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Abstract

Let k be a positive integer and G = (V (G), E(G)) a graph. A
subset S of V (G) is a k-independent set of G if the subgraph induced
by the vertices of S has maximum degree at most k−1. The maximum
cardinality of a k-independent set of G is the k-independence number
βk(G). A graph G is called β−

k
-stable if βk(G − e) = βk(G) for every

edge e of E(G). First we give a necessary and sufficient condition for
β−

k
-stable graphs. Then we establish four equivalent conditions for

β−

k
-stable trees.
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1. Introduction

We consider finite, undirected, and simple graphs G with vertex set V =
V (G) and edge set E = E(G). The open neighborhood of a vertex v ∈ V
is N(v) = NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood is
N [v] = NG[v] = NG(v) ∪ {v}. The degree of a vertex v of G, denoted
by dG(v), is the size of its open neighborhood. Specifically, for a vertex v
in a rooted tree T , we denote by C(v) and D(v) the set of children and
descendants, respectively, of v, and we define D[v] = D(v) ∪ {v}. The
maximal subtree at v is the subtree of a rooted tree T induced by D[v], and
is denoted by Tv.

In [2] Fink and Jacobson generalized the concept of independent sets.
Let k be a positive integer. A subset S of V is k-independent if the maximum
degree of the subgraph induced by the vertices of S is less or equal to k − 1.
A k-independent set S of G is maximal if for every vertex v ∈ V −S, S∪{v}
is not k-independent. The k-independence number βk(G) is the maximum
cardinality of a k-independent set of G. Notice that 1-independent sets are
independent, and so β1(G) = β(G). If S is a k-independent set of G of size
βk(G), then we call S a βk(G)-set. A vertex in a k-independent set S is said
to be full if it has exactly k − 1 neighbors in S, and a vertex in V − S with
at least k neighbors in S is said to be k-dominated by S.

In [3] Gunther, Hartnell and Rall studied the graphs whose indepen-
dence numbers are unaffected by addition or deletion of any edge. They
gave constructive characterizations of such trees.

A graph G is called β−

k -stable if βk(G − e) = βk(G) for every edge e
of E(G). In this paper we are interested in determining conditions under
which a graph G is β−

k -stable. In Section 2, we characterize the β−

k -stable
trees by proving the following:

Theorem 1. Let T be a tree. Then for every positive integer k the following

conditions are equivalent:

(a) T is a β−

k -stable tree.

(b) T has a unique βk(T )-set.

(c) for every βk(T )-set S, each vertex x ∈ V − S is (k + 1)-dominated by

S or there are at least two full vertices in N(x) ∩ S.

(d) ∆(T ) ≤ k − 1 or T ∈ Fk (The family Fk is defined in Section 2).



k-Independence Stable Graphs Upon Edge Removal 267

We note the result in [3] concerning trees whose independence number is
unaffected by the deletion of an edge is a special case of Theorem 1.

2. β−

k -Stable Graphs

We begin with the following observation.

Observation 2. Let G be a graph. If uv ∈ E(G) and βk(G − uv) > βk(G),
then u and v are in every βk(G − uv)-set.

Proposition 3. For any graph G and edge e ∈ E(G), βk(G) ≤ βk(G− e) ≤
βk(G) + 1.

Proof. The lower bound is immediate from the fact that every k-indepen-
dent set of a graph G is also a k-independent set of any spanning subgraph
of G. Suppose that βk(G − uv) > βk(G) for some edge uv ∈ E(G), and
let S be a βk(G − uv)-set for some uv ∈ E(G). By Observation 2, both u
and v are in S. Then S − {u} is a k-independent set of G implying that
βk(G) ≥ |S| − 1 = βk(G − uv) − 1.

Next we provide a necessary and sufficient condition for β−

k -stable graphs.

Theorem 4. A graph G is β−

k -stable if and only if for every βk(G)-set S,

each vertex x ∈ V − S is (k + 1)-dominated by S or there are at least two

full vertices in N(x) ∩ S.

Proof. Let G be a β−

k -stable graph and S any βk(G)-set. Assume there
is a vertex x ∈ V − S having at most k neighbors in S and there is at
most one full vertex in N(x) ∩ S. Let y be the full vertex in N(x) ∩ S, if
one exists, and an arbitrary vertex in N(x) ∩ S otherwise. Then S ∪ {x}
is a k-independent set of G − xy, and so βk(G − xy) ≥ |S| + 1 > βk(G),
contradicting the assumption that G is β−

k -stable.

Conversely, let e = uv be any edge of E(G) and S a βk(G − e)-set.
Assume that βk(G− e) > βk(G). By Observation 2, u and v are in S. Then
S′ = S −{u} is a k-independent set of G. Thus βk(G− e) > βk(G) ≥ |S′| =
βk(G − e) − 1, and so Proposition 3 implies that S ′ is a βk(G)-set. Since
u ∈ S, u has in G−e at most k−1 neighbors in S. Thus u has in G at most
k neighbors in S ′. Moreover, N(u)∩S ′ contains at most v as a full vertex in
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G for otherwise S is not a k-independent set since it would contain a vertex
having more than k−1 neighbors in S. But then S ′ is a βk(G)-set for which
u /∈ S′ and u does not satisfy the conditions of the theorem, a contradiction.
Thus βk(G − e) = βk(G) for every e ∈ E(G), and hence G is a β−

k -stable
graph.

The following result shows that graphs with unique βk(G)-sets are β−

k -stable.

Theorem 5. If G is a graph with a unique βk(G)-set, then G is a β−

k -stable

graph.

Proof. Let S be the unique βk(G)-set. If every vertex of V −S is (k +1)-
dominated by S, then by Theorem 4, G is β−

k -stable. Now assume that
u ∈ V − S is a vertex with at most k neighbors in S. Assume further
that N(u) ∩ S contains at most one full vertex. Let y be the full vertex in
N(u)∩ S if one exists and an arbitrary vertex in N(u)∩ S otherwise. Then
{u} ∪ (S − {y}) is second βk(G)-set, a contradiction. Thus for every vertex
u ∈ V − S not (k + 1)-dominated by S, S ∩ N(u) contains at least two full
vertices, and so by Theorem 4, G is β−

k -stable.

Note that the converse of Theorem 5 is not true for arbitrary graphs. Clearly
the complete graph Kn, n ≥ 4, is a β−

2
-stable graph but any two vertices of

Kn form a β2(Kn)-set. Our next result shows that the converse of Theorem
5 holds for trees.

Lemma 6. If T is a β−

k -stable tree, then T has a unique βk(T )-set.

Proof. Assume that T is β−

k -stable. Clearly the result holds if ∆(T ) ≤
k − 1, since V (T ) is the unique βk(T )-set. Suppose that ∆(T ) ≥ k, and let
B(T ) = {x ∈ V (T ) : degT (x) ≥ k}. We proceed by induction on |B(T )|.
If |B(T )| = 1, then the unique vertex in B(T ) should have degree at least
k + 1 for otherwise removing any edge incident to such a vertex increases
the k-independence number, a contradiction. It follows that V (T )−B(T ) is
the unique βk(T )-set. Assume that every β−

k -stable tree T ′ with |B(T ′)| <
|B(T )| has a unique βk(T

′)-set.

We now root T at a vertex r of maximum eccentricity. Let w be a vertex
of degree at least k at maximum distance from r. Such a vertex exists since
∆(T ) ≥ k. Let u be the parent of w in the rooted tree, and v be the parent
of u. Let S be a βk(T )-set. We distinguish between two cases.
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Case 1. dT (w) ≥ k + 1. Let T ′ = T − Tw. If w ∈ S, then at least one
child of w, say w′, is not in S. But then S ∪ {w′} is a k-independent set of
T − ww′, a contradiction. Thus w belongs to no βk(T )-set. It follows that
D(w) ⊆ S. Now it can be seen that βk(T ) = βk(T

′) + βk(Tw). Since T is a
β−

k -stable tree, βk(T−uw) = βk(T ) = βk(T
′)+βk(Tw). Moreover, if for some

edge e ∈ E(T ′), βk(T
′−e) > βk(T

′), then βk(T −e) ≥ βk(T
′−e)+βk(Tw) >

βk(T ′) + βk(Tw) = βk(T ), and so T is not β−

k -stable, a contradiction. It
follows that for every edge e ∈ E(T ′), βk(T ′ − e) = βk(T

′) and so T ′ is a
β−

k -stable. By induction on T ′, T ′ has a unique βk(T
′)-set, say X. Since

no βk(T )-set contains w, S ∩ V (T ′) is a βk(T
′)-set. Hence S ∩ V (T ′) = X.

Moreover, S ∩ V (Tw) = D(w). Thus, S is the unique βk(T )-set.

Case 2. dT (w) = k. By our choice of w, every descendant of w has
degree at most k − 1. Hence, w ∈ S for otherwise by Theorem 4, w is k + 1
dominated by S or N(w)∩S contains two full vertices, which is impossible.
Assume that u is in S. Since w ∈ S, it follows that at least one child of w,
say w′, is not in S. But then S ∪ {w′} is a k-independent set of T − uw
with |S ∪ {w′}| > βk(T ), contradicting our assumption that T is β−

k -stable.
Hence u 6∈ S. We may assume that every child of u has degree at most k,
otherwise Case 1 applies. It follows that D(u) ⊆ S. Note that D(u) is a
βk(Tu)-set, and we have shown that S ∩ V (Tu) = D(u) for any βk(T )-set
S. Let T ′ = T − Tu, and let S ′ = S ∩ V (T ′). Since u 6∈ S and S ′ is a
k-independent set, we conclude that S ′ is a βk(T

′)-set. Moreover, since T
is a β−

k -stable tree, βk(T − uv) = βk(T ) = βk(T
′) + βk(Tu). Now if S ′ does

not satisfy conditions of Theorem 4, then clearly S = S ′ ∪ D(u) does not
satisfy these conditions in T , and so T is not β−

k -stable, a contradiction. It
follows that T ′ is a β−

k -stable tree, and by our inductive hypothesis on T ′,
S∩V (T ′) is the unique βk(T

′)-set. Since u does not belong to any βk(T )-set,
S = D(u) ∪ S ′ is the unique βk(T )-set.

Lemma 7. Let T1 and T2 be trees with unique βk-sets S1 and S2, respec-

tively. If T is a tree obtained from T1 ∪ T2 by adding an edge uv where

u ∈ V (T1) and v ∈ V (T2) − S2, then S1 ∪ S2 is the unique βk(T )-set.

Proof. Let T1 and T2 be trees with unique βk-sets S1 and S2, respectively,
and let T be a tree obtained from T1 ∪ T2 by adding an edge uv where
u ∈ V (T1) and v ∈ V (T2) − S2. Clearly, since v 6∈ S2, S1 ∪ S2 is a k-
independent set of T . Thus, βk(T ) ≥ |S1 ∪ S2|. Let D be a βk(T )-set, and
let D1 = D ∩ V (T1) and D2 = D ∩ V (T2). Since Di is a k-independent
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set in Ti, we have βk(Ti) ≥ |Di| for i ∈ {1, 2}. Hence, βk(T1) + βk(T2) ≥
|D1| + |D2| = |D| = βk(T ). Therefore, βk(T ) = βk(T1) + βk(T2) and D is a
βk(T )-set. Moreover, it follows that Di is a k-independent set of Ti having
cardinality βk(Ti) for i ∈ {1, 2} and so Di = Si implying that D = S1 ∪ S2

is the unique βk(T )-set.

In [1], Blidia, Chellali and Volkmann defined the following trees. For a
positive integer p, a nontrivial tree T is called an Np-tree if T contains a
vertex, say w, of degree at least p − 1 and degT (x) 6 p − 1 for every vertex
of x ∈ V (T ) − {w}. We will call w the special vertex of T . The subdivided
star K1,p (p > 3) is an example of an Np-tree.

We define a related family of trees, which we call N ∗

k,j-trees. A tree T is
an N ∗

k,j-tree with special vertex w if N(w) contains j ≥ 0 vertices of degree
k, the remaining vertices in T except possibly w have degree at most k − 1,
and if j ≤ 1, dT (w) ≥ k+1. We note that if j ≥ 2, the only degree restriction
on the special vertex w is that dT (w) ≥ j. An Nk-tree with special vertex
of degree at least k + 1 is an example of an N ∗

k,j-tree. A tree T is a weak
N ∗

k,1-tree with special vertex w if w has degree at most k, N(w) contains
one vertex of degree k, and the remaining vertices in T except possibly w
have degree at most k − 1.

Observation 8. For an N ∗

k,j-tree T with special vertex w, V (T ) − {w} is

the unique βk(T )-set.

In order to characterize trees T with a unique βk(T )-set, we define the family
Fk of all trees T that can be obtained from a sequence T1, T2, . . . , Tp (p ≥ 1)
of trees, where T1 = T ∗ is an N ∗

k,j-tree, T = Tp, and, if p ≥ 2, Ti+1 can be
obtained recursively from Ti by one of the four operations listed below.

• Operation O1: Attach an Nk-tree with special vertex z of degree at least
k + 1 by adding an edge from z to any vertex of Ti.

• Operation O2: Attach an Nk-tree with special vertex z of degree k by
adding an edge from z to any vertex belonging to a βk(Ti)-set.

• Operation O3: Attach an N ∗

k,j-tree with special vertex z, where j ≥ 1,
by adding an edge from z to any vertex in Ti.

• Operation O4: Attach a weak N ∗

k,1-tree T ∗ with special vertex z, by
adding the edge zx, where x is a vertex in a βk(Ti)-set, with the condition
that if x is not full, then z has degree k in T ∗.
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We state two lemmas.

Lemma 9. Let T be a tree and k a positive integer. If ∆(T ) ≤ k − 1 or

T ∈ Fk, then T has a unique βk(T )-set.

Proof. It is clear that if ∆(T ) ≤ k − 1, then V (T ) is the unique βk(T )-
set. Suppose now that ∆(T ) > k and T ∈ Fk. Then T is obtained from a
sequence T1, T2, . . . , Tp (p ≥ 1) of trees, where T1 = T ∗ with special vertex
w, T = Tp, and, if p ≥ 2, Ti+1 can be obtained recursively from Ti by one
of the four operations defined above. Clearly the property is true if p = 1.
This establishes the basis case.

Assume now that p > 2 and that the result holds for all trees T ∈ Fk

that can be constructed from a sequence of length at most p − 1, and let
T ′ = Tp−1. By the inductive hypothesis, T ′ has a unique βk(T

′)-set. Let T
be a tree obtained from T ′ and S a βk(T )-set. We consider the following
four cases.

Case 1. T is obtained from T ′ by using Operation O1. Let H be the
Nk-tree with special vertex z of degree at least k +1 added to T ′. Note that
V (H) − {z} is the unique βk(H)-set, and since T ′ has a unique βk(T

′)-set,
say S′, Lemma 7 implies that S ′ ∪ (V (H) − {z}) is the unique βk(T )-set.

Case 2. T is obtained from T ′ by using Operation O2. Let H be an
Nk-tree with special vertex z of degree k added to T ′ with edge uz, where u
is a vertex of a βk(T

′)-set S′. Clearly S ′ ∪ (V (H) − {z}) is a k-independent
set of T and so βk(T ) ≥ βk(T

′) + |V (H)| − 1. Moreover, if S contains z,
then since dT (z) = k + 1 at least one of its neighbors in H is not in S, and
hence z can be substituted by such a vertex in S. Therefore we may assume
that z /∈ S, and hence V (H)−{z} ⊆ S. Thus S ∩ V (T ′) is a k-independent
set of T ′ implying that βk(T

′) ≥ βk(T ) − |V (H)| + 1, and the following
equality is obtained βk(T ) = βk(T

′) + |V (H)| − 1. Now assume that S is
not the unique βk(T )-set, and let M be a second βk(T )-set. Note that we
have seen that z /∈ S. Since at most |V (H)| − 1 vertices from H are in
M , it follows that |M ∩ V (T ′)| ≥ βk(T

′). Since T ′ has a unique βk(T
′)-set,

M ∩ V (T ′) = S ∩ V (T ′) is the unique βk(T
′)-set. Hence u ∈ M . If z ∈ M ,

then two vertices of NH(z), say y′, y′′ /∈ M but then {y′, y′′}∪ (M −{z}) is a
k-independent set of T larger than M which is impossible. Thus z /∈ M . It
follows that M contains V (H)−{z}, implying that M = S, a contradiction.
Therefore S is the unique βk(T )-set.
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Case 3. T is obtained from T ′ by using Operation O3. Then T is
obtained from T ′ by adding an N ∗

k,j-tree T ∗ with special vertex z by adding
the edge zx, where x ∈ V (T ′). From Observation 8, we know that V (T ∗) −
{z} is the unique βk(T

∗)-set. Since T ′ has the unique βk(T
′)-set S′, it follows

from Lemma 7 that S ′ ∪ ( V (T ∗) − {z}) is the unique βk(T )-set.

Case 4. T is obtained from T ′ by using Operation O4. Then T is
obtained from T ′ by adding a weak N ∗

k,1-tree T0 with special vertex z by
adding the edge zx, where x ∈ βk(T

′)-set S′. Then S′ ∪ (V (T0) − {z}) is a
k-independent set of T and hence βk(T ) ≥ βk(T

′) + |V (T0)| − 1. Also since
NT0

(z) contains a vertex, say y, of degree k, S does not contain all vertices of
N [y]. Hence we may assume that z /∈ S. It follows that V (T0)−{z} ⊆ S and
so S∩T ′ is a k-independent set implying that βk(T

′) ≥ βk(T )−|V (T0)|+1.
Thus we have βk(T ) = βk(T

′) + |V (T0)| − 1. Assume now that S is not
the unique βk(T )-set, and let M be a second βk(T )-set. Since T0 contains
a vertex of degree k, M does not contain all vertices of V (T0). If z /∈ M
or x /∈ M , then M ∩ V (T ′) would be a second βk(T

′)-set, a contradiction.
Thus z ∈ M and x ∈ M . The uniqueness of a βk(T

′)-set implies that
M ∩ V (T ′) is the unique βk(T

′)-set. Clearly x is not full in M ∩ V (T ′). By
our construction in that case both y and z have degree k in T0. Then there
are two vertices y′ and y′′ in NT0

(z) that do not belong to M , but then
{y′, y′′} ∪ (M − {z}) would be a k-independent set of T larger than M , a
contradiction. Thus S is the unique βk(T )-set.

Lemma 10. Let T be a tree and k a positive integer. If T admits a unique

βk(T )-set, then either ∆(T ) ≤ k − 1 or T ∈ Fk.

Proof. If ∆(T ) ≤ k − 1, we are finished. Suppose that ∆(T ) > k, and let
B(T ) = {x ∈ V (T ) : degT (x) > k}. Clearly B(T ) 6= ∅. We use an induction
on the size of B(T ). If |B(T )| = 1, then T is an Nk-tree with special vertex,
say z, of degree at least k + 1, for otherwise V (T ) − {z} and V (T ) − {z ′}
are two βk(T )-sets, where z′ is any vertex adjacent to z. Hence T is an
N ∗

k,j-tree. This establishes the basis case.
Let |B(T )| > 2 and assume that every tree T ′ with |B(T ′)| < |B(T )|

having a unique βk(T
′)-set is in Fk. Let T be a tree with a unique βk(T )-

set S.
Root T at a vertex r of maximum eccentricity, and let w be a vertex of

degree at least k at maximum distance from r. Let u be the parent of w in
the rooted tree. We distinguish between three cases.
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Case 1. dT (w) ≥ k + 2. Let T ′ = T − Tw. Clearly |B(T ′)| < |B(T )|.
The uniqueness of S implies that w does not belong to S for otherwise it can
be replaced by one of at least two vertices of N [w]−{u} not in S. It follows
that βk(T ) = βk(T ′) + |V (Tw)| − 1 and S ∩ V (T ′) is the unique βk(T

′)-set.
Applying the inductive hypothesis, T ′ ∈ Fk and hence T ∈ Fk since it is
obtained from T ′ by using Operation O1.

Case 2. dT (w) = k + 1. If w ∈ S, then a child w′ of w is not in S.
Therefore {w′} ∪ (S − {w}) is a second βk(T )-set, a contradiction. Thus
w /∈ S and so u ∈ S for otherwise {w} ∪ (S − {w′}) is a second βk(T )-set,
a contradiction. Now let T ′ = T − Tw. It is straightforward to show that
βk(T ) = βk(T

′) + |V (Tw)| − 1. The uniqueness of S implies that S ∩ V (T ′)
is the unique βk(T

′)-set, where u ∈ S ∩ V (T ′). Since |B(T ′)| < |B(T )| the
inductive hypothesis on T ′ implies that T ′ ∈ Fk. Thus T ∈ Fk because it is
obtained from T ′ by using Operation O2.

Case 3. dT (w) = k. Assume for a contradiction that w /∈ S. Then S
must contain u else S∪{w} is a k-independent set of T larger than S. Hence
{w} ∪ (S −{u}) is a second βk(T )-set, a contradiction. Therefore w ∈ S. If
u ∈ S, then k ≥ 2 and a child w′ of w is not in S and so {w′} ∪ (S − {u})
is a second βk(T )-set, a contradiction. Thus u /∈ S. By our choice of w,
D[w] ⊆ S and hence w is a full vertex in S. Also our choice of w implies
that every child of u has degree at most k and each vertex in D(u) − N(u)
has degree at most k − 1. Thus, S contains all descendants of u. If w is the
unique full vertex in S adjacent to u and u has at most k neighbors in S,
then {u} ∪ (S − {w}) would be a second βk(T )-set, a contradiction. Thus
either u is adjacent to at least two full vertices in S or u is adjacent to at
least k + 1 vertices in S. Let T ′ = T − Tu. If B(T ′) = ∅, then T is an
N ∗

k,j-tree and hence T ∈ Fk. Thus assume that B(T ′) 6= ∅, and let v be the
parent of u. Note that V (Tu) − {u} is a k-independent set. It can be seen
that βk(T ) = βk(T

′) + |V (Tu)| − 1 and S ∩ V (T ′) is a βk(T
′)-set. Moreover,

the uniqueness of S implies that S ∩ V (T ′) is the unique βk(T
′)-set. Thus

by induction on T ′, T ′ ∈ Fk. Now if Tu is an N ∗

k,j-tree with special vertex u,
where j ≥ 1, then T ∈ Fk because it is obtained from T ′ by using Operation
O3. Hence assume that Tu is not an N ∗

k,j-tree. This implies that w is the
only child of u with degree k and u has degree at most k in Tu. Thus, Tu is
a weak N ∗

k,1-tree. Recall that u is adjacent to two full vertices in S or u is
adjacent to at least k+1 vertices in S. If u is adjacent to two full vertices in
S, then since w is the only full vertex in D(u), it follows that v is full in S.
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Since u 6∈ S, it follows that v is full in S ∩ V (T ′). If u is adjacent to k + 1
vertices in S, then u has degree k in Tu and v is in S. Thus, v ∈ S ∩ V (T ′).
In both cases, T can be obtained from T ′ by using Operation O4. Hence
T ∈ Fk.

According to Theorems 4, 5, and Lemmas 6, 9 and 10, we have completed
the proof of Theorem 1.
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