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Abstract

Using multilinear functions and random procedures, new upper
bounds on the domination number of a bipartite graph in terms of
the cardinalities and the minimum degrees of the two colour classes
are established.
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We consider finite, undirected and simple graphs without isolated vertices.
The domination number v = v(G) of a graph G = (V| E) is the minimum
cardinality of a set D C V of vertices such that every vertex in V \ D
has a neighbour in D. This parameter is one of the most well-studied in
graph theory, and the two volume monograph [12, 13] provides an impressive
account of the research related to this concept.

Here we establish upper bounds on the domination number of a bipar-
tite graph. Note that the decision problem DOMINATION remains NP-
complete if the instance is restricted to bipartite graphs (e.g., see [7]).

Many random procedures constructing dominating sets essentially yield
a bound on the domination number in terms of a multilinear function de-
pending on the involved probabilities. For instance, if we use an individual
probability x; for every vertex v; € V- = {v1,...,v,} of the graph G in the
procedure of Alon and Spencer [1], then the expected cardinality of the re-
sulting dominating set equals Y7 | (z; + ijeNG[vi](l — x;)). This is in
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fact a multilinear function, i.e., fixing all but one variable results in a linear
function.

To obtain a compact expression as a bound, one often sets all values
of z; equal to some x and solves the arising one-dimensional optimization
problem over x € [0, 1].

A modification of this approach is proposed in [3, 8, 10]. Given values for
the probabilities z;, the partial derivatives of the multilinear bound indicate
changes of the x; which would decrease the value of the bound. Depending
on the partial derivatives, x; is reset to 0 or 1. To allow for some further
flexibility in [3], a parameter b > 0 is used in order to decide which values
to modify in which way.

Here we apply the approach in [3] for bipartite graphs. For a bipartite
graph G = (V, E) with vertex set V.= SUT = {v1,v2,...,v,}, we derive
upper bounds on the domination number v of G in terms of the minimum
degrees, d1 and ds, of the vertices in the colour classes S and T', respectively,

= %, and n.
The following Theorem 1 is the main result of that paper and is applica-
ble if a result v < min(,, 5.y, f(@1, ..., 7,) for a multilinear function

f: R™ — R associated to the graph G is known (e.g., such results can be
found in [1, 3, 8, 9, 10]) and the function f has a certain property Py, where
b > 0 is the mentioned parameter used in [3]. The rest of the paper is or-
ganized as follows. As an example how to apply Theorem 1, in Lemma 2
a special function f having property P; is considered. The resulting upper
bounds on 7 by using the function f of Lemma 2 are contained in the follow-
ing corollaries. Finally, we give some numerical bounds on ﬁ and compare
them with bounds in [1, 2, 3, 5, 6, 8, 9, 10, 14].

Given a multilinear function f(z1,...,2,), S C {v1,...,v,}, somex,y €
[0,1] and some b > 0, consider the following algorithm Ay(x,y).

Algorithm. Ay(x,y)

1. For ¢ from 1 to n do: if v; € S then x; := x else x; :=y.

2. For i from 1 to n do: if fg,(21,...,2,) > —b then x; := 0 else z; := 1.
3. For i from 1 to n do: if fg,(21,...,2,) < —b then z; := 1.

4. Output (z1,...,2zp).

Theorem 1. Let G = (V,E) be a bipartite graph with vertex set V. =
SUT = {v,ve,...,0,}, |S| = s,|T| = t and minimum degree 0. Let
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f(x1,...,x,) be a multilinear function such that

(1) 7S, i@ ).

Furthermore, for some b > 0 and every x,y € [0,1], let the Algorithm
Ap(x,y) produce a vector (x1,x2,...,x,), where the property that xj; = 0
for all 1 < k < n with v, € Nglvi] U Nglvj] for some 1 <i < j < n implies
distg (vi,vj) > 3. Given z,y € [0,1], then let z; = x if v; € S else z; =y for
i=1,...,n. Then

. 5 b6z + 1) b(Sy + 1)
< S — e n .
7= L pelo) (6(1+b)+bf(zl’ O IS A T s

Before we proceed to the proof of Theorem 1, we introduce some terminology.
Given the situation described in Theorem 1, we will call a vertex v; € V
critical if x, = 0 for all 1 < k < n with vy € Nglv;]. The property
described in Theorem 1 means that Algorithm A,(x,y) produces a vector
(z1,x2,...,zy,) for which the critical vertices have pairwise distance at least
three. If the function f — associated to the graph G — has this property,
then we say that f has property Py.

Proof of Theorem 1. Let G, b and f be as in the statement of Theorem 1.

Since f is multilinear, we have for all x1,...,z,,y € R
f(z1, . X1, T + Yy Tig 1, - o, Ty)
2) = f(®1,. X1, T, Tig1, - -5 Tpy)
0
+axif(xla---737i—1a$z‘7xi+17---7$n)'Z/-

For some z,y € [0,1], let (x1,...,2,) denote the output of Algorithm
Ap(z,y). Let
M = {Ui S V|IEZ = 1}.

Note that a vertex v; is critical exactly if Nglv;] N M = 0.
Claim 1. v < f(z1,...,2,) — b|M| 4 bxs + byt.

Proof of Claim 1. By (1), v < f(z1,...,2,). We consider the Algorithm
Ap(x,y). After Step 1, (x1,...,2,) = (21,...,2,). If during Step 2 some
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x; = x is replaced by 1, then, by (2), the value of f(x1,...,z,) decreases at
least by b(1 — x). Similarly, if during Step 2 some z; = x is replaced by 0,
then, by (2), the value of f(x1,...,z,) increases at most by bz. Furthermore,
if during Step 3 some x; = 0 is replaced by 1, then x; = x was replaced by
0 in Step 2 and summing the effect of the changes in x; made by Step 2 and
Step 3, f(x1,...,x,) decreases at least by b(1 — z) in total. Altogether,

flay, oo xn) < flz1,...,2n) = b(1 —2)|M N S|
+bx(s—|MNS|)=b(1—y)MNT|+by(t—|MnNT|)
= f(21,...,2n) — b|M| + bxs + byt

which completes the proof of the claim. O

Let k£ be the number of critical vertices and let D be obtained by adding all
critical vertices to M. Clearly, D is a dominating set of G, v < |D| = |M|+k,
and, by Claim 1,

(b
T ass Tive)”
1 b
< — ey Zn) — M|+ byt) + ——|D
y S T ) + D
1 b
= m(f(zl,...,zn)—b(]D|—k)+bws+byt)+m\D]
—1f( )+b(k+ + yt)
= 1o/ xs + yt).
Since f has property Py,
(4) v < n—dk.
Since éff}r?;_)blb + 5 +bb) —3 = 1, a convex combination of (3) and (4) yields
(1 +0) 1 b
ceyzn) +——(k t
T 5(1+b)+b<1+bf(zl’ an) g +x5+y)>
b
+ (n — ok)
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B ) b(éx + 1) b(dy + 1)

= sarns e T sar et T sa s 2ot
Since x and y were arbitrary in [0, 1], the theorem follows. |
We remark that for fixed x and y the upper bound T'(b) = mf(zl, ce
Zn)+ 512(16fl—>§1+)b + 5((1632;2# on v equals the upper bound f(z1,...,z,) if b =0,
and that T'(b) is strictly decreasing in b if f(z1,...,2,) > % Hence,
if f(z1,...,2y) is large then T'(by) is a reasonable upper bound on ~y, where

by (if it exists) is the largest b such that f has property Pj.

Our next lemma is proven in [3] and gives an upper bound on the dom-
ination number in terms of a multilinear function as required for Theorem 1
(similar bounds are contained in [8]). Additionally, we have to verify prop-
erty Py for some b. For the sake of completeness, we give a proof of Lemma
2 here as well.

Lemma 2. If G = (V,E) is a graph with vertex set V = {vy,...,v,}, then

5 — 1 g ydn

5) = (g g SO0 )

where

(6) f(l'l"'-?xn) = — <xl+ H (1_$J 1+dG Uz H xj)

’UjENg[vi} ’U]ENg[Ul}
Furthermore, the function f in (6) has property Py.

Proof of Lemma 2. Let (x1,...,2,) € [0,1]" and let X C V be a set of
vertices containing every vertex v; independently at random with probability
;. Let

X' ={v; € V| Ng[v;] C X}

and let I be a maximum independent set in the subgraph G[X'] induced by
X' It
Y ={v e V|Ng[v]NnX = 0},

then (X \ I) UY is a dominating set of G, and hence v < E[|X|] + E[|Y]] —
E[|I]]. Clearly, E[| X|] = >"" ;z; and E[[Y|] =>"" | HUjENG[Ui](l — x;).
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By the Caro-Wei inequality [4, 15],

1 1
>y — >y~ _PpeX
B2 Y g 2 2 rragm Y]

= 1
- ; Tracey Lo

vjENG[vi]

This implies that v is at most the expression given on the right hand side
of (6). For the converse, let D be a minimum dominating set. Note that for
every vertex v; € V, we have Ng[v;] N D # 0, since D is dominating and
Ng[vi) N D # Ng[v;], because D is minimum. Therefore, setting z} = 1 for
all v; € D and 27 = 0 for all v; € V'\ D yields

n
* * 1 *
7= Z Ti + H (1_xj)_1+dg(v<) H Ty
i=1 v;ENgG[v:] ) vjeNG[vi)
n
=) (27 +0+0)=|D|=1.
i=1

The proof of (5) is thus complete.

Now we proceed to the proof that f has property P;. Therefore, let
x,y € [0,1], let (z1,...,z,) be the output of Algorithm A;(z,y) and let v;
and v; be two critical vertices. For contradiction, we assume that Ng[v;] N
Neglv;] # 0. Note that after the execution of Step 2, the values z; for all
v € Nglv)] U Nglv;] are 0 and remain 0 throughout the execution of Step 3.
For 1 < k < n we have

92
axk

1
=1 Z H (1—l'm)+1+d—G(Ul) H Tm,

v €Ng[vg] \vm€Ng[vi]\{vx} vmENg[u]\{vk}

(1, ,2n)

If v; € Ng[v;], then during the execution of Step 3

8iif(x1"“’xn)§1_ H (1—zp) — H (1 —xp) =-1,

vm€Ngvi]\{vi} vmE€Ng[v;]\{vi}
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and if v, € Ng(v;) N Ng(vj), then during the execution of Step 3
9wy <1 I a-20- [ G-ow=-1
oxy, -

vm €Ng [vi]\{vr } vm€Ng[vi]\{vr}

In both cases, we obtain the contradiction that either x; or x; would be set
to 1 by Step 3 and the proof is complete. [ |

Theorem 1 and Lemma 2 immediately imply the following result for b = 1.

Corollary 3. If G = (V, E) is a bipartite graph with vertex set V. = SUT =

{v1,v9,... 05}, |S| = s,|T| =t and minimum degree &, then
< — 1 1
v < 25+1<(25x+ )s + (20y + 1)t
1
5 1)1 —q)cl) - = .,da(v)
+6) <( z)(1 —y) T de) ™
veS
1
E 1)1 - g)elw) -~ da(v)
! 5U€T <( y)( x) 1+ dG(U) v

for every z,y € [0,1].
Clearly, the following corollary holds.

Corollary 4. Let G = (V,E) be a bipartite graph with vertex set V. =
SUT = {v1,v9,...,v,}, 01 and do the minimum degrees in S and T, respec-
tively, 61 < 92 and p € [0, 1] such that |S| = p|V].

Then v < h(z,y)|V| < g(z,y)|V| for every z,y € [0,1], where

h(x7y) -

2012p +261y(1 — p) + 1+ 81p(1 —2)(1 —y) +8i(1 = p)(1 —y)(1 — x)*
201 +1

and

_ 2612p+201y(1— p) + 1+ 81p(1 — ) + 61(1 — p)(1 — )%
N 201 +1 ’

9(w,y)
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We also can derive the following bound.

Corollary 5. Let G = (V,E) be a bipartite graph with vertex set V. =
SUT = {v1,v9,...,v,}, 01 and do the minimum degrees in S and T, respec-
tively, 81 < 82 and p € [0, 1] such that |S| = p|V]|.

Then v < ¢(x,y)|V| for every z,y € [0, 1], where

o(x,y) =

1
_ _ Y g1
% 1 (2513:p +25y(L—p)+1+dp ((1 z)(1—vy) Ty >

sa-p (a-n-0% - ) ).

Proof of Corollary 5.

Claim 2. If 0 < p,q < % (p and ¢ real numbers) and m > n (m and n
positive integers), then

1

1
1—p)(1—=¢)" — ———pg™ < (1 — p)(1 — q)" — n,
(1-p)(1—q) T <(1-p)(1l-gq) TP

Proof of Claim 2. In case p =0 or ¢ = 0 nothing is to prove.

Let p,q > 0. We prove that

(1=p)(1 = — 5pd™ < (1 —p) (1 — @)F — qpd” if k> 1.
Because of (1 —p)(1—¢)*™ = (1 -p)(1—q)* — (1 —p)g(1 — ¢)*, this

inequality is equivalent to m < (1%1;)(1%(1)1% + k—iz From p < 1, it

1-p ; 1 I=q\k _ (1 _ 1)k
follows —F > 1. Hence, it suffices to show that SIS (ZFH"=(G-1
is true because % > 2, and that the function (k+1)(z —1)* — z is increasing

inzif z>2and k> 1. O

Let 0 < z,y < % Using Claim 2, Corollary 3 implies

1
2041

v < <(25$ + 1)8 + (25y + 1)t + 6s ((1 _ x)(l _ y)(h 1 61)

_1+51xy
1
1—y)(1—2)% - 02
+5t<( y)(1 —x) 1 5,0" >>

and because s = p|V|, t = (1 — p)|V] and ¢ = §;, Corollary 5 is proven. ®
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It is easy to calculate min(g) = min{g(z,y) | 0 < z,y < 1} by analytical
methods (e g., see [9]). It follows min(g) = g(z*, y*), where 2* = max{0,1 —

1
(2(;1p )61 T} and y* = max{0,1— (_(L)) %-1}. If 6, > 1 and 26511 < _g <

, then x*, y* < 5. Hence, we obtain compact expressions as bounds on

“/(G)

T as follows.

Corollary 6. i < h(z*,y"). If i <2< 22 then n i < o, y").

Since both S and T are dominating, it follows ﬁ < min{p,1 — p} If

251 > _B or —B > == 262 > 5= 21 (see Corollary 6), then min{p,1—p} < 61+251’
and if 51 is large then mln{p, 1 — p} is an attractive bound on ﬁ in this
case.

Numerical evaluations show that quite often the trivial upper bound
min{p,1 — p} is smaller then min(h) = min{h(z,y) | 0 < z,y < 1} or
min(¢) = min{¢(z,y) | 0 < 2,y < 1}. Thus, we will consider the bound
B = min{min(h), min(¢), p,1 — p}.

We list the following upper bounds C, D, E and F on @ which are

in terms of ¢ and hold for arbitrary graphs C = % (see [1]), D =

1)
= zﬁ} 1(see [2,14]), E=1~— (5;)%1 (see [5, 6]),
F = 26+1 ((20zo + 1) + 5((1 — x0)0t! — ﬁﬂ:gﬂ)), where xg is the unique
solution of (§ 4+ 1)(1 — z)? + 2% =2 in [0, 3] (see [3]).

An upper bound on | for an arbitrary graph G in terms of § and
the maximum degree A is given in [8]. If A is not limited for a class of
graphs in question (and this is the case in the class of bipartite graphs being
considered here), this bound tends to E if A tends to infinity.

The following upper bound H on V] L for a bipartite graph G in terms
of § and p was established in [11].

s 1 6(1=p)=
If 52—1fe(5+1) < p < 3 then T;/L| < H = 5+1 + 527 (In ( (52—/)1),)/)) -
Sp—(1—p) (1-p) Sp—(1—p) 6(1—p)—
0l () + w2 (In (eFty) — o (S=5))-

To our knowledge, upper bounds on ﬁ for a bipartite graph G in terms
of 61, 69 and p are rare in the literature. Here we present such a bound [
Which was proven in [9].
< 1= min{pr+ (1— p)y+p(1—2)(1 )% +(1—p)(1—y)(L—2)% |0 <
xz,y < 1}.




286 S. ARTMANN AND J. HARANT

It is easy to see that C' = min{z+e~*0+1) |0 < 2 < 1} and E = min{z+(1—
w)5+1 | 0 <z <1}. Because 1 —z < e 7, it follows E < C. Again, because
1 —x < e, it follows that I < min{t(z,y) = pz + (1 — p)y + pe >0 +
(1 —ple ¥=%2% | 0 < z,y < 1}. In [11], it is shown that H = o(&,) for
special values #,7 € [0,1], and hence, I < H.

We conclude this paper by presenting some numerical results for B with
some special values of p, §; and 02 (see Table 1) and comparing them with
the corresponding values of D, F/, F and I in Table 2. Note that D, E and
F do not depend on the choice of p and 5, and that these bounds are valid
for arbitrary graphs. The outcome of this comparison is the large difference
between this general bounds and B.

Table 1

pll 6] 01=3]6=5]6=10]d =20]0 =40 |
0.1 3] o1 - - -
30 || 0.1 0.1 0.1 0.0831 -
60 || 0.1 0.1 0.1 0.0788 | 0.0606
100 | 0.1 0.1 | 0.0989 | 0.0769 | 0.0576

0.3 3 0.3 - - - -
30 || 0.2927 | 0.2498 | 0.1961 | 0.1443 -
60 || 0.2837 | 0.2403 | 0.1826 | 0.1286 | 0.0896

100 || 0.2796 | 0.2360 | 0.1760 | 0.1213 | 0.0818

0.5 3| 0.4890 - - -
30 || 0.3761 | 0.3012 | 0.2164 | 0.1564 -
60 || 0.3609 | 0.2835 | 0.1964 | 0.1349 | 0.0949

100 || 0.3535 | 0.2746 | 0.1862 | 0.1240 | 0.0835

0.7 3 0.3 - - - -
30 0.3 0.2721 | 0.1932 | 0.1411 -
60 0.3 0.2549 | 0.1728 | 0.1191 | 0.0859

100 0.3 0.2455 | 0.1621 | 0.1075 | 0.0739

0.9 3 0.1 - - -
30 0.1 0.1 0.1 0.0857 -
60 0.1 0.1 0.1 0.0777 | 0.0574

100 0.1 0.1 0.1 0.0714 | 0.0503
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Table 2
plé&] 6] B | I | D | E F
01] 3] 30 01 | 0.1 [0.521]0.528 | 0.490
01| 3| 60| 01 | 01
01] 3[100| 01 | 01
01[10] 30| 01 | 0.1 [0.2750.285 | 0.270
01]10| 60| 01 | 0.1
0.1 [ 10 | 100 || 0.099 | 0.1
0.120| 30 [ 0.083 |0.092|0.174 | 0.182 | 0.174
0.1 20| 60 | 0.079 | 0.087
0.1 | 20 | 100 || 0.077 | 0.085
0.1 40| 60 | 0.061 | 0.065 | 0.105 | 0.111 | 0.107
0.1 | 40 | 100 || 0.058 | 0.062
05| 3| 30| 0.376 | 0.360
05| 3| 60 | 0.361 | 0.339
0.5 | 3[100 | 0.353 | 0.329
05|10 | 30 | 0.216 | 0.214
0.5 |10 | 60 | 0.196 | 0.189
0.5 | 10 | 100 || 0.186 | 0.177
0.5 [ 20| 30 | 0.156 | 0.160
0.5|20| 60 | 0.135 | 0.133
0.5 | 20 | 100 || 0.124 | 0.121
0.5 |40 | 60 | 0.095 | 0.097
0.5 | 40 | 100 | 0.084 | 0.084
09 3} 30| 01 | 01
09| 3| 60| 01 | 01
0.9 3[100| 01 | 01
0910 | 30| 01 |[0.09
0.9|10| 60| 0.1 |0.081
0.9 |10 | 100 | 0.1 |0.071
0.9 (20| 30 | 0.086 | 0.085
0.9 (20| 60 | 0.077 | 0.067
0.9 | 20 | 100 || 0.071 | 0.056
0.9 [40 | 60 | 0.057 | 0.057
0.9 | 40 | 100 || 0.050 | 0.046

287
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