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Abstract

We consider cubic graphs formed with k& > 2 disjoint claws C; ~
K3 (0 <i <k —1) such that for every integer ; modulo k the three
vertices of degree 1 of C; are joined to the three vertices of degree 1
of C;_1 and joined to the three vertices of degree 1 of C; ;. Denote
by t; the vertex of degree 3 of C; and by T the set {t1,t2,...,tk—1}
In such a way we construct three distinct graphs, namely FS(1,k),
FS(2,k) and FS(3,k). The graph FS(j,k) (j € {1,2,3}) is the graph
where the set of vertices UI=h~'V(C;) \ T induce j cycles (note that
the graphs F'S(2,2p+1), p > 2, are the flower snarks defined by Isaacs
[8])- We determine the number of perfect matchings of every FS(j, k).
A cubic graph G is said to be 2-factor hamiltonian if every 2-factor
of G is a hamiltonian cycle. We characterize the graphs F'S(j, k) that
are 2-factor hamiltonian (note that FS(1,3) is the "Triplex Graph"
of Robertson, Seymour and Thomas [15]). A strong matching M in a
graph G is a matching M such that there is no edge of F(G) connecting
any two edges of M. A cubic graph having a perfect matching union
of two strong matchings is said to be a Jaeger’s graph. We characterize
the graphs F'S(j, k) that are Jaeger’s graphs.
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1. INTRODUCTION

The complete bipartite graph K 3 is called, as usually, a claw. Let k be
an integer > 2 and let G be a cubic graph on 4k vertices formed with %
disjoint claws C; = {x;,v;, i, t;} (0 < i < k — 1) where t; (the center of C;)
is joined to the three independent vertices x;,y; and z; (the external vertices
of C;). For every integer : modulo k C; has three neighbours in C;_; and
three neighbours in C;y;. For any integer k > 2 we shall denote the set of
integers modulo %k as Z,. In the sequel of this paper indices ¢ of claws C;
belong to Zy.

Figure 1. Four consecutive claws.

By renaming some external vertices of claws we can suppose, without loss
of generality, that {z;z;11,yiyit1,2izi+1} are edges for any ¢ distinct from
k — 1. That is to say the subgraph induced on X = {zg,z1,...,2x_1}
(vespectively Y = {yo,y1,.--,Yx-1}, Z = {20,21,-.-,2k_1}) is a path or a
cycle (as induced subgraph of G). Denote by T the set of the internal vertices
{to,t1, .. th_1}.

Up to isomorphism, the matching joining the external vertices of C_1 to
those of C (also called, for k > 3, edges between Cj,_1 and Cj) determines the
graph G. In this way we construct essentially three distinct graphs, namely
FS(1,k), FS(2,k) and FS(3,k). The graph FS(j,k) (j € {1,2,3}) is the
graph where the set of vertices U'=F"!{C; \ {t;}} induces j cycles. For k > 3
and any j € {1,2,3} the graph F'S(j, k) is a simple cubic graph. When £ is
odd, the F'S(2, k) are the graphs known as the flower snarks [8]. We note that
FS(3,2) and F'S(2,2) are multigraphs, and that F'S(1,2) is isomorphic to
the cube. For k = 2 the notion of "edge between Cj,_; and Cy" is ambiguous,
so we must define it precisely. For two parallel edges having one end in ()
and the other in (1, for instance two parallel edges having xy and z; as
endvertices, we denote one edge by xgx; and the other by z1z9. An edge
in {$11‘0, T1Y0, L1205, Y12L0, Y1Y0, Y120, 2120, 21Y0, leo}, if it exists, is an edge
between C1 and Cy. We will say that xgx1, yoy1 and zgz1 are edges between
CO and Cl.



ON A FaMILY OF CUBIC GRAPHS CONTAINING THE ... 291

By using an ad hoc translation of the indices of claws (and of their vertices)
and renaming some external vertices of claws, we see that for any reasoning

about a sequence of h > 3 consecutive claws (C;,Ci11,Cit2,...,Citn_1)
there is no loss of generality to suppose that 0 <i<i4+h—1<k—1. Fora
sequence of claws (Cy,...,C;) with 0 < p <r <k — 1, since 0 is a possible

value for subscript p and since & — 1 is a possible value for subscript r, it
will be useful from time to time to denote by 35;;71 the neighbour in C),_
of the vertex z, of C), (recall that z), | € {z_1,yr—1,2x-1} if p=0), and
to denote by x;.,; the neighbour in C,; of the vertex z, of C. (recall that
z,..1 € {Z0,¥0,20} if r = k — 1). We shall make use of analogous notations
for neighbours of y,,, 2,, ¥, and z,.

We shall prove in the following lemma that there are essentially two
types of perfect matchings in F'S(j, k).

Lemma 1. Let G € {FS(j,k),j € {1,2,3},k > 2} and let M be a perfect
matching of G. Then the 2-factor G \ M induces a path of length 2 and an
isolated vertex in each claw C; (i € Z;) and M fulfils one (and only one) of
the three following properties:

(i) For every i in Z, M contains ezactly one edge joining the claw C; to
the claw Ciyq,

(ii) For every even i in Z, M contains exactly two edges between C; and
Ciy1 and none between C;_1 and C;,

(iii) For every odd i in Z,, M contains ezactly two edges between C; and
Ciy1 and none between C;_1 and C;.

Moreover, when k is odd M satisfies only item (i).

Proof. Let M be a perfect matching of G = F'S(j, k) for some j € {1, 2, 3}.
Since M contains exactly one edge of each claw, it is obvious that G \ M
induces a path of length 2 and an isolated vertex in each claw C;.

For each claw C; of G the vertex t; must be saturated by an edge of M
whose end (distinct from ¢;) is in {z;,v;, 2;}. Hence there are exactly two
edges of M having one end in C; and the other in C;_; U Cj14.

If there are two edges of M between C; and C;y; then there is no edge
of M between C;_; and C;. If there are two edges of M between C;_; and
C; then there is no edge of M between C; and C;,;. Hence, we get (ii) or
(iii) and we must have an even number k of claws in G.
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Assume now that there is only one edge of M between C;_; and C;. Then
there exists exactly one edge between C; and C;;; and, extending this trick
to each claw of G, we get (i) when k is even or odd. ]

Definition 2. We say that a perfect matching M of F'S(j,k) is of type 1
in Case (i) of Lemma 1 and of type 2 in Cases (ii) and (iii). If neccessary,
to distinguish Case (ii) from Case (iii) we shall say type 2.0 in Case (ii) and
type 2.1 in Case (iii). We note that the numbers of perfect matchings of type
2.0 and of type 2.1 are equal.

Notation. The length of a path P (respectively a cycle I') is denoted by
[(P) (respectively [(T")).

2. COUNTING PERFECT MATCHINGS OF F'S(j,k)

We shall say that a vertex v of a cubic graph G is inflated into a triangle
when we construct a new cubic graph G’ by deleting v and adding three new
vertices inducing a triangle and joining each vertex of the neighbourhood
N(v) of v to a single vertex of this new triangle. We say also that G’ is
obtained from G by a triangular extension. The converse operation is the
contraction or reduction of the triangle. The number of perfect matchings of
G is denoted by u(G).

Lemma 3. Let G be a bipartite cubic graph and let {V1,V5} be the bipartition
of its vertezx set. Assume that each vertex in some subset W1 C V; is inflated
into a triangle and let G' be the graph obtained in that way. Then u(G) =

u(G').

Proof. Note that {V1,V5} is a balanced bipartition and, by Kénig’s The-
orem, the graph G is a cubic 3-edge colourable graph. So, G’ is also a cubic
3-edge colourable graph(hence, G and G’ have perfect matchings). Let M
be a perfect matching of G’. Each vertex of V4 \ W; is saturated by an
edge whose second end vertex is in V5. Let A C V5 be the set of vertices
so saturated in V5. Assume that some triangle of G’ is such that the three
vertices are saturated by three edges having one end in the triangle and the
second one in V5. Then we need to have at least |WW;| + 2 vertices in 15 \ A,
a contradiction. Hence, M must have exactly one edge in each triangle and
the contraction of each triangle in order to get back G transforms M in a
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perfect matching of G. Conversely, each perfect matching of G leads to a
unique perfect matching of G’ and we obtain the result. [ |

Let us denote by u(j, k) the number of perfect matchings of F'S(j, k), u1(j, k)
its number of perfect matchings of type 1 and p9(j, k) its number of perfect
matchings of type 2.

Lemma 4. We have

o 1(1,3) = ju(1,3) =9,
o 1(2,3) = u(2,3) =8,
o 1(3,3) = 1u(3,3) = 6,
o 1(1,2) =9, (1,2) = 3,
o 1(2,2) = 10, 1y (2,2) = 4,
o 1(3,2) =12, 11(3,2) =6

Proof. The cycle containing the external vertices of the claws of the graph
FS(1,3) is xg, 1, %2, Y0, Y1, Y2, 20, 21, 22, Tg- Consider a perfect matching M
containing the edge toxo. There are two cases: (i) x129 € M and (ii) z1t; €
M. In Case (i) we must have yoy1,t121,t222, 20y2 € M. In Case (ii) there are
two sub-cases: (ii).a xoyp € M and (ii).b zots € M. In Case (ii).a we must
have y1ys,t229, 2021 € M and in Case (ll)b we must have yoy1, Y220, 2122 €
M. Thus, there are exactly 3 distinct perfect matching containing tgxg.
By syminetry, there are 3 distinct perfect matchings containing #yyg, and 3
distinct matchings containing ¢yzo, therefore p(1,3) = 9.

It is well known that the Petersen graph has exactly 6 perfect matchings.
Since F'S(2,3) is obtained from the Petersen graph by inflating a vertex
into a triangle these 6 perfect matchings lead to 6 perfect matchings of
FS(2,3). We have two new perfect matchings when considering the three
edges connected to this triangle (we have two ways to include these edges
into a perfect matching). Hence u(2,3) = 8.

FS(3,3) is obtained from K33 by inflating three vertices in the same
colour of the bipartition. Since K33 has six perfect matchings, applying
Lemma 3 we get immediately the result for x(3,3).

Is is a routine matter to obtain the values for F'S(j,2) (j € {1,2,3}). m

Theorem 5. The numbers p1(j, k) of perfect matchings of type 1 of F'S(j, k)
(j €{1,2,3}) are given by:
hd :u’l(lvk) = 2k - (_1)k7
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° 11(2,k) = 2ka
o 11(3,k) =28 +2(—1).

Proof. By Lemma 4, when k = 2 or k = 3 p1(j, k) fulfils our requirement.
We want to compute p;(j,k) by induction on k and we assume that the
property holds for F.S(j,k —2) with k >4 (j € {1,2,3}).

The following trick will be helpful. Let us consider the four consecutive
claws Cy_g, Ck_1, Cg and C of FS(j, k) (j € {1,2,3}). We can delete C_;
and Cy and join the three external vertices of Ci_o to the three external
vertices of C7 by a matching (to choose) in such a way that the resulting
graph is a graph F'S(j',k — 2), with j' € {1,2,3} (it must be clear that j
and j’ may be different). In order to count the number of perfect matchings
of type 1 of F'S(j, k) we need to consider nine numbers, each of them counts
the number of perfect matchings of type 1 of F\S(j, k) using two edges, one
being an edge between Cy_o and Cj_; and the other being an edge between
Cl and CO.

Let us define v(e, ¢’) as the number of perfect matchings of type 1 con-
taining the two edges e and ¢’. Then we set

a1 = v(Tp—2%k—1,20%1), a2 = V(Tp_2Tk—1,Y0Y1), a3 = V(Tk—2Tk—1,2021),

as = V(Yk—2Yk—1,T0T1), a5 = V(Yk—2Yk—1,Y0Y1); a6 = V(Yk—2Yk—1,20%1),

a7 = v(2p—22k—1,To%1), a8 = V(2k—22k—1,Y0Y1), A9 = V(Zk—22k—1, 20%1)-
Obviously we have i (j,k) = S0, a;.

Let us delete the vertices of Cy_; and Cj and denote by H the resulting
induced subgraph.

Claim 1. When j = 1, we have

az + ag + a7 = 2u1 (1, k — 2),
a; +as +ag = u1(3,k — 2),
as + aq +ag = }Ll(l,k‘ — 2)
Proof. Without loss of generality we can consider that z;_1yo, yrs—120 and
2120 are edges of F.S(1,k).
In order to evaluate as + ag + a7 we add the edges xy_sy1, yp_oz1 and

zp—ox1 to H. In other words we set Hy = (V(H), E(H) U {xk_2y1, Yk—221,
zk—271}), we get hence F'S(1,k — 2). Each perfect matching of type 1 of
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H;y containing zj_sy; gives two perfect matchings of type 1 of FS(1,k)
as well as each perfect matching of type 1 of H; containing yi_oz; and
each perfect matching of type 1 containing the edge z;_ox1. If follows that
as +ag +ay = 2/11(1,]{ — 2).

Let us now set Hy = (V(H),E(H) U {xx_ox1,Yk—2y1, 2k—221}). The
graph Hs is isomorphic to F'S(3,k — 2). Each perfect matching of type 1
of Hy containing zj_ox, gives one perfect matching of type 1 of F'S(1,k)
as well as each perfect matching of type 1 of Hy containing yp_oy; and
each perfect matching of type 1 of H, containing z;_oz;. Consequently
ay + as +ag = p1(3,k — 2).

For computing as+ a4+ ag we set Hy = (V(H), E(H)U{zk_221, yp_271,
zk—2Y1}), that is a graph isomorphic to F'S(1, k — 2). Each perfect matching
of type 1 of Hs containing xj_ 521 gives one perfect matching of type 1
of F'S(1,k) as well as each perfect matching of type 1 of Hs containing
yr_ox1 and each perfect matching of type 1 of H3 containing z,_sy;. Thus
as + ag + ag = p1(1, k — 2) as claimed. O

Claim 2. When j = 2, we have

a1+ ag +ag = 2u1(2,k — 2),
a —|—CL4 +a9 - M1(27k - 2)7
az +as + a7 = p1(2,k — 2).

Proof. Without loss of generality we can consider that x;_1x9, yr_120 and
zkp—1Yo are edges of F'S(2,k).

In order to evaluate ay + ag + ag we add the edges x;_ox1, yr_o21 and
zk—2y1 to H. In other words we set Hy = (V(H), E(H) U {xg_ow1, yr_221,
Zk—2Y1}), we get hence F'S(2,k — 2). Each perfect matching of type 1 of H;
leads to precisely 2 perfect matchings of type 1 of F'S(2, k), thus a;+ag+ag =
201 (2, k — 2).

We consider now the graph Hy = (V(H),E(H) U {xk_2y1, yk—_271,
zk—271}) isomorphic to F'S(2,k — 2). Each perfect matching of type 1 of Ho
gives one perfect matching of type 1 of F'S(2, k), consequently as+as+ag =
H1 (27 k — 2)

Let H3 = (V(H), E(H)U{zk_221,Yk—2Y1, 2k—2%1}), a graph isomorphic
to F'S(2,k — 2). Each perfect matching of type 1 of Hj leads to precisely
one perfect matching of type 1 of F'S(2,k), consequently as + a5 + a7 =
1 (2, k— 2). a
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Claim 3. When j = 3, we have

a; +as+ag = 2#1(3,]’»‘ — 2),
a —|—CL6 +CL7 - Ml(lak - 2)7
ag +ag +ag = p1(1,k —2).

Proof. Suppose that x_120, yr_1Y0, 2k_120 are edges of FS(3,k).

In order to evaluate ay + a5 + ag we add the edges xp_sx1, yr_oy1 and
zp—_221 to H. In other words we set H; = (V(H), E(H) U {xg_2x1, Yp—2Y1,
zk—221}), we get hence FS(3,k — 2). Each perfect matching of type 1 of
Hy can be extended into 2 perfect matchings of type 1 of F'S(3,k), thus
a1 +as +ag = 2/11(3,/{ —2).

Let H, be isomorphic to FS(1,k — 2) with the edges zp_oy1, yk_221,
zp—ox1. A perfect matching of type 1 of Hy can precisely be extended into
one perfect matching of type 1 of F'S(3,k), then as + ag + a7 = p1(1,k — 2).

Let H3 = (V(H),E(H)U{xg_221,Yr_2%1, 2k—2Y1}), & graph isomorphic
to F'S(1,k — 2). Each perfect matching of type 1 of Hs gives one perfect
matching of type 1 of F'S(3, k), consequently as + ay + ag = p1(1,k —2). O

Recall that (4, k) = Y5, a;. Then it follows from Claims 1, 2 and 3:

Ml(l,k) = 3#1(1,]’»‘ — 2) + M1(3,k‘ — 2),
Ml(Qak) = 4#1(2,k - 2)a
M1(3,k‘) = 2#1(3,k — 2) + 2,&1(1,k — 2).

By induction,

p(1,k —2) = 2872 — (—1)k,
pa(2,k —2) = 2",
p1(3,k —2) = 2872 4 2(—1)",

Thus
p(Lk) = 3272 — (=D)F) + 252 4 2(—1)F = 28 — (—1)¥,
p(2,k) = 4(2" 2) 2",
p1(3,k) = 22872 1 2(—1)k) 4 2(28 72 — (—1)F) = 2F 4 2(—1)*.

This ends the proof. [
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Theorem 6. The number ns(j,k) of perfect matchings of FS(j,k) (j €
{1,2,3}) verifies: p2(j, k) = 0 when k is odd and us(j, k) = 2x3% otherwise.

Proof. When k is odd, we have us(j, k) = 0 by Lemma 1.

When £ is even, let M be a perfect matching of type 2 of F'S(j, k). For
every two consecutive claws C; and Cjy1, by Lemma 1, we have either two
edges of M joining the external vertices of C; to those of C;1; or none. We
have 3 ways to choose 2 edges between C; and C;, 1, each choice of these two
edges can be completed in a unique way in a perfect matching of the subgraph
C; UC;11. Hence we get easily that the number of perfect matchings of type

2in FS(j, k) (G € {1,2,3}) is pa(j, k) = 2 x 35. n
From Theorem 5 and Theorem 6 we deduce:

Corollary 7. The numbers u(i,k) of perfect matchings of FS(i,k) (i €
{1,2,3}) are given by:

o [(2,k)= 2ka
When k is odd e p(1,k) =2F +1,
o u(3,k)=2F—-2

(2,k) =2
When k is even o p(1,k) =2 x 35 42k — 1,
(3,k) =2

3. SOME STRUCTURAL RESULTS ABOUT PERFECT MATCHINGS OF
FS(j,k)

3.1. Perfect matchings of type 1

Lemma 8. Let M be a perfect matching of type 1 of G = FS(j,k). Then
the 2-factor G\ M has ezactly one or two cycles and each cycle of G\ M
has at least one vertez in each claw C; (i € Z,).

Proof. Let M be a perfect matching of type 1 in GG. Let us consider the
claw C; for some i in Z,. Assume without loss of generality that the edge of
M contained in Cj is t;x;. The cycle of G \ M visiting z; comes from C;_4,
crosses C; by using the vertex z; and goes to C; 1. By Lemma 1, the path
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yit;z; is contained in a cycle of G\ M. The two edges incident to y; and z;
joining C; to C;_1 (as well as those joining C; to C;y1) are not contained
both in M (since M has type 1). Thus, the cycle of G\ M containing y;t;2;
comes from C;_1, crosses C; and goes to C;11. Thus, we have at most two
cycles in G\ M, as claimed, and we can note that each claw must be visited
by these cycles. [

Definition 9. Let us suppose that M is a perfect matching of type 1 in
G = FS(j, k) such that the 2-factor G \ M has exactly two cycles I'; and
5. A claw C; intersected by three vertices of I'y (respectively I's) is said to
be I'1-major (respectively I's-major).

Lemma 10. Let M be a perfect matching of type 1 of G = FS(j, k) such
that the 2-factor G \ M has ezactly two cycles. Then, the lengths of these

two cycles have the same parity as k, and those lengths are distinct when k
15 odd.

Proof. Let 'y and I's be the two cycles of G \ M. By Lemma 8, for
each 7 in Z,; these two cycles must cross the claw C;. Let ki be the number
of I'i-major claws and let ks be the number of I'y-major claws. We have
ki 4+ ko = k, Z(Fl) = 3k, + ko and Z(Fg) = 3ko + k1. When £k is odd, we
must have either &, odd and k9 even, or ky even and ko odd. Then I'; and
I’y have distinct odd lengths. When k is even, we must have either k; and
ko even, or ko and ki odd. Then I'; and I'y have even lengths. [ |

Lemma 11. Let M be a perfect matching of type 1 of G = FS(j, k) such
that the 2-factor G\ M has ezactly two cycles T'y and T's. Suppose that there
are two consecutive I'1-magjor claws C; and Cjq with j € Z, \{k—1}. Then
there is a perfect matching M' of type 1 such that the 2-factor G\ M’ has
ezactly two cycles T} and Ty having the following properties:

(a) forieZ,\{j,j+1} C; is Ty-magor if and only if C; is T'a-magor,
(b) Cjand Cji1 are I'y-major,
(c) UT)) = (1) — 4 and (Th) = I(Ty) + 4.

Proof. Consider the claws C; and C)1;. Since Cj is a I'i-major claw sup-
pose without loss of generality that ¢;z; belongs to M and that I'y contains
the path z)_,z;t;y;y;41 where 2., denotes the neighbour of z; in Cj_;
(then z;x;,1 belongs to M). Since Cj; is I';-major and I'y goes through
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C; and Cj4q, the cycle I'y must contain the path ythijij;H where
m;»+2 denotes the neighbour of x;,1 in Cj 2 (then M contains ;2,1 and
yj+1y;'+2)' Denote by P the path -r;'_1-Tjtjyjyj+1tj+l-rj+1x;+2- Note that
'y contains the path P, = 2} ;221127 | where z;_,; and 27, are defined
similarly. See to the left part of Figure 2.

Let us perform the following local transformation: delete x;z; 1, ¢;z;
and tj412;41 from M and add zjz;jy1, tjz; and tj112541. Let M’ be the
resulting perfect matching. Then the subpath P, of 'y is replaced by P| =
T 177117, 5 and the subpath P of I'y is replaced by Py = 2%, 2;t;y;y;41
tj+12j+12;, o (see Figure 2). We obtain a new 2-factor containing two new
cycles I} and I',. Note that C; and Cji; are I';-major claws and for 7 in
Z,\{j,j + 1} C; is I')-major (respectively I'\-major) if and only if C; is
I'y-major (respectively I'-major). The length of I'; (now I'}) decreases of 4

units while the length of I'y (now I') increases of 4 units. ]
R X 'J. X,+1___ i x_l’ _________51_1’ _____
T e N —
Y y,m\ K Y Y
—_—
I IJ I ) t' ! s
Zj Zin Z 2
CJ 9+1 C G

Figure 2. Local transformation of type 1.

The operation depicted in Lemma 11 above will be called a local transfor-
mation of type 1.

Lemma 12. Let M be a perfect matching of type 1 of G = FS(j, k) such
that the 2-factor G\ M has ezactly two cycles I'y and I'y. Suppose that there
are three consecutive claws Cj, Cj11 and Cjip with j in Z, \ {k — 1,k — 2}
such that C; and Cj1o are I'y-major and Cjy1 is I'y-magor. Then there is a
perfect matching M' of type 1 such that the 2-factor G\ M’ has ezactly two
cycles T and Ty having the following properties:

(a) forie Z,\{j,j+1,j+2} C;is T'y-major if and only if C; is I'y-magor,
(b) Cj and Cjio are T'y-major and Cjiq is I -major,
(c) UT)) = (1) — 2 and I(Th) = I(Ty) + 2.
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Proof. Since C; is I';-major, as in the proof of Lemma 11 suppose that I'y
contains the path w}fletjyjyjﬂ (that is edges t;z; and zjz;41 belong to
M). Since Cj1 is I';-major the cycle I'y contains the edge y;1y;+2. Then
we see that I'y contains the path Q1 = 7;_;7;t;y;yj11Yj+2tj+22j+22] 3 and
that I'y contains the path Q2 = 2}_,zj2j11tj417 1175422}, 3. Note that
yj+1tj+1; Zj4+1%542 and tj+2xj+2 belong to M.

Let us perform the following local transformation: delete ¢;z;, x;x;41,
Zj4+1%542 and .Ij+2tj+2 from M and add xjtj; ZjZj41y Lj+1T 542 and Zj+2tj+2
to M. Let M’ be the resulting perfect matching. Then the subpath Q4
of Fl is re.placed by Qll = .T;—_1.Ij$j+1tj+12j+12j+225-+3 and the subpa.th
Q2 of 'y is replaced by Q5 = 2} _;2t;y;yjt1yj+2tj4+224225 5 (see Fig-
ure 3). We obtain a new 2-factor containing two new cycles named I'
and I';. Note that C; and Cj,o are now I')-major claws and Cjq is I'}-
major. The length of I'; decreases of 2 units while the length of I's in-
creases of 2 units. It is clear that for i € Z, \ {j,7 + 1,j + 2} C; is T'}-
major (respectively I"|-major) if and only if C; is I'y-major (respectively
I'1-major). ]

+2

.
!
.
o -
)

C ¢ Ce G C. Ciez

Figure 3. Local transformation of type 2.

The operation depicted in Lemma 12 above will be called a local transfor-
mation of type 2.

Lemma 13. Let M be a perfect matching of type 1 of G = FS(j, k) such
that the 2-factor G\ M has ezactly two cycles T'y and I's. Suppose that there
are three consecutive claws Cj, Cji1 and Cjio with j in Z, \ {k — 1,k — 2}
such that Cj1 and Cjio are I'y-major and C; is I'1-magjor. Then there is a
perfect matching M' of type 1 such that the 2-factor G\ M’ has ezactly two
cycles T} and T, having the following properties:

(a) forie Z,\{j,j+1,j+2} C;is T'y-major if and only if C; is I'y-magor,
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(b) Cj and Cjq1 are T'y-major and Cj o is I'|-major,
(¢) U(T}) =1(Ty) and [(Th) =1(T2).

Proof. Since Cj is I'i-major, as in the proof of Lemma 11 suppose that
'y contains the path z’;_;7;t;y;y;+1 (that is edges ¢;z; and z;z;41 belong
to M). Since Cj;1 and Cjio are I';-major, the unique vertex of Cj 1 (re-
spectively Cj2) contained in I'; is y;41 (respectively y; 2). Note that the
perfect matching M contains the edges t;2;, x;xj11, tj41Y+1, 2j+12j42 and
tj+2yj+2. Then the path Ry = 2 2;t;y;y;119)+2y; 3 is a subpath of I'y
and the path R2 = Z;',1ZjZj+1tj+1$j+1xj+2tj+22j+229 3 is a subpath of FQ.
See to the left part of Figure 4.

Let us perform the following local transformation: delete ¢;z;, x;x;,1,
tj+1yj+1, Zj41%542 and tj+2yj+2 from M and add xjtj, ZjZj41, tj+1$j+1,
Yj+1Yj+2 and tji0zj40. Let M’ be the resulting perfect matching. Then
the subpath R; of I'y is replaced by R} = 212 4112;42tj12Y;12Y;, 3 and
the subpath R2 of FQ is replaced by R/Q = 3’-1thjyjyj+1tj+lzj+lzj+2zg'+3-
We obtain a new 2-factor containing two new cycles named I'} and I'} such
that {(I')) = I(I'y) and {(T)) = I(T'2) (see Figure 4). It is clear that for
i€ Z,\{j,j+1,7+2} C;is I';-major (respectively I'}-major) if and only if
C; is I'y-major (respectively I';-major). Note that C; and Cj1; are I';-major
and Cj o is I'|-major. |

Figure 4. Local transformation of type 3.

The operation depicted in Lemma 13 above will be called a local transfor-
mation of type 3.

Lemma 14. Let M be a perfect matching of type 1 of G = FS(j, k) such that
the 2-factor G\ M has ezactly two cycles I'y and 'y such that [(I'1) < [(T'2)
and [(T'y) is as great as possible. Then there exists at most one I'i-major
claw.
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Proof. Suppose, for the sake of contradiction, that there exist at least two
I';-major claws. Since [(I'2) is maximum, by Lemma 11 these claws are not
consecutive. Then consider two I'1-major claws C; and Cjy 1 (with h > 1)
such that the h consecutive claws (Cji1,...,C;yp) are I's-major. Since [(T'2)
is maximum, by Lemma 12 the number h is at least 2. Then by applying
r = | 2] consecutive local transformations of type 3 (Lemma 13) we obtain a
perfect matching M () such that the 2-factor G \ M (") has exactly two cycles

r{"” and 1Y with ((1{"”) = (1) and ((T'Y”) = I(T2) and such that C, , x,
2

and Cj;p41 are FY)-major. Since l(FgT)) is maximum, we can conclude by
Lemma 11 and by Lemma 12 that h is neither even nor odd, a contradiction.
]

3.2. Perfect matchings of type 2

We give here a structural result about perfect matchings of type 2 in G =
FS(j,k).

Lemma 15. Let M be a perfect matching of type 2 of G = FS(j,k) (with
k > 4). Then the 2-factor G\ M has ezactly one cycle of even length | > k
and a set of p cycles of length 6 where | 4+ 6p = 4k (with 0 < p < %)

Proof. Let M be a perfect matching of type 2 in G. By Lemma 1 the
number k of claws is even. Let 7 in Z, such that there are two edges of M
between C;_1 and C;. There are no edges of M between C; and C;y; and
two edges of M between C;., and C;,5. We may consider that 0 < i < k—1.
For j € {i,i+2,i+4,...} we denote by e; the unique edge of G\ M having
one end vertex in C;_; and the other in (. Let us denote by A the set
{€i,eit2,€ir4,...}. We note that | A |= %

Assume without loss of generality that the two edges of M between C;_;
and C; have end vertices in C; which are x; and y; (then z; is the end vertex
of e¢; in C;). Two cases may now occur.

Case 1. The end vertices in C;,1 of the two edges of M between C;.4
and C;1o are x;11 and y; 1 (then z;,1 is the end vertex of e, 5 in C;11).

In that case the 2-factor G \ M contains the cycle of length 6 x;x;11t;11
Yi+1Yit; while the edge z;2;11 of G\ M connects e; and e; 9.

Case 2. The end vertices in C; 1 of the two edges of M between C;, 1 and
Ci1o are y; 11 and z; 1 (respectively x; 1 and 2;,1). Then z;,, (respectively
y;+1) is the end vertex of e;1 o in Cj1q.



ON A FaMILY OF CUBIC GRAPHS CONTAINING THE ... 303

In that case the edges e; and e;;o are connected in G \ M by the path
ziziﬂti“yi“yitﬂiwiﬂ (respectively zizi_ﬂti+1mi+1mitiy¢yi+1).

The same reasoning can be done for {e; 2, ¢€;14}, {€i+4, €16}, and so on.
Then, we see that the set A is contained in a unique cycle I' of G\ M which
crosses each claw. Thus, the length [ of I" is at least k. More precisely, each
e;j in A contributes for 1 in [, in Case 1 the edge z;z; 1 contributes for 1 in
I and in Case 2 the path z;z;11t;+19i11Y:tix;2i41 contributes for 7 in [. Let
us suppose that Case 1 appears p times (0 < p < %), that is to say G\ M
contains p cycles of length 6. Since Case 2 appears % — p times, the length
of Tisl="%+p+7(&—p) =4k —6p. n

Remark 16. If £ is even then by Lemmas 8, 10 and 15 F'S(j, k) has an
even 2-factor. That is to say F'S(j,k) is a cubic 3-edge colourable graph.

4. PERFECT MATCHINGS AND HAMILTONIAN CYCLES OF F(j, k)

4.1. Perfect matchings of type 1 and hamiltonicity

Theorem 17. Let M be a perfect matching of type 1 of G = F'S(j,k). Then
the 2-factor G\ M is a hamiltonian cycle except for k odd and j = 2, and
for k even and j =1 or 3.

Proof. Suppose that there exists a perfect matching M of type 1 of G such
that G\ M is not a hamiltonian cycle. By Lemma 8 and Lemma 10 the 2-
factor G'\ M is made of exactly two cycles I'y and I'; whose lengths have the
same parity as k. Without loss of generality we suppose that [(T'y) < [(T'2).
Assume moreover that among the perfect matchings of type 1 of G such that
the 2-factor G\ M is composed of two cycles, M has been chosen in such
a way that the length of the longest cycle I'y is as great as possible. By
Lemma 14 there exists at most one I';-major claw.

Case 1. There exists one I';-major claw.
Without loss of generality, suppose that Cj is intersected by I'y into {yo, to,
xo} and that y;_,yo belongs to I';. Since for every i # 0 the claw C; is T's-
major, 'y contains the vertices yo, to, xo, 1, T2,...,Tr_1 which means that

L1 = Yo-
o If Kk =2r + 1 with » > 1 then I'y contains the path

zoz1tiy1yotozs . .. 2op—1tor —1Y2r—1Y2rtor2or.
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Thus, yoTr—_1, ToYk—1, 202k—1 are edges of G. This means that Uii'éfl{Cl- \
{t;}} induces two cycles, that is to say j = 2 and G = FS(2,k).

o If kK = 2r + 2 with » > 1 then I'y contains the path

zoz1t1y1yatozo - . . Zor—1lor—1Y2r—1Y2rtor2or 22r 1820 +1Y2r+1-

Thus, zgzr_1, Yyorp—1 and zgyr_; are edges. This means that Ulegfl{Cl- \
{t;}} induces one cycle, that is to say j = 1 and G = F'S(1,k).

Case 2. There is no I';-major claw.
Suppose that ¢ belongs to I';. Then, I'y contains zg, x1,...,Tp_1-

o If Kk =2r + 1 with » > 1 then I'y contains the path

Yoltozoz1t1y1ye - - - 2or—1tor—1Y2r—1Y2rlor2or.

Thus, ToTi_1, Yozk—1 and zgy,_1 are edges of G and the set Uﬁz’g’l{@\{ti}}
induces two cycles,that is to say j = 2 and G = F'S(2, k).

e If Kk = 2r + 2 with » > 1 then I'y contains the path

Yoltozoz1t1y1ye - - - Yortorzorzort1torr1Y2r41-

Thus, zorr_1, Yoyr—1 and zgz,_; are edges. This means that Uizlgfl{CZ- \

i

{t;}} induces three cycles, that is to say j = 3 and G = F'S(3, k). [ ]

Definition 18. A cubic graph G is said to be 2-factor hamiltonian [6] if
every 2-factor of GG is a hamiltonian cycle (or equivalently, if for every perfect
matching M of G the 2-factor G \ M is a hamiltonian cycle).

By Theorem 17 for any odd & > 3 and j € {1,3} or for any even k and
j = 2, and for every perfect matching M of type 1 in F'S(j, k) the 2-factor
FS(j,k) \ M is a hamiltonian cycle. By Lemma 15 F'S(2,k) (kK > 4) may
have a perfect matching M of type 2 such that the 2-factor F'S(2,k) \ M is
not a hamiltonian cycle (it may contains cycles of length 6).

Then we have the following.

Corollary 19. A graph G = FS(j, k) is 2-factor hamiltonian if and only if
k is odd and j =1 or 3.
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We note that F'S(1,3) is the "Triplex Graph" of Robertson, Seymour and
Thomas [15]. We shall examine other known results about 2-factor hamilto-
nian cubic graphs in Section 5..

Corollary 20. The chromatic indez of a graph G = FS(j, k) is 4 if and only
if j =2 and k is odd.

Proof. When j = 2 and k is odd, any 2-factor must have at least two cycles,
by Theorem 17. Then Lemma 10 implies that any 2-factor is composed of
two odd cycles. Hence GG has chromatic index 4.

When j =1 or 3 and k is odd by Theorem 17 F'S(j, k) is hamiltonian.
If k is even then by Lemmas 8, 10 and 15 F'S(j, k) has an even 2-factor. m

4.2. Perfect matchings of type 2 and hamiltonicity

At this point of the discourse one may ask what happens for perfect match-
ings of type 2 in F'S(j,k) (k even). Can we characterize and count perfect
matchings of type 2, complementary 2-factor of which is a hamiltonian cy-
cle 7 An affirmative answer shall be given.

Let us consider a perfect matching M of type 2 in F'S(j,2p) with p > 2.
Suppose that there are no edges of M between Co; ;1 and Cy; (for any i > 1),
that is to say M is a matching of type 2.0 (see Definition 2). Consider two
consecutive claws Cy; and Cy; 41 (0 < i < p—1). There are three cases:

Case (x).
{y2iy2i4+1, 22i22i+1} C M (then, M N (Cy; U Coit1) = {z2itei, T2it1t2it1})-

Case (y).
{z2iT2it1, 22i22i41} C M (then, M N (Co U Coiv1) = {y2it2i, Y2it+1t2it1})-

Case (z).
{x2i22i41, y2iy2i41} C M (then, M N (Cy U Coit1) = {22it2i, 22i41t2i41})-

The subgraph induced on C5; U Co;11 is called a block. In Case (x) (respec-
tively Case (y), Case (z)) a block is called a block of type X (respectively
block of type Y, block of type Z). Then FS(j,2p) with a perfect matching M
of type 2.0 can be seen as a sequence of p blocks properly connected. In other
words, a perfect matching M of type 2 in F'S(j,2p) is entirely described by
a word of length p on the alphabet of three letters {X,Y,Z}. The block
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Co U C is called initial block and the block Cy,_1 U Cy, is called terminal
block. These extremal blocks are not considered here as consecutive blocks.

By Lemma 15, F'S(j,2p)\ M has no 6-cycles if and only if F.S(j,2p)\ M is
a unique even cycle. It is an easy matter to prove that two consecutive blocks
do not induce a 6-cycle if and only if they are not of the same type. Then
the possible configurations for two consecutive blocks are XY, XZ, Y X,
YZ,ZX and ZY. To eliminate a possible 6-cycle in Cy U Co,—1 we have to
determine for every j € {1,2,3} the forbidden extremal configurations. An
extremal configuration shall be denoted by a word on two letters in {X,Y, 7}
such that the left letter denotes the type of the initial block Cy U Cy and the
right letter denotes the type of the terminal block Cy,_; U Cy,. We suppose
that the extremal blocks are connected for j = 1 by the edges 22,120,
Y2p—120 and 22p—1Y0; for j =2 by the edges T2p—120, Y2p—120 and Z2p—1Y0
and for j = 3 by the edges x9,_120, y2p—1Y0 and 22, _120. Then, it is easy to
verify that we have the following result.

Lemma 21. Let M be a perfect matching of type 2.0 of G = FS(j,2p)
(with p > 2) such that the 2-factor G\ M is a hamiltonian cycle. Then the
forbidden extremal configurations are

XY,YZ and ZX for FS(1,2p),
XX,YZ and ZY for FS(2,2p),
and XX, YY and ZZ for FS(3,2p).

Thus, any perfect matching M of type 2.0 of F'S(j,2p) such that the 2-
factor G \ M is a hamiltonian cycle is totally characterized by a word of
length p on the alphabet { X, Y, Z} having no two identical consecutive letters
and such that the sub-word [initial letter|[terminal letter| is not a forbidden
configuration. Then, we are in position to obtain the number of such perfect
matchings in F'S(j,2p). Let us denote by 1, ,(7,2p) (respectively pb (J, 2p),
wh(4,2p)) the number of perfect matchings of type 2.0 (respectively type
2.1, type 2) complementary to a hamiltonian cycle in F'S(j,2p). Clearly

Theorem 22. The numbers 15(j, 2p) of perfect matchings of type 2 comple-
mentary to hamiltonian cycles in FS(j,2p) (j € {1,2,3}) are given by:

pp(1,2p) = 201 + (—1)PF2,
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15(2,2p) = 2741,
and 11(3,2p) = 2P 4+ (—1)P4.

Proof. Consider, as previously, perfect matchings of type 2.0. Let « and 3
be two letters in {X,Y, Z} (not necessarily distinct). Let Agﬁ be the set of
words of length p on {X,Y, Z} having no two consecutive identical letters,
beginning by « and ending by a letter distinct from 3. Denote the number
of words in A 5 by al 5- Let BY 5 be the set of words of length p on {X,Y, Z}
having no two consecutive identical letters, beginning by « and ending by .
Denote by " 5 the number of words in BY 5

Clearly, the number of words of length p having no two consecutive
identical letters and beginning by « is 2P~!. Then aby+ b5 = 2=l The
deletion of the last § of a word in B? 5 gives a word in AP El and the addition
of (3 to the right of a word in A” 51 gives a word in B” 5

Thus bgﬁ = aﬁgl and for every p > 3 agﬁ =2or-1_ aﬁ?. We note that
aiB:Zifazﬁ, andaiﬁzlifa7éﬂ. If « = 3 we have to solve the
recurrent sequence: us = 2 and u, = 2P~ 1 —w, ; for p > 3. If a # 3 we
have to solve the recurrent sequence: v, = 1 and v, = or—1 _ vp—1 for p > 3.
Then we obtain u, = (2~ 4+ (—1)?) and v, = (2P + (—1)P*1) for p > 2.

By Lemma 21

pho(1,2p) = aiy + Y.y + alyy = 3v, = 20 + (=1)PH,
tho(2,2p) = i  + db, + by = up + 2v, = 2P,
and yi50(3,2p) = aiy + ayy +aly = 3up = 2P + (—1)P2.

Since 4i5(j,2p) = py0(d,2p) + w51 (4, 2p) and pho(4,2p) = i 4(j,2p) we
obtain the announced results. []

Remark 23. We see that 15 (j,2p) ~ 2P*! and this is to compare with the
number us(j,2p) = 2 x 3P of perfect matchings of type 2 in F'S(j,2p) (see
backward in Section 2).

4.3. Strong matchings and Jaeger’s graphs

For a given graph G = (V, E) a strong matching (or induced matching) is a
matching S such that no two edges of S are joined by an edge of G. That
is, S is the set of edges of the subgraph of G induced by the set V(S). We
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consider cubic graphs having a perfect matching which is the union of two
strong matchings that we call Jaeger’s graph (in his thesis [9] Jaeger called
these cubic graphs equitable). We call Jaeger’s matching a perfect matching
M of a cubic graph G which is the union of two strong matchings Mp and
Mpg. Set B =V(Mp) (the blue vertices) and R = V(Mg) (the red vertices).
An edge of G is said mized if its end vertices have distinct colours. Since the
set of mixed edges is F(G) \ M, the 2-factor G\ M is even and | B |=| M |.
Thus, every Jaeger’s graph G is a cubic 3-edge colourable graphand for any
Jaeger’s matching M = MpU Mg, | Mp |=| Mg |. See, for instance, [3] and
[4] for some properties of these graphs.

In this subsection we determine the values of j and k for which a graph
FS(j,k) is a Jaeger’s graph.

Lemma 24. If G = FS(j,k) is a Jaeger’s graph (with k > 3) and M = Mp
U Mg is a Jaeger’s matching of G, then M 1is a perfect matching of type 1.

Proof. Suppose that M is of type 2 and suppose without loss of generality
that there are two edges of M between Cy and C4, for instance xgx; and
yoy1. Then CoN M = {tgzo} and Cy N M = {t121}. Suppose that xox; and
yoy1 belong to Mp. Since Mp is a strong matching, tyzy and ¢;z; belong to
M\ Mp = Mpg. This is impossible because Mp, is also a strong matching.
By symmetry there are no two edges of Mg between Cy and C;. Then there
is one edge of Mp between Cy and C, zgr; for instance, and one edge of
Mg between Cy and C1, yoy; for instance. Since Mp and Mp are strong
matchings, there is no edge of M in Cy U C1, a contradiction. Thus, M is a
perfect matching of type 1. [

Lemma 25. If G = FS(j,k) is a Jaeger’s graph (with k > 3), then either
(j=1land k=1 or2 (mod 3)) or (=3 and k=0 (mod 3)).

Proof. Let M = Mp U Mg be a Jaeger’s matching of G. By Lemma
24 M is a perfect matching of type 1. Suppose without loss of generality
that Mp N E(Cy) = {xoto}. Since Mp is a strong matching there is no
edge of Mp between Cy and C;. Suppose, without loss of generality, that
the edge in Mp joining Cy to Cy is yoy1. Consider the claws Cy, C; and
C5. Since Mp and Mp are strong matchings, we can see that the choices
of xgtg € Mp and ygy; € Mg fixes the positions of the other edges of Mp
and Mp. More precisely, {t1z1,y2t2} C Mp and {x;x9, 2025} C Mp. This
unique configuration is depicted in Figure 5.
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Figure 5. Strong matchings Mp (bold edges) and My (dashed edges).

If & > 4 then we see that 2923 € Mg, x3t3 € Mp, and ys3y), € Mg. So,
the local situation in (3 is similar to that in Cj, and we can see that there
is a unique Jaeger’s matching M = Mp U Mg such that zgty € Mp and
Yyoy1 € Mg in the graph FS(j,k). We have to verify the coherence of the
connections between the claws Cj_; and Cy. We note that Mg = M N
(UZE1E(C;)) and My is a strong matching included in the 2-factor induced
by U5 {V(Ci) \ {t:}}-

Case 1. k = 3p with p > 1.
We have xgtg € Mg, Yp—1tk—1 € Mp, xp_oxp_1 € Mg and 2’127120 =
2k—12) € Mp (that is, zp_120 € Mg). Thus, zx_120, Yk—1Y0 and xp_120
are edges of F'S(j,3p) and we must have j = 3.

Case 2. k=3p+ 1 with p > 1.
We have xotg € Mp, xp_1tk—1 € Mp (that is, xp_120 Qé E(G)), Zk—92k—1 €
Mg and z; 20 = yr—1yy € Mg (that is, yz_120 € Mg). Thus, yz_120,
xp—1Yyo and zp_qx are edges of F'S(j,3p + 1) and we must have j = 1.

Case 3. k =3p+ 2 with p > 1.
We have xotg € Mp, zp_1tp—1 € Mp, yp_oys—1 € Mpg and Z];_lz(] =
xp_1xy € Mp (that is xx_120 € Mp). Thus, zx_120, Yk—120 and zx_1yo
are edges of F'S(j,3p + 2) and we must have j = 1. [

Remark 26. It follows from Lemma 25 that for every k > 3 the graph
FS(2,k) is not a Jaeger’s graph. This is obvious when k is odd, since the

flower snarks have chromatic index 4.

Then, we obtain the following.
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Theorem 27. For j € {1,2,3} and k > 2, the graph G = FS(j,k) is a
Jaeger’s graph if and only if

either k=1 or 2 (mod 3) and j =1,
or k=0 (mod 3) and j = 3.

Moreover, F'S(1,2) has 3 Jaeger’s matchings and for k > 3 a Jaeger’s graph
G = FS(j,k) has exactly 6 Jaeger’s matchings.

Proof. For k =2 we remark that F/S(1,2) (that is the cube) has exactly
three distinct Jaeger’s matchings M, My and Mjz. Following our notations:
My = {woto, tlzl} U {yoyl, 201'1}, My = {Zoto, tlyl} U {yozl, 1‘01‘1} and M3 =
{yoto, t121} U {2021, Toy1 }-

For k > 3, by Lemma 25, condition

(*) (J=landk=1or2 (mod3))or (j=3and k=0 (mod 3))

is a necessary condition for F'S(j, k) to be a Jaeger’s graph.

Consider the function ®xy : V(G) — V(G) such that for every i in
Zk’ (I)X7y(ti) = ti, (I)X,y(zi) = Zi, (I)X7y(1'i) =1Y; and (I)X’y(yi) = Z;. Define
similarly ®x 7 and ®y 7. For j = 1 or 3 these functions are automorphisms
of FS(j,k). Thus, the process described in the proof of Lemma 25 is a
constructive process of all Jaeger’s matchings in a graph FS(j, k) (with k >
3) verifying condition (*).

We remark that for any choice of an edge e of C to be in Mp there are
two distinct possible choices for an edge f between Cy and Cy to be in Mg,
and such a pair {e, f} corresponds exactly to one Jaeger’s matching. Then,
a Jaeger’s graph F'S(j, k) (with k > 3) has exactly 6 Jaeger’s matchings. m

Remark 28. The Berge-Fulkerson Conjecture states that if G is a bridge-
less cubic graph, then there exist six perfect matchings My, ..., Mg of G (not
necessarily distinct) with the property that every edge of G is contained in
exactly two of M, ..., Mg (this conjecture is attributed to Berge in [16] but
appears in [5]). Using each colour of a cubic 3-edge colourable graph twice,
we see that such a graph fulfils the Berge-Fulkerson Conjecture. Very few is
known about this conjecture excepted that it holds for the Petersen graph
and for cubic 3-edge colourable graphs. So, Berge-Fulkerson Conjecture holds
for Jaeger’s graphs, but generally we do not know if we can find six distinct
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perfect matchings. We remark that if F'S(j,k), with £ > 3, is a Jaeger’s
graph then its six Jaeger’s matchings are such that every edge is contained
in exactly two of them.

5. 2-FACTOR HAMILTONIAN CUBIC GRAPHS

Recall that a simple graph of maximum degree d > 1 with edge chromatic
number equal to d is said to be a Class 1 graph. For any d-regular simple
graph (with d > 1) of even order and of Class 1, for any minimum edge-
colouring of such a graph, the set of edges having a given colour is a perfect
matching (or 1-factor). Such a regular graph is also called a 1-factorable
graph. A Class 1 d-regular graph of even order is strongly hamiltonian or
perfectly 1-factorable (or is a Hamilton graph in the Kotzig’s terminology
[10]) if it has an edge colouring such that the union of any two colours
is a hamiltonian cycle. Such an edge colouring is said to be a Hamilton
decomposition in the Kotzig’s terminology. In [11] by using two operations
p and 7 (described also in [10]) and starting from the #-graph (two vertices
joined by three parallel edges) he obtains all strongly hamiltonian cubic
graphs, but these operations do not always preserve planarity. In his paper
[10] he describes a method for constructing planar strongly hamiltonian cubic
graphs and he deals with the relation between strongly hamiltonian cubic
graphs and 4-regular graphs which can be decomposed into two hamiltonian
cycles. See also [12] and a recent work on strongly hamiltonian cubic graphs
[2] in which the authors give a new construction of strongly hamiltonian
graphs.

A Class 1 regular graph such that every edge colouring is a Hamilton
decomposition is called a pure Hamilton graph by Kotzig [10]. Note that
K, is a pure Hamilton graph and every cubic graph obtained from K, by
a sequence of triangular extensions is also a pure Hamilton cubic graph. In
the paper [10] of Kotzig, a consequence of his Theorem 9 (p.77) concerning
pure Hamilton graphs is that the family of pure Hamilton graphs that he
exhibits is precisely the family obtained from K, by triangular extensions.
Are there others pure Hamilton cubic graphs ? The answer is "yes".

We remark that 2-factor hamiltonian cubic graphs defined above (see
Definition 18) are pure Hamilton graphs (in the Kotzig’s sense) but the con-
verse is false because K is 2-factor hamiltonian and the pure Hamilton cubic
graph on 6 vertices obtained from K, by a triangular extension (denoted by
PR3) is not 2-factor hamiltonian. Observe that the operation of triangular
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extension preserves the property "pure Hamilton", but does not preserve the
property "2-factor hamiltonian". The Heawood graph Hj (on 14 vertices) is
pure Hamiltonian, more precisely it is 2-factor hamiltonian (see [7] Propo-
sition 1.1 and Remark 2.7). Then, the graphs obtained from the Heawood
graph Hj by triangular extensions are also pure Hamilton graphs.

A minimally 1-factorable graph G is defined by Labbate and Funk [7] as
a Class 1 regular graph of even order such that every perfect matching of G
is contained in exactly one 1-factorization of GG. In their article they study
bipartite minimally 1-factorable graphs and prove that such a graph G has
necessarily a degree d < 3. If G is a minimally 1-factorable cubic graph then
the complementary 2-factor of any perfect matching has a unique decom-
position into two perfect matchings, therefore this 2-factor is a hamiltonian
cycle of G, that is GG is 2-factor hamiltonian. Conversely it is easy to see
that any 2-factor hamiltonian cubic graph is minimally 1-factorable. The
complete bipartite graph K33 and the Heawood graph Hj are examples of
2-factor hamiltonian bipartite graph given by Labbate and Funk. Starting
from Hy, from K3 and from three copies of any tree of maximum degree
3 and using three operations called amalgamations the authors exhibit an
infinite family of bipartite 2-factor hamiltonian cubic graphs, namely the
poly — HB — R — R? graphs (see [7] for more details). Except Hy, these
graphs are exactly cyclically 3-edge connected. Others structural results
about 2-factor hamiltonian bipartite cubic graph are obtained in [13], [14].
These results have been completed and a simple method to generate 2-factor
hamiltonian bipartite cubic graphs was given in [6].

Proposition 29 (Lemma 3.3, [6]). Let G be a 2-factor hamiltonian bipar-
tite cubic graph. Then G is 3-connected and | V(G) |= 2 (mod 4).

Let G; and G2 be disjoint cubic graphs, x € v(G1), y € v(G2). Let z1, 22,23
(respectively v1,12,y3) be the neighbours of z in Gy (respectively, of y in
G2). The cubic graph G such that V(G) = (V(G1) \ {z}) U (V(G2) \
{y}) and E(G) = (E(G1) \ {212, 220, x32}) U (E(G2) \ {519, y2y,y3y}) U
{z1y1, T2y, v3ys3} is said to be a star product and G is denoted by (G1,z) *
(Ga,y). Since {x1y1,x2y2, x3ys} is a cyclic edge-cut of G, a star product of
two 3-connected cubic graphs has cyclic edge-connectivity 3.

Proposition 30 (Proposition 3.1, [6]). If a bipartite cubic graph G can
be represented as a star product G = (G1,z) * (Ga,y), then G is 2-factor
hamiltonian if and only if G1 and G4 are 2-factor hamiltonian.
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Then, taking iterated star products of K33 and the Heawood graph Hj an
infinite family of 2-factor hamiltonian cubic graphs is obtained. These graphs
(excepted K33 and Hj) are exactly cyclically 3-edge connected. In [6] the
authors conjecture that the process is complete.

Conjecture 31 (Funk, Jackson, Labbate, Sheehan (2003)[6]). Let G be a
bipartite 2-factor hamiltonian cubic graph. Then G can be obtained from
K3 3 and the Heawood graph Hj by repeated star products.

The authors specify that a smallest counterexample to Conjecture 31 is a
cyclically 4-edge connected cubic graph of girth at least 6, and that to show
this result it would suffice to prove that Hj is the only 2-factor hamiltonian
cyclically 4-edge connected bipartite cubic graph of girth at least 6. Note
that some results have been generalized in [1].

To conclude, we may ask what happens for non bipartite 2-factor hamil-
tonian cubic graphs. Recall that K4 and FS(1,3) (the "Triplex Graph" of
Robertson, Seymour and Thomas [15]) are 2-factor hamiltonian cubic graphs.
By Corollary 19 the graphs F'S(j, k) with k£ odd and j = 1 or 3 introduced
in this paper form a new infinite family of non bipartite 2-factor hamiltonian
cubic graphs. We remark that they are cyclically 6-edge connected. Can we
generate others families of non bipartite 2-factor hamiltonian cubic graphs 7
Since PR3 (the cubic graph on 6 vertices obtained from K, by a triangular
extension) is not 2-factor hamiltonian and PR3 = K4 x K4, the star product
operation is surely not a possible tool.
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