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Abstract

Using multilinear functions and random procedures, new upper
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We consider finite, undirected and simple graphs without isolated vertices.
The domination number γ = γ(G) of a graph G = (V,E) is the minimum
cardinality of a set D ⊆ V of vertices such that every vertex in V \ D
has a neighbour in D. This parameter is one of the most well-studied in
graph theory, and the two volume monograph [12, 13] provides an impressive
account of the research related to this concept.

Here we establish upper bounds on the domination number of a bipar-
tite graph. Note that the decision problem DOMINATION remains NP-
complete if the instance is restricted to bipartite graphs (e.g., see [7]).

Many random procedures constructing dominating sets essentially yield
a bound on the domination number in terms of a multilinear function de-
pending on the involved probabilities. For instance, if we use an individual
probability xi for every vertex vi ∈ V = {v1, ..., vn} of the graph G in the
procedure of Alon and Spencer [1], then the expected cardinality of the re-
sulting dominating set equals

∑n
i=1

(

xi +
∏

vj∈NG[vi]
(1 − xj)

)

. This is in
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fact a multilinear function, i.e., fixing all but one variable results in a linear
function.

To obtain a compact expression as a bound, one often sets all values
of xi equal to some x and solves the arising one-dimensional optimization
problem over x ∈ [0, 1].

A modification of this approach is proposed in [3, 8, 10]. Given values for
the probabilities xi, the partial derivatives of the multilinear bound indicate
changes of the xi which would decrease the value of the bound. Depending
on the partial derivatives, xi is reset to 0 or 1. To allow for some further
flexibility in [3], a parameter b ≥ 0 is used in order to decide which values
to modify in which way.

Here we apply the approach in [3] for bipartite graphs. For a bipartite
graph G = (V,E) with vertex set V = S ∪ T = {v1, v2, . . . , vn}, we derive
upper bounds on the domination number γ of G in terms of the minimum
degrees, δ1 and δ2, of the vertices in the colour classes S and T , respectively,
ρ = |S|

|V | , and n.

The following Theorem 1 is the main result of that paper and is applica-
ble if a result γ ≤ min(x1,...,xn)∈[0,1]n f(x1, . . . , xn) for a multilinear function
f : Rn → R associated to the graph G is known (e.g., such results can be
found in [1, 3, 8, 9, 10]) and the function f has a certain property Pb, where
b ≥ 0 is the mentioned parameter used in [3]. The rest of the paper is or-
ganized as follows. As an example how to apply Theorem 1, in Lemma 2
a special function f having property P1 is considered. The resulting upper
bounds on γ by using the function f of Lemma 2 are contained in the follow-
ing corollaries. Finally, we give some numerical bounds on γ

|V | and compare

them with bounds in [1, 2, 3, 5, 6, 8, 9, 10, 14].

Given a multilinear function f(x1, . . . , xn), S ⊆ {v1, . . . , vn}, some x, y ∈
[0, 1] and some b ≥ 0, consider the following algorithm Ab(x, y).

Algorithm. Ab(x, y)

1. For i from 1 to n do: if vi ∈ S then xi := x else xi := y.

2. For i from 1 to n do: if fxi
(x1, . . . , xn) > −b then xi := 0 else xi := 1.

3. For i from 1 to n do: if fxi
(x1, . . . , xn) ≤ −b then xi := 1.

4. Output (x1, . . . , xn).

Theorem 1. Let G = (V,E) be a bipartite graph with vertex set V =
S ∪ T = {v1, v2, . . . , vn}, |S| = s, |T | = t and minimum degree δ. Let
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f(x1, . . . , xn) be a multilinear function such that

γ ≤ min
(x1,...,xn)∈[0,1]n

f(x1, . . . , xn).(1)

Furthermore, for some b ≥ 0 and every x, y ∈ [0, 1], let the Algorithm

Ab(x, y) produce a vector (x1, x2, . . . , xn), where the property that xk = 0
for all 1 ≤ k ≤ n with vk ∈ NG[vi] ∪NG[vj ] for some 1 ≤ i < j ≤ n implies

distG(vi, vj) ≥ 3. Given x, y ∈ [0, 1], then let zi = x if vi ∈ S else zi = y for

i = 1, . . . , n. Then

γ ≤ min
x,y∈[0,1]

(

δ

δ(1 + b) + b
f(z1, . . . , zn) +

b(δx+ 1)

δ(1 + b) + b
s+

b(δy + 1)

δ(1 + b) + b
t

)

.

Before we proceed to the proof of Theorem 1, we introduce some terminology.
Given the situation described in Theorem 1, we will call a vertex vi ∈ V

critical if xk = 0 for all 1 ≤ k ≤ n with vk ∈ NG[vi]. The property
described in Theorem 1 means that Algorithm Ab(x, y) produces a vector
(x1, x2, . . . , xn) for which the critical vertices have pairwise distance at least
three. If the function f — associated to the graph G — has this property,
then we say that f has property Pb.

Proof of Theorem 1. Let G, b and f be as in the statement of Theorem 1.
Since f is multilinear, we have for all x1, . . . , xn, y ∈ R

(2)

f(x1, . . . , xi−1, xi + y, xi+1, . . . , xn)

= f(x1, . . . , xi−1, xi, xi+1, . . . , xn)

+
∂

∂xi
f(x1, . . . , xi−1, xi, xi+1, . . . , xn) · y.

For some x, y ∈ [0, 1], let (x1, . . . , xn) denote the output of Algorithm
Ab(x, y). Let

M = {vi ∈ V |xi = 1}.

Note that a vertex vi is critical exactly if NG[vi] ∩M = ∅.

Claim 1. γ ≤ f(z1, . . . , zn) − b|M | + bxs+ byt.

Proof of Claim 1. By (1), γ ≤ f(z1, . . . , zn). We consider the Algorithm
Ab(x, y). After Step 1, (x1, . . . , xn) = (z1, . . . , zn). If during Step 2 some
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xi = x is replaced by 1, then, by (2), the value of f(x1, . . . , xn) decreases at
least by b(1 − x). Similarly, if during Step 2 some xi = x is replaced by 0,
then, by (2), the value of f(x1, . . . , xn) increases at most by bx. Furthermore,
if during Step 3 some xi = 0 is replaced by 1, then xi = x was replaced by
0 in Step 2 and summing the effect of the changes in xi made by Step 2 and
Step 3, f(x1, . . . , xn) decreases at least by b(1 − x) in total. Altogether,

f(x1, . . . , xn) ≤ f(z1, . . . , zn) − b(1 − x)|M ∩ S|

+ bx(s− |M ∩ S|) − b(1 − y)|M ∩ T | + by(t− |M ∩ T |)

= f(z1, . . . , zn) − b|M | + bxs+ byt

which completes the proof of the claim. 2

Let k be the number of critical vertices and let D be obtained by adding all
critical vertices toM . Clearly, D is a dominating set ofG, γ ≤ |D| = |M |+k,
and, by Claim 1,

(3)

γ =

(

1

1 + b
+

b

1 + b

)

γ

≤
1

1 + b
(f(z1, . . . , zn) − b|M | + bxs+ byt) +

b

1 + b
|D|

=
1

1 + b
(f(z1, . . . , zn) − b(|D| − k) + bxs+ byt) +

b

1 + b
|D|

=
1

1 + b
f(z1, . . . , zn) +

b

1 + b
(k + xs+ yt).

Since f has property Pb,

γ ≤ n− δk.(4)

Since δ(1+b)
δ(1+b)+b

+ b
δ(1+b)+b

= 1, a convex combination of (3) and (4) yields

γ ≤
δ(1 + b)

δ(1 + b) + b

(

1

1 + b
f(z1, . . . , zn) +

b

1 + b
(k + xs+ yt)

)

+
b

δ(1 + b) + b
(n− δk)
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=
δ

δ(1 + b) + b
f(z1, . . . , zn) +

b(δx + 1)

δ(1 + b) + b
s+

b(δy + 1)

δ(1 + b) + b
t.

Since x and y were arbitrary in [0, 1], the theorem follows.

We remark that for fixed x and y the upper bound T (b) = δ
δ(1+b)+b

f(z1, . . . ,

zn)+ b(δx+1)
δ(1+b)+b

s+ b(δy+1)
δ(1+b)+b

t on γ equals the upper bound f(z1, . . . , zn) if b = 0,

and that T (b) is strictly decreasing in b if f(z1, . . . , zn) > δxs+δyt+n
δ+1 . Hence,

if f(z1, . . . , zn) is large then T (b0) is a reasonable upper bound on γ, where
b0 (if it exists) is the largest b such that f has property Pb.

Our next lemma is proven in [3] and gives an upper bound on the dom-
ination number in terms of a multilinear function as required for Theorem 1
(similar bounds are contained in [8]). Additionally, we have to verify prop-
erty Pb for some b. For the sake of completeness, we give a proof of Lemma
2 here as well.

Lemma 2. If G = (V,E) is a graph with vertex set V = {v1, . . . , vn}, then

(5) γ = min
(x1,...,xn)∈[0,1]n

f(x1, . . . , xn)

where

(6) f(x1, . . . , xn) =

n
∑

i=1

(

xi +
∏

vj∈NG[vi]

(1 − xj) −
1

1 + dG(vi)

∏

vj∈NG[vi]

xj

)

.

Furthermore, the function f in (6) has property P1.

Proof of Lemma 2. Let (x1, . . . , xn) ∈ [0, 1]n and let X ⊆ V be a set of
vertices containing every vertex vi independently at random with probability
xi. Let

X ′ = {vi ∈ V | NG[vi] ⊆ X}

and let I be a maximum independent set in the subgraph G[X ′] induced by
X ′. If

Y = {v ∈ V |NG[v] ∩X = ∅},

then (X \ I) ∪ Y is a dominating set of G, and hence γ ≤ E[|X|] + E[|Y |] −
E[|I|]. Clearly, E[|X|] =

∑n
i=1 xi and E[|Y |] =

∑n
i=1

∏

vj∈NG[vi]
(1 − xj).
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By the Caro-Wei inequality [4, 15],

E[|I|] ≥
∑

v∈X′

1

1 + dG[X′](v)
≥

∑

v∈V

1

1 + dG(v)
P[v ∈ X ′]

=

n
∑

i=1

1

1 + dG(vi)

∏

vj∈NG[vi]

xj.

This implies that γ is at most the expression given on the right hand side
of (6). For the converse, let D be a minimum dominating set. Note that for
every vertex vi ∈ V , we have NG[vi] ∩ D 6= ∅, since D is dominating and
NG[vi] ∩D 6= NG[vi], because D is minimum. Therefore, setting x∗i = 1 for
all vi ∈ D and x∗i = 0 for all vi ∈ V \D yields

γ =
n

∑

i=1



x∗i +
∏

vj∈NG[vi]

(1 − x∗j ) −
1

1 + dG(vi)

∏

vj∈NG[vi]

x∗j





=

n
∑

i=1

(x∗i + 0 + 0) = |D| = γ.

The proof of (5) is thus complete.

Now we proceed to the proof that f has property P1. Therefore, let
x, y ∈ [0, 1], let (x1, . . . , xn) be the output of Algorithm A1(x, y) and let vi

and vj be two critical vertices. For contradiction, we assume that NG[vi] ∩
NG[vj] 6= ∅. Note that after the execution of Step 2, the values xl for all
vl ∈ NG[vi]∪NG[vj ] are 0 and remain 0 throughout the execution of Step 3.
For 1 ≤ k ≤ n we have

∂

∂xk
f(x1, . . . , xn)

= 1 −
∑

vl∈NG[vk]





∏

vm∈NG[vl]\{vk}

(1 − xm) +
1

1 + dG(vl)

∏

vm∈NG[vl]\{vk}

xm



 .

If vj ∈ NG[vi], then during the execution of Step 3

∂

∂xi
f(x1, . . . , xn) ≤ 1 −

∏

vm∈NG[vi]\{vi}

(1 − xm) −
∏

vm∈NG[vj ]\{vi}

(1 − xm) = −1,
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and if vk ∈ NG(vi) ∩NG(vj), then during the execution of Step 3

∂

∂xk

f(x1, . . . , xn) ≤ 1 −
∏

vm∈NG[vi]\{vk}

(1 − xm) −
∏

vm∈NG[vj ]\{vk}

(1 − xm) = −1.

In both cases, we obtain the contradiction that either xi or xk would be set
to 1 by Step 3 and the proof is complete.

Theorem 1 and Lemma 2 immediately imply the following result for b = 1.

Corollary 3. If G = (V,E) is a bipartite graph with vertex set V = S∪T =
{v1, v2, . . . , vn}, |S| = s, |T | = t and minimum degree δ, then

γ ≤
1

2δ + 1

(

(2δx + 1)s+ (2δy + 1)t

+ δ
∑

v∈S

(

(1 − x)(1 − y)dG(v) −
1

1 + dG(v)
xydG(v)

)

+ δ
∑

v∈T

(

(1 − y)(1 − x)dG(v) −
1

1 + dG(v)
yxdG(v)

))

for every x, y ∈ [0, 1].

Clearly, the following corollary holds.

Corollary 4. Let G = (V,E) be a bipartite graph with vertex set V =
S∪T = {v1, v2, . . . , vn}, δ1 and δ2 the minimum degrees in S and T , respec-

tively, δ1 ≤ δ2 and ρ ∈ [0, 1] such that |S| = ρ|V |.
Then γ ≤ h(x, y)|V | ≤ g(x, y)|V | for every x, y ∈ [0, 1], where

h(x, y) =

2δ1xρ+ 2δ1y(1 − ρ) + 1 + δ1ρ(1 − x)(1 − y)δ1 + δ1(1 − ρ)(1 − y)(1 − x)δ2

2δ1 + 1

and

g(x, y) =
2δ1xρ+ 2δ1y(1 − ρ) + 1 + δ1ρ(1 − y)δ1 + δ1(1 − ρ)(1 − x)δ2

2δ1 + 1
.
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We also can derive the following bound.

Corollary 5. Let G = (V,E) be a bipartite graph with vertex set V =
S∪T = {v1, v2, . . . , vn}, δ1 and δ2 the minimum degrees in S and T , respec-

tively, δ1 ≤ δ2 and ρ ∈ [0, 1] such that |S| = ρ|V |.
Then γ ≤ φ(x, y)|V | for every x, y ∈ [0, 1

2 ], where

φ(x, y) =

1

2δ1 + 1

(

2δ1xρ+ 2δ1y(1 − ρ) + 1 + δ1ρ

(

(1 − x)(1 − y)δ1 −
1

1 + δ1
xyδ1

)

+ δ1(1 − ρ)

(

(1 − y)(1 − x)δ2 −
1

1 + δ2
yxδ2

))

.

Proof of Corollary 5.

Claim 2. If 0 ≤ p, q ≤ 1
2 (p and q real numbers) and m ≥ n (m and n

positive integers), then

(1 − p)(1 − q)m −
1

m+ 1
pqm ≤ (1 − p)(1 − q)n −

1

n+ 1
pqn.

Proof of Claim 2. In case p = 0 or q = 0 nothing is to prove.

Let p, q > 0. We prove that

(1 − p)(1 − q)k+1 − 1
k+2pq

k+1 ≤ (1 − p)(1 − q)k − 1
k+1pq

k if k ≥ 1.

Because of (1 − p)(1 − q)k+1 = (1 − p)(1 − q)k − (1 − p)q(1 − q)k, this
inequality is equivalent to 1

q(k+1) ≤ (1−p
p

)(1−q
q

)k + 1
k+2 . From p ≤ 1

2 , it

follows 1−p
p

≥ 1. Hence, it suffices to show that 1
q(k+1) ≤ (1−q

q
)k = (1

q
− 1)k

is true because 1
q
≥ 2, and that the function (k+1)(z− 1)k − z is increasing

in z if z ≥ 2 and k ≥ 1. 2

Let 0 ≤ x, y ≤ 1
2 . Using Claim 2, Corollary 3 implies

γ ≤
1

2δ + 1

(

(2δx + 1)s+ (2δy + 1)t+ δs

(

(1 − x)(1 − y)δ1 −
1

1 + δ1
xyδ1

)

+ δt

(

(1 − y)(1 − x)δ2 −
1

1 + δ2
yxδ2

))

,

and because s = ρ|V |, t = (1 − ρ)|V | and δ = δ1, Corollary 5 is proven.
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It is easy to calculate min(g) = min{g(x, y) | 0 ≤ x, y ≤ 1} by analytical
methods (e.g., see [9]). It follows min(g) = g(x∗, y∗), where x∗ = max{0, 1−
(2(1−ρ)

δ1ρ

) 1

δ1−1 } and y∗ = max{0, 1−
( 2ρ

δ2(1−ρ)

) 1

δ2−1 }. If δ1 ≥ 1 and δ1
2δ1

≤ 1−ρ
ρ

≤
2δ2

δ2
, then x∗, y∗ ≤ 1

2 . Hence, we obtain compact expressions as bounds on
γ(G)
|V | as follows.

Corollary 6.
γ
|V | ≤ h(x∗, y∗). If δ1

2δ1
≤ 1−ρ

ρ
≤ 2δ2

δ2
, then γ

|V | ≤ φ(x∗, y∗).

Since both S and T are dominating, it follows γ
|V | ≤ min{ρ, 1 − ρ}. If

δ1
2δ1

> 1−ρ
ρ

or 1−ρ
ρ
> 2δ2

δ2
≥ 2δ1

δ1
(see Corollary 6), then min{ρ, 1−ρ} < δ1

δ1+2δ1
,

and if δ1 is large, then min{ρ, 1 − ρ} is an attractive bound on γ
|V | in this

case.

Numerical evaluations show that quite often the trivial upper bound
min{ρ, 1 − ρ} is smaller then min(h) = min{h(x, y) | 0 ≤ x, y ≤ 1} or
min(φ) = min{φ(x, y) | 0 ≤ x, y ≤ 1

2}. Thus, we will consider the bound
B = min{min(h),min(φ), ρ, 1 − ρ}.

We list the following upper bounds C,D,E and F on γ(G)
|V | which are

in terms of δ and hold for arbitrary graphs. C = ln(δ+1)+1
δ+1 (see [1]), D =

1
δ+1

∑δ+1
i=1

1
i

(see [2, 14]), E = 1 −
(

1
δ+1

) 1

δ δ
δ+1 (see [5, 6]),

F = 1
2δ+1

(

(2δx0 + 1) + δ
(

(1 − x0)
δ+1 − 1

1+δ
xδ+1

0

))

, where x0 is the unique

solution of (δ + 1)(1 − x)δ + xδ = 2 in
[

0, 1
2

]

(see [3]).

An upper bound on γ
|V | for an arbitrary graph G in terms of δ and

the maximum degree ∆ is given in [8]. If ∆ is not limited for a class of
graphs in question (and this is the case in the class of bipartite graphs being
considered here), this bound tends to E if ∆ tends to infinity.

The following upper bound H on γ
|V | for a bipartite graph G in terms

of δ and ρ was established in [11].

If eδ
δ2−1+e(δ+1)

≤ ρ ≤ 1
2 then γ

|V | ≤ H = 1
δ+1 + ρ

δ2−1

(

ln
( δ(1−ρ)−ρ

(δ2−1)ρ

)

−

δ ln
( δρ−(1−ρ)

(δ2−1)(1−ρ)

))

+ (1−ρ)
δ2−1

(

ln
( δρ−(1−ρ)

(δ2−1)(1−ρ)

)

− δ ln
(δ(1−ρ)−ρ

(δ2−1)ρ

))

.

To our knowledge, upper bounds on γ
|V | for a bipartite graph G in terms

of δ1, δ2 and ρ are rare in the literature. Here we present such a bound I

which was proven in [9].
γ
|V | ≤ I = min{ρx+(1−ρ)y+ρ(1−x)(1−y)δ1 +(1−ρ)(1−y)(1−x)δ2 | 0 ≤

x, y ≤ 1}.
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It is easy to see that C = min{x+e−x(δ+1) | 0 ≤ x ≤ 1} and E = min{x+(1−
x)δ+1 | 0 ≤ x ≤ 1}. Because 1 − x ≤ e−x, it follows E ≤ C. Again, because
1 − x ≤ e−x, it follows that I ≤ min{ψ(x, y) = ρx+ (1 − ρ)y + ρe−x−δ1y +
(1 − ρ)e−y−δ2x | 0 ≤ x, y ≤ 1}. In [11], it is shown that H = ψ(x̂, ŷ) for
special values x̂, ŷ ∈ [0, 1], and hence, I ≤ H.

We conclude this paper by presenting some numerical results for B with
some special values of ρ, δ1 and δ2 (see Table 1) and comparing them with
the corresponding values of D,E, F and I in Table 2. Note that D,E and
F do not depend on the choice of ρ and δ2, and that these bounds are valid
for arbitrary graphs. The outcome of this comparison is the large difference
between this general bounds and B.

Table 1

ρ δ2 δ1 = 3 δ1 = 5 δ1 = 10 δ1 = 20 δ1 = 40

0.1 3 0.1 - - - -
30 0.1 0.1 0.1 0.0831 -
60 0.1 0.1 0.1 0.0788 0.0606

100 0.1 0.1 0.0989 0.0769 0.0576

0.3 3 0.3 - - - -
30 0.2927 0.2498 0.1961 0.1443 -
60 0.2837 0.2403 0.1826 0.1286 0.0896

100 0.2796 0.2360 0.1760 0.1213 0.0818

0.5 3 0.4890 - - - -
30 0.3761 0.3012 0.2164 0.1564 -
60 0.3609 0.2835 0.1964 0.1349 0.0949

100 0.3535 0.2746 0.1862 0.1240 0.0835

0.7 3 0.3 - - - -
30 0.3 0.2721 0.1932 0.1411 -
60 0.3 0.2549 0.1728 0.1191 0.0859

100 0.3 0.2455 0.1621 0.1075 0.0739

0.9 3 0.1 - - - -
30 0.1 0.1 0.1 0.0857 -
60 0.1 0.1 0.1 0.0777 0.0574

100 0.1 0.1 0.1 0.0714 0.0503
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Table 2

ρ δ1 δ2 B I D E F

0.1 3 30 0.1 0.1 0.521 0.528 0.490
0.1 3 60 0.1 0.1
0.1 3 100 0.1 0.1

0.1 10 30 0.1 0.1 0.275 0.285 0.270
0.1 10 60 0.1 0.1
0.1 10 100 0.099 0.1

0.1 20 30 0.083 0.092 0.174 0.182 0.174
0.1 20 60 0.079 0.087
0.1 20 100 0.077 0.085

0.1 40 60 0.061 0.065 0.105 0.111 0.107
0.1 40 100 0.058 0.062

0.5 3 30 0.376 0.360
0.5 3 60 0.361 0.339
0.5 3 100 0.353 0.329

0.5 10 30 0.216 0.214
0.5 10 60 0.196 0.189
0.5 10 100 0.186 0.177

0.5 20 30 0.156 0.160
0.5 20 60 0.135 0.133
0.5 20 100 0.124 0.121

0.5 40 60 0.095 0.097
0.5 40 100 0.084 0.084

0.9 3 30 0.1 0.1
0.9 3 60 0.1 0.1
0.9 3 100 0.1 0.1

0.9 10 30 0.1 0.095
0.9 10 60 0.1 0.081
0.9 10 100 0.1 0.071

0.9 20 30 0.086 0.085
0.9 20 60 0.077 0.067
0.9 20 100 0.071 0.056

0.9 40 60 0.057 0.057
0.9 40 100 0.050 0.046
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