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Institute of Mathematics
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SK-041 54 Košice, Slovak Republic

e-mail: jaroslav.ivanco@upjs.sk

Abstract

Given a family F of multigraphs without isolated vertices, a multi-
graph M is called F-decomposable if M is an edge disjoint union of
multigraphs each of which is isomorphic to a member of F . We present
necessary and sufficient conditions for existence of such decompositions
if F consists of all multigraphs of size q except for one. Namely, for
a multigraph H of size q we find each multigraph M of size kq, such
that every partition of the edge set of M into parts of cardinality q
contains a part which induces a submultigraph of M isomorphic to H .
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1. Introduction

We consider finite undirected multigraphs without loops and isolated ver-
tices. Given a family F of multigraphs, an F-decomposition of a multigraph
M is a collection of submultigraphs which partition the edge set E(M) of M
and are all isomorphic to members of F . If such a decomposition exists, M
is called F-decomposable; and also H-decomposable if H is the only member
of F .

If M is a multigraph, then V (M) and E(M) stand for the vertex set and
edge set of M , respectively. Cardinalities of those sets, denoted by v(M)
and e(M), are called the order and size of M , respectively. For E ⊂ E(M),
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M [E] denotes the submultigraph of M induced by E. The number of edges
incident to a vertex x in M , denoted by valM (x), is called the valency of x,
whilst the number of neighbours of x in M , denoted by degM (x), is called
the degree of x. As usual ∆(M) stands for the maximum valency among
vertices of M . For any two vertices x, y of M , let pM (x, y) denote the
number of edges joining x and y. We call pM (x, y) the multiplicity of an
edge xy in M . Π(M) stands for the maximum multiplicity among edges
of M . Edges joining the same vertices are called parallel edges (if they are
distinct).

The multipath of length k with edge multiplicities m1, . . . ,mk is denoted
by P (m1, . . . ,mk). Note that P (1) = P2 = K2 is the simple path on two ver-
tices and P (1, 1) = P3 is the simple path on three vertices. The multistar of
order k+1 with edge multiplicities m1, . . . ,mk is denoted by S(m1, . . . ,mk).
Note that S(1, 1, 1) = K1,3 is a simple 3-star. The multicycle of length k
with edge multiplicities m1, . . . ,mk is denoted by C(m1, . . . ,mk). Note that
C(1, 1, 1) = C3 is a 3-cycle. The multiplicity 0 is allowed in these cases.
Note that S(1, 0, 1) is a path. The union of two disjoint multigraphs M
and H is denoted by M ∪̇H and the union of k disjoint copies of a multi-
graph H is denoted by kH. For a multigraph H, denote by H+e the set
of all multigraphs which we obtain from H by adding an edge. Note that
K+e

2 = {C2, P3, 2K2}.
Given a multigraph M , let G(M) denote a graph which we obtain from

M by removal of all edges of the maximal family of pairwise edge-disjoint
copies of C2, i.e., V (G(M)) := V (M) and E(G(M)) := {xy : pM (x, y) ≡ 1
(mod 2)}.

In [1] there are provided necessary and sufficient conditions for a multi-
graph M to be {H1,H2}-decomposable, where H1, H2 are any two multi-
graphs out of C2, P3 and 2K2. One of the results follows.

Theorem 1 ([1]). A multigraph M is {C2, 2K2}-decomposable if and only

if each of the following five conditions holds:

(1) e(M) ≡ 0 (mod 2);

(2) valM (x) + degG(M)(x) ≤ e(M) for every x ∈ V (M);

(3) if xy ∈ E(G(M)) then valM (x) + valM (y) − pM (x, y) < e(M);

(4) if yx, xz ∈ E(G(M)), then 1 + valM (x) + pM (y, z) < e(M);

(5) M is different from each of the (forbidden) multigraphs shown in Fig-

ure 1.
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Figure 1. Forbidden multigraphs

Table 1. Codes in Figure 1.

edge : bold thin doubled dotted

multiplicity : odd 1 even ≥ 2 even ≥ 0

As it can be seen the assertion is not trivial. So, the aim of this paper is to
extend the previous result. For a positive integer k, let M(k) be the set of all
mutually non-isomorphic multigraphs of size k. For a multigraph H ∈ M(k),
denote by H̃ the set M(k) − {H}. As M(2) = {C2, P3, 2K2}, Theorem 1
characterizes P̃3-decomposable multigraphs. In the paper we characterize
H̃-decomposable multigraphs where H is an arbitrary multigraph.

2. H̃-Decomposable Multigraphs

For a given multigraph H we define the family F(H) as follows. A multi-
graph M belongs to F(H) iff e(M) ≡ 0 (mod e(H)) and every partition
of E(M) into parts of cardinality e(H) contains a part which induces a
submultigraph of M isomorphic to H.

According to the definition of F(H) we have immediately

Proposition 1. A multigraph M is H̃-decomposable if and only if

e(M) ≡ 0 (mod e(H)) and M /∈ F(H).

The previous characterization of H̃-decomposable multigraphs may be useful
only for a multigraph H whose forbidden set F(H) is described. Evidently,
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F(K2) includes all multigraphs. However, the forbidden sets of the others
multigraphs are not so large, but a multigraph H is usually (except for some
special cases) the only member of F(H). Next we describe the forbidden
sets of exceptional multigraphs.

Theorem 2. A multigraph M belongs to F(P (k)) if and only if e(M) ≡ 0
(mod k) and Π(M) > k−1

k
e(M).

Proof. The condition e(M) ≡ 0 (mod k) is obvious. If there is an edge
xy of a multigraph M with multiplicity pM (x, y) > k−1

k
e(M) then any

partition of E(M) into parts of cardinality k contains a part consisting of k
parallel edges joining x and y. It induces a submultigraph of M isomorphic
to P (k). On the other hand, if Π(M) ≤ k−1

k
e(M) then there is a partition of

E(M) into parts of cardinality k such that any part contains at most k − 1
parallel edges. So, M /∈ F(P (k)).

Theorem 3. A multigraph M belongs to F(kK2) if and only if e(M) ≡
0 (mod k) and the number of odd size components of M is greater than
k−2

k
e(M).

Proof. The condition e(M) ≡ 0 (mod k) is obvious. It is proved in [1]
that a multigraph is {C2, P3}-decomposable if and only if each its com-
ponent has an even number of edges. Thus, if we remove an appropriate
edge from each odd size component of a multigraph M , we get a {C2, P3}-
decomposable multigraph. Therefore, the maximum number of mutually
edge-disjoint pairs of adjacent edges in M is 1

2(e(M) − c), where c denotes

the number of odd size components. If c > k−2
k

e(M), then M contains
less than e(M)/k edge-disjoint pairs of adjacent edges. So, any partition
of E(M) into parts of cardinality k contains a part consisting of k edges
lying in distinct components. It induces a submultigraph of M isomorphic
to kK2. On the other hand, if c ≤ k−2

k
e(M) then there is a partition of

E(M) into parts of cardinality k such that any part contains two adjacent
edges. Thus, M /∈ F(kK2).

Theorem 4. A multigraph M belongs to F(K1,2) if and only if e(M) is

even and at least one of the following four conditions holds:

(1) there is x ∈ V (M) such that valM (x) + degG(M)(x) > e(M);

(2) there is xy ∈ E(G(M)) such that valM (x)+valM (y)−pM (x, y) = e(M);
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(3) there are yx, xz ∈ E(G(M)) such that 1 + valM (x) + pM (y, z) ≥ e(M);

(4) M is one of the multigraphs shown in Figure 1.

For k ≥ 3, M ∈ F(K1,k) if and only if e(M) ≡ 0 (mod k) and there is

a vertex x ∈ V (M) such that valM (x) + degG(M)(x) > 2k−1
k

e(M).

Proof. The first equivalence follows immediately from Theorem 1.

The condition e(M) ≡ 0 (mod k) is obvious. If M /∈ F(K1,k), then
there is a partition of E(M) into e(M)/k parts of cardinality k such that no
part induces a submultigraph of M isomorphic to K1,k. Hence, for any vertex
x, every part contains either an edge not incident to x or two parallel edges
incident to x. Therefore, the sum of the number of edges not incident to x
and the number of edge-disjoint pairs of parallel edges incident to this vertex
is at least e(M)/k, i.e., (e(M) − valM (x)) + (valM (x) − degG(M)(x))/2 ≥

e(M)/k. This implies the inequality valM (x) + degG(M)(x) ≤ 2k−1
k

e(M).

On the other hand, assume that M is a multigraph of size kt such
that valM (x) + degG(M)(x) ≤ 2k−1

k
e(M) for every x ∈ V (M). Evidently,

M is not isomorphic to K1,k if t = 1. For t ≥ 2, consider a multigraph
H := M ∪̇mK2, where m = (k− 2)t. Clearly, e(H) = e(M)+m = 2(k− 1)t.
By Theorem 1, one can easily check that H is a {C2, 2K2}-decomposable
multigraph. Therefore, there exist t = (k − 1)t − m edge-disjoint pairs of
edges e1

i , e
2
i ∈ E(M) such that M [{e1

i , e
2
i }] is isomorphic to either C2, or

2K2, for every i ∈ {1, . . . , t}. Thus, there is a partition of E(M) into parts
of cardinality k such that the i-th part contains edges e1

i and e2
i . Clearly,

none of these parts induces a submultigraph isomorphic to K1,k and so
M /∈ F(K1,k).

In the next proofs we will use an induction, so the following description of
forbidden sets will be very useful.

For a given multigraph H and each positive integer n we define the fam-
ily Fn(H) recursively as follows. H is the only member of F1(H). For n > 1
a multigraph M belongs to Fn(H) iff e(M) = ne(H) and for every subset
E ⊂ E(M) of cardinality |E| = e(H) it holds either M [E] is isomorphic to
H or M [E(M) − E] is isomorphic to a member of Fn−1(H). According to
the definition of F(H) we have immediately

Lemma 1. Let H and M be multigraphs such that e(M) = ne(H). The multi-

graph M belongs to F(H) if and only if it belongs to Fn(H).
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Put F∗(H) := ∪i≥2Fi(H). Then F(H) = ∪i≥1Fi(H) = F1(H) ∪ F∗(H).
Note that the conditions F2(H) 6= ∅, F∗(H) 6= ∅, |F(H)| > 1 are mutually
equivalent.

We will often use the following auxiliary assertion.

Lemma 2. Let H and M be multigraphs such that M ∈ F2(H). Let E be

a subset of E(M) such that M [E] is isomorphic to no submultigraph of H.

If |E| = e(H)−1, then there is a multigraph H∗ = M [E(M)−E] ∈ H+e

such that all edges of H∗ have the same multiplicities and pairs of degrees

of their end vertices.

If |E| < e(H) − 1, then H ∈ {kK2,K1,k, P (k)}.

Proof. Let H∗ be a submultigraph of M induced by E(M) − E. If we
remove any edge from H∗ (in the case |E| = e(H)− 1), we get a multigraph
isomorphic to H. So, all edges of H∗ are equivalent and H∗ has the required
properties. Similarly, for |E| < e(H) − 1, if we remove any e(H) − |E| ≥ 2
edges from H∗, we get a multigraph isomorphic to H. Thus, all pairs of
edges of H∗ are equivalent in this case. Evidently, H∗ ∈ {P (t),K1,t, tK2},
where t = e(H∗). As H is a submultigraph of H∗, we get the assertion.

Theorem 5. F∗(P (3, 2)) = {P (7, 3)} and F ∗(P (3)∪̇P (2)) = {P (7)∪̇P (3)}.

Proof. Suppose that M ∈ F2(P (3, 2)). Then e(M) = 10 and Π(M) ≥ 5
because otherwise there is a partition of E(M) into parts E1, E2 of cardi-
nality five such that Π(M [Ei]) ≤ 2, i ∈ {1, 2}, i.e., M [Ei] is not isomorphic
to P (3, 2), a contradiction. According to Lemma 2, we get a multigraph H ∗

isomorphic to P (3, 3), if we remove four parallel edges from M . It is easy
to see that M = P (7, 3), i.e., F2(P (3, 2)) = {P (7, 3)}.

Now suppose that M ∈ F3(P (3, 2)). Then e(M) = 15 and Π(M) ≥ 7
because P (7, 3) is a submultigraph of M . Let xy be an edge of M such that
pM (xy) = Π(M). If we remove five parallel edges joining x and y from M ,
we get a multigraph isomorphic to P (7, 3). Thus, M ∈ {P (12, 3), P (8, 7)}.
However, it is easy to see that neither P (12, 3) nor P (8, 7) belongs to
F3(P (3, 2). Therefore, F3(P (3, 2)) = ∅ and consequently Fi(P (3, 2)) = ∅
for every i ≥ 3.

The second equality can be proved in the same manner, details are left
to the reader.

Theorem 6. F∗(P4) = {C(3, 1, 1, 1)}.
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Proof. Assume that M ∈ F2(P4). As M contains just six edges it is not
difficult to check that M is not a simple graph (i.e., Π(M) > 1). According
to Lemma 2, a multigraph which is obtained from M by deleting two parallel
edges is a 4-cycle. Now it is easy to see that C(3, 1, 1, 1) is the only member
of F2(P4).

Suppose that M ∈ F3(P4). As C(3, 1, 1, 1) is a submultigraph of M ,
Π(M) ≥ 3. If we remove any triple of parallel edges from M , we must
obtain a multigraph isomorphic to C(3, 1, 1, 1). So, there are two edge-
disjoint triples of parallel edges in M . The only multigraph satisfying the
previous two conditions is C(6, 1, 1, 1), but it does not belong to F3(P4).
Therefore, F3(P4) = ∅ and consequently Fi(P4) = ∅ for every i ≥ 3.

Theorem 7. For the multigraph P (k)∪̇K2 it holds:

F(P (2)∪̇K2) = {P (r)∪̇P (s)∪̇P (t) : 0 ≤ r ≡ 0, s ≡ 1, t ≡ 2 (mod 3)}∪

{P (r, 1)∪̇P (t) : 0 ≤ r ≡ 0, t ≡ 2 (mod 3)},

F(P (3)∪̇K2) = {P (r)∪̇P (s) : r ≡ 1, s ≡ 3 (mod 4)} and

F(P (k)∪̇K2) = {P (r)∪̇K2 : 3 ≤ r ≡ −1 (mod k + 1)}, if k ≥ 4.

Proof. Suppose that M ∈ Fn(P (2)∪̇K2) for n ≥ 2. Then e(M) = 3n and
Π(M) ≥ 1 + n because otherwise there is a partition of E(M) into disjoint
parts E1, . . . , En of cardinality three such that Π(M [Ei]) ≤ 1, i ∈ {1, . . . , n},
i.e., M [Ei] is not isomorphic to P (2)∪̇K2, a contradiction. If we remove any
triple of parallel edges (of multiplicity Π(M)) from M , we must obtain a
multigraph isomorphic to a member of Fn−1(P (2)∪̇K2). Thus, for n =
2, M ∈ {P (1)∪̇P (5), P (4)∪̇P (2), P (1, 3, 2), P (3, 2)∪̇P (1), P (3, 1)∪̇P (2),
P (3)∪̇P (1)∪̇P (2)}. Now, it is not difficult to check that F2(P (2)∪̇K2) =
{P (3)∪̇P (1)∪̇P (2), P (1)∪̇P (5), P (4)∪̇P (2), P (3, 1)∪̇P (2)}. Similarly, using
induction for n ≥ 3, we get the assertion.

The other equalities can be proved in the same manner, details are left
to the reader.

Theorem 8. For the multigraph P (k, 1) it holds:

F(P (2, 1)) = {C(r, s, t) : r ≡ 1, s ≡ 2, 0 ≤ t ≡ 0 (mod 3)}∪

{S(r, s, t) : r ≡ 1, s ≡ 2, 0 ≤ t ≡ 0 (mod 3)}∪

{P (1, s, t) : s ≡ 2, 0 ≤ t ≡ 0 (mod 3)},

F(P (3, 1)) = {P (r, s) : r ≡ 1, s ≡ 3 (mod 4)} and

F(P (k, 1)) = {P (r, 1) : 4 ≤ r ≡ −1 (mod k + 1)}, if k ≥ 4.
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Proof. Suppose that M ∈ Fn(P (2, 1)) for n ≥ 2. Then e(M) = 3n and
Π(M) ≥ 1 + n because otherwise there is a partition of E(M) into disjoint
parts E1, . . . , En of cardinality three such that Π(M [Ei]) ≤ 1, i ∈ {1, . . . , n},
i.e., M [Ei] is not isomorphic to P (2, 1), a contradiction. If we remove
any triple of parallel edges (of multiplicity Π(M)) from M , we must ob-
tain a multigraph isomorphic to a member of Fn−1(P (2, 1)). Thus, for
n = 2, M ∈ {P (5, 1), P (4, 2), P (3)∪̇P (2, 1), P (3, 2, 1), P (2, 1, 3), S(3, 2, 1),
C(1, 2, 3)}. Now, it is not difficult to check that F2(P (2, 1)) = {P (5, 1),
P (4, 2), P (3, 2, 1), S(3, 2, 1), C(1, 2, 3)}. Similarly, using induction for n ≥ 3,
we get the assertion.

The other equalities can be proved in the same manner, details are left
to the reader.

Theorem 9. F∗(K1,2∪̇K1,3) = {K1,3∪̇K1,7}.

Proof. Suppose that M ∈ F2(K1,2∪̇K1,3). Then e(M) = 10 and by
Lemma 2 M contains no parallel edges, no triangle and no 3-matching.
Assume that ∆(M) ≤ 3. Then there is an equitable 4-edge-coloring of M
(see [2]) and so there is a partition of E(M) into parts E1, E2 of car-
dinality five (Ei consists of edges having two distinct colors) such that
∆(M [Ei]) ≤ 2, i ∈ {1, 2}, i.e., M [Ei] is not isomorphic to K1,2∪̇K1,3, a con-
tradiction. Therefore, ∆(M) ≥ 4. According to Lemma 2, a multigraph
which is obtained from M by deleting four edges incident to a maximum
degree vertex is isomorphic to 2K1,3. It is easy to see that M = K1,3∪̇K1,7,
i.e., F2(K1,2∪̇K1,3) = {K1,3∪̇K1,7}.

Now suppose that M ∈ F3(K1,2∪̇K1,3). Then e(M) = 15 and ∆(M) ≥ 7
because K1,3∪̇K1,7 is a submultigraph of M . Let x be a vertex of M such
that degM (x) = ∆(M). If we remove five edges incident to x from M , we
get a multigraph isomorphic to K1,3∪̇K1,7. Thus, M is a disjoint union of
two multistars. However, it is easy to see that none of such multigraphs
belongs to F3(K1,2∪̇K1,3). Therefore, F3(K1,2∪̇K1,3) = ∅ and consequently,
for every i ≥ 3, Fi(K1,2∪̇K1,3) = ∅.

Lemma 3. Let M be a connected multigraph of size at least 4. Then there

are edges e1, e2, e3 ∈ E(M) satisfying

(1) M [{e1, e2, e3}] is either a matching or a connected submultigraph of M ;

(2) M [E(M) − {e1, e2, e3}] is a connected multigraph.
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Proof. Suppose that M is a counterexample. Let T be a spanning tree
of M . Evidently, M [E(M) − (E ∪ {e})] is a connected multigraph for any
pendant edge e of T and any set E ⊆ E(M) − E(T ). The multigraph M
satisfies the following conditions.

A. There is no pendant edge of T adjacent to two distinct edges of

E(M) − E(T ).

Suppose to the contrary that e1, e2 ∈ E(M) − E(T ) are two distinct edges
adjacent to a pendant edge e3 of T . Clearly, the multigraphs M [{e1, e2, e3}]
and M [E(M) − {e1, e2, e3}] are connected, a contradiction.

B. There is no edge of E(M)−E(T ) adjacent to two pendant edges of T .

Assume that e1 ∈ E(M) − E(T ) is an edge adjacent to two pendant edges
e2, e3 of T . Moreover, assume that e1 is incident to a pendant vertex of
T (if there exists such edge). If M [E(M) − {e1, e2, e3}] is a disconnected
multigraph then there is an edge e4 whose end vertices are pendant vertices
of T (end vertices of e2 and e3). Thus, edges e1 and e4 are adjacent to a
pendant edge of T , contrary to A. Therefore, M [{e1, e2, e3}] and M [E(M)−
{e1, e2, e3}] are connected multigraphs, a contradiction.

C. There is no 3-matching consisting of pendant edges of T .

Suppose that e1, e2, e3 are three independent pendant edges of T . By B,
there is no edge of E(M) − E(T ) adjacent to any two pendant edges of
{e1, e2, e3}. Thus, M [E(M) − {e1, e2, e3}] is a connected multigraph and
M [{e1, e2, e3}] is a matching, a contradiction.

D. There are not three mutually adjacent pendant edges of T .

Assume to the contrary that e1, e2, e3 are three adjacent pendant edges of T .
By B, there is no edge of E(M)−E(T ) adjacent to any two pendant edges
of {e1, e2, e3}. Therefore, M [E(M)−{e1, e2, e3}] is a connected multigraph.
The multigraph M [{e1, e2, e3}] is also connected in this case, a contradiction.

E. There are not two adjacent pendant edges of T .

Suppose that e1, e2 are two adjacent pendant edges of T . By B, there is
no edge of E(M) − E(T ) adjacent to e1 and e2. If e3 is another edge of T
adjacent to both of e1, e2, then M [{e1, e2, e3}] and M [E(M) − {e1, e2, e3}]
are connected multigraphs, a contradiction.

F. There is no edge of E(M) − E(T ) adjacent to a pendant edge of T .

According to C and E, the tree T is a path. Assume that e1 ∈ E(M)−E(T )
is an edge adjacent to a pendant edge e2 of T . By A, there is no other edge
of E(M) − E(T ) adjacent to e2. If e3 is the edge of T adjacent to e2,
then M [{e1, e2, e3}] and M [E(M) −{e1, e2, e3}] are connected multigraphs,
a contradiction.
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By A – F, the tree T is a path and there is no edge of E(M)−E(T ) adjacent
to a pendant edge of T . If e1 is any pendant edge of T and edges e1, e2, e3

induce a subpath of T , then M [{e1, e2, e3}] and M [E(M) − {e1, e2, e3}] are
connected multigraphs, a contradiction. Therefore, there is no counterex-
ample of the assertion.

Theorem 10. For the multigraph K1,k∪̇K2 it holds:

F(K1,2∪̇K2) = {K1,r∪̇K1,s∪̇K1,t : r ≡ 1, s ≡ 2, t ≡ 0 (mod 3)}∪
{K1,r∪̇K1,s∪̇K3 : r ≡ 1, s ≡ 2 (mod 3)}∪
{K1,r∪̇C5 : r ≡ 1 (mod 3)}∪
{H∪̇K1,s : H ∈ K+e

1,t , t ≡ 0, s ≡ 2 (mod 3)}∪

{H∪̇K1,s : H ∈ K+e
3 , s ≡ 2 (mod 3)}∪

{S(3, 1, . . . , 1)∪̇K1,s : e(S(3, 1, . . . , 1)) ≡ 1, s ≡ 2 (mod 3)}∪
{P (2, 1, 1)∪̇K1,s : s ≡ 2 (mod 3)},

F(K1,3∪̇K2) = {K1,r∪̇K1,s : r ≡ 1, s ≡ 3 (mod 4)} and

F(K1,k∪̇K2) = {K1,r∪̇K2 : 4 ≤ r ≡ −1 (mod k + 1)}, if k ≥ 4.

Proof. Suppose that M ∈ Fn(K1,2∪̇K2). If n = 2, then e(M) = 6 and
by Lemma 3 M is disconnected. If Π(M) > 1, then according to Lemma 2,
a multigraph which is obtained from M by deleting two parallel edges is
isomorphic to 2K1,2. Now it is easy to check that M ∈ {S(3, 1)∪̇K1,2,
C(2, 1, 1)∪̇K1,2, S(2, 1, 1)∪̇K1,2, P (2, 1, 1)∪̇K1,2}. If Π(M) = 1, then M has
at most three components because otherwise there is a partition of E(M)
into parts E1, E2 of cardinality three such that M [E1] is a matching and
M [E2] is either a matching or a component of M , a contradiction. If M
has three components, then by Lemma 3 the size of each component is at
most three. Now, it is not difficult to check that M is isomorphic to either
K2∪̇K1,2∪̇K1,3 or K2∪̇K1,2∪̇K3 in this case. If M has two components, then
there is a component of size at most two because otherwise the components
decompose M into two connected submultigraphs of size three. If M has
a component of size 1, then verifying twenty possible graphs it is not difficult
to check that M is isomorphic to either K1,5∪̇K2 or C5∪̇K2. Similarly, if
M has a component of size two, then it is not difficult to check that M is a
graph belonging to {H∪̇K1,2 : H ∈ K+e

1,3}. Thus, the assertion holds in this
case.

If n ≥ 3, then it is not difficult to see (using induction and Lemma 3)
that M includes a vertex of degree at least three. Assume that x ∈ V (M)
is a vertex of maximum degree. If we remove three (non-parallel) edges
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incident to x from M , we get a multigraph belonging to Fn−1(K1,2∪̇K2).
Using induction it is not difficult to check that the assertion holds.

Now suppose that M ∈ Fn(K1,3∪̇K2). If n = 2, then e(M) = 8.
According to Lemma 2 M contains no parallel edges, no 3-matching, no
triangle and no path of length three. Now, it is not difficult to check that
M is isomorphic to either K2∪̇K1,7 or K1,3∪̇K1,5. Evidently, ∆(M) > 4 for
n ≥ 3. If we remove four edges incident to a maximum degree vertex from
M , we get a multigraph belonging to Fn−1(K1,3∪̇K2). Using induction we
get the assertion.

The last equality can be proved in the same manner, details are left to
the reader.

We conclude this paper with the following result.

Theorem 11. Let H be a multigraph. |F(H)| > 1 if and only if H is one

of the following multigraphs:

(1) P (k), for every positive integer k;

(2) P (k, 1), for every positive integer k;

(3) P (k)∪̇K2, for every positive integer k;

(4) P (3, 2);

(5) P (3)∪̇P (2);

(6) kK2, for every positive integer k;

(7) K1,k, for every positive integer k;

(8) K1,k∪̇K2, for every positive integer k;

(9) K1,2∪̇K1,3;

(10) P4.

Proof. According to previous theorems, |F(H)| > 1 for every multigraph
H of the list (1)–(10).

On the other hand, let us assume to the contrary that H is a multigraph
such that |F(H)| > 1 and it does not belong to the list (1)–(10). So, there
is a multigraph M ∈ F2(H). Consider the following cases.

A. Π(H) = Π > 1. As the multigraph H is not belonging to the
list (1)–(10), 4 ≤ e(H) ≥ Π + 2. Moreover, Π(M) ≥ 2Π − 1 because
otherwise there is a partition of E(M) into parts E1, E2 of cardinality e(H)
such that Π(M [Ei]) ≤ Π − 1, i ∈ {1, 2}, i.e., M [Ei] is not isomorphic to
H, a contradiction. The multigraph H contains no Π + 1 parallel edges
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and so according to Lemma 2, e(H) = Π + 2 and there is a multigraph
H∗ ∈ H+e ∩ {P (3, 3), P (3)∪̇P (3)}. Therefore, H ∈ {P (3, 2), P (3)∪̇P (2)},
i.e., H appears in the list, a contradiction.

B. Π(H) = 1. Thus, H is a simple graph. If M contains paral-
lel edges then according to Lemma 2, e(H) = 3 and there is a simple
graph H∗ ∈ H+e such that all its edges have the same pairs of degrees
of their end vertices. Therefore, H∗ ∈ {K1,4, C4, 2K1,2, 4K2}. Hence, H ∈
{K1,3, P3,K1,2∪̇K2, 3K2}, a contradiction. Therefore, M is also a simple
graph. Consider the following subcases.

B1. ∆(H) = e(H) − 1. Then H is either K3 or a connected graph
belonging to K+e

1,k, where k ≥ 3. If H = K3, then according to Lemma 2, M
contains no 2-matching. However, K1,6 does not belong to F2(K3) and so
F2(K3) = ∅. If H is a connected graph belonging to K+e

1,k, then according to
Lemma 2, M contains no 3-matching. Thus, M is a supergraph of H having
no 3-matching. It is not difficult to check that none of such graphs belongs
to F2(H) and so F2(H) = ∅, a contradiction.

B2. ∆(H) < e(H) − 1 and ∆(M) > ∆(H). According to Lemma 2,
e(H) = ∆(H) + 2 and there is a graph H∗ ∈ H+e ∩ {2K1,3,K2,3,K4, C5}.
It is not difficult to check that F2(K2,3 − e) = ∅, F2(K4 − e) = ∅ and
F2(P5) = ∅. Thus, H = K1,2∪̇K1,3 appears in the list, a contradiction.

B3. ∆(H) < e(H) − 1 and ∆(M) = ∆(H). For ∆(H) ≥ 3, there is
a positive integer k such that ∆(H) + 1 ≤ 2k and k < ∆(H). Then there
is an equitable 2k-edge-coloring of M (see [2]) and so there is a partition
of E(M) into parts E1, E2 of cardinality e(H) (Ei consists of edges having
k distinct colors) such that ∆(M [Ei]) ≤ k, i ∈ {1, 2}, i.e., M [Ei] is not
isomorphic to H, a contradiction. Thus, ∆(H) = 2 and e(H) ≥ 4. As
∆(M) = 2 there is a partition of E(M) into parts E1, E2 of cardinality
e(H) such that the size of each component of M [Ei], i ∈ {1, 2}, is at most
two. Therefore, each component of H has at most two edges, i.e., P4 is not
a subgraph of H. According to Lemma 2 there is no appropriate graph M ,
a contradiction.
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