a) Suboptimal output: κ = 492 (b) Optimal output: κ = 435

Figure 2. Pyramid: suboptimal and optimal output.

In Figure 2, there are two different sets of four nodes that both satisfy
Definition 3 but give a different condition number. The left figure shows
output of our software that satisfy Definition 3 and the condition number
is equal to 492. Experimentally we have found the optimal output depicted
in the right figure, where the condition number is equal to 435 and that
also satisfies the Definition 3. We can see that the condition number of the
problem depends not only on the graph topology but also on the geometry
of the mesh.
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These results lead to the idea of a weightened graph, or to the idea of finding
graph k-center in weightened graph, respectively. We suggest the following
definition of k-center in weightened graph.

Definition 5. Let us define the weightened graph k-center of a graph G as
a set C of k vertices, for which

(6) min
C⊂V (G)
|C|=k

max
v∈V (G)

distw(C, v) = min
C⊂V (G)
|C|=k

max
v∈V (G)

(
min
x∈C

distw(x, v)

)
,

where k is the number of vertices in the center set C, V (G) is the vertex set
of a graph G, distw(x, v) is the weightened distance between vertices x and
v (length of the shortest edges-weightened path between those vertices).

(7) distw(x, v) = min
Pxv⊂V (G)

|Pxv |∑

i=1

w(ei),

where Pxv is a path from x to v, |Pxv| denotes the length of path Pxv, i.e.,
the number of edges that the path contains, {e1, e2, . . . , e|Pxv |} are the edges
on the path Pxv, w(ei) is the weight of edge ei.

Now the problem is to find the weight function w : E → R, that assigns
to each edge some real number characterizing its weight. This problem is
not solved yet, because the weights of edges turned out to be dependent on
the type of problem (two- or three-dimensional, type of mesh elements), on
the mesure of refinement etc. Howeever, we suppose the weights should start
at one and increase/decrease with very small difereces (e.g. logarithmical
measure of geometrical distance). This idea corresponds to experimental
results. These indicate that the graph topology is more significant than the
geometrical distance.

3.1. Speedup of the computation

As we are interested in solving real problems with large number of variables,
our main task is to find the fixing nodes fast. The algorithmical complex-
ity of finding the best choice of fixing nodes should be in O(n) or O(n2)
complexity with massive usage of parallelism.

We shall point out that we do not strictly require an optimal solu-
tion. The idea of fixing nodes itself is very strong because solving systems
with positive semidefinite matrix were not solved before in satisfactory time.
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Thus, we do not need to obtain the best choice of fixing nodes, some sub-
optimal solution obtained in a short time is sufficient.

In practical computations, the following algorithm consisting of two
steps can be used.

1. Dividing the graph into k parts using some proper graph/mesh parti-
tioning software (for example METIS, see [10]),

2. finding one graph center in each part.

We find one graph center in each part in the sense of Definition 2. From
the vertices that satisfy the Definition 2 we choose the nearest vertex to the
geometrical center.

The output of our algorithms of the given Example is shown in Figure
2(a). The output of our algorithms on a practical problem is shown in Figure
3. There is one symmetric part of a two-dimensional symmetric problem of
mechanical mining supports consist of four components. In each part we
have found four fixing nodes.

(a) (b)

Figure 3. Mining supports: four fixing nodes in each part.

Latest experiments show that the spectral theory is very powerful tool for
finding fixing nodes. Especially, we use the (Perron) eigenvector correspond-
ing to the largest eigenvalue of the adjacency matrix A. The maximum en-
try of this eigenvector (in absolute value) corresponds to one fixing node.
Finding the eigenvector of a sparse symmetric adjacency matrix using some
iterative method such as power method or Lanczos method is very fast com-
paring to the standard graphs methods for computing graph center. For
more informations see [9].
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4. Conclusion

In this paper we present the problem from numerical mathematics that
turned out to be solved by means of graph theory. We have translated the
problem of finding fixing nodes for purposes of computation of generalised
inverse to the problem of finding graph center and we have suggested some
definitions of graph k-center that satisfy the problem well. Also, we have
presented the need of fast computation and we have introduced posibilitties
how to achieve it as we do not require an optimal solution.

The future work in this area will consists of finding fast ways to find the
fixing nodes with focus on spectral theory.
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[5] C. Farhat and M. Géradin, On the general solution by a direct method of a

large scale singular system of linear equations: application to the analysis of

floating structures, Int. J. Numer. Meth. Engng 41 (1998) 675–696.

[6] C. Farhat and F.-X. Roux, A method of finite element tearing and intercon-

necting and its parallel solution algorithm, Int. J. Numer. Meth. Engng 32

(1991) 1205–1227.

[7] Ch. Godsil and G. Royle, Algebraic Graph Theory (Springer-Verlag, New York,
ISBN 0-387-95241-1, 2001).



Graph Centers Used for Stabilization of ... 359

[8] G.H. Golub and C.F. Van Loan, Matrix Computations (2nd ed.) (John Hopkins
University Press, Baltimore, 1989).
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