Discussiones Mathematicae Graph Theory 30 (2010) 265–274

k-INDEPENDENCE STABLE GRAPHS UPON EDGE REMOVAL

Mustapha Chellali

LAMDA-RO Laboratory, Department of Mathematics University of Blida B.P. 270, Blida, Algeria e-mail: m_chellali@yahoo.com

TERESA W. HAYNES

Department of Mathematics, East Tennessee State University Johnson City, TN 37614 USA

e-mail: haynes@etsu.edu

AND

LUTZ VOLKMANN

Lehrstuhl II für Mathematik, RWTH Aachen University Templergraben 55, D-52056 Aachen, Germany e-mail: volkm@math2.rwth-aachen.de

Abstract

Let k be a positive integer and G = (V(G), E(G)) a graph. A subset S of V(G) is a k-independent set of G if the subgraph induced by the vertices of S has maximum degree at most k-1. The maximum cardinality of a k-independent set of G is the k-independence number $\beta_k(G)$. A graph G is called β_k^- -stable if $\beta_k(G-e) = \beta_k(G)$ for every edge e of E(G). First we give a necessary and sufficient condition for β_k^- -stable graphs. Then we establish four equivalent conditions for β_k^- -stable trees.

Keywords: *k*-independence stable graphs, *k*-independence. 2010 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

We consider finite, undirected, and simple graphs G with vertex set V = V(G) and edge set E = E(G). The open neighborhood of a vertex $v \in V$ is $N(v) = N_G(v) = \{u \in V : uv \in E\}$ and the closed neighborhood is $N[v] = N_G[v] = N_G(v) \cup \{v\}$. The degree of a vertex v of G, denoted by $d_G(v)$, is the size of its open neighborhood. Specifically, for a vertex vin a rooted tree T, we denote by C(v) and D(v) the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$. The maximal subtree at v is the subtree of a rooted tree T induced by D[v], and is denoted by T_v .

In [2] Fink and Jacobson generalized the concept of independent sets. Let k be a positive integer. A subset S of V is k-independent if the maximum degree of the subgraph induced by the vertices of S is less or equal to k-1. A k-independent set S of G is maximal if for every vertex $v \in V - S$, $S \cup \{v\}$ is not k-independent. The k-independence number $\beta_k(G)$ is the maximum cardinality of a k-independent set of G. Notice that 1-independent sets are independent, and so $\beta_1(G) = \beta(G)$. If S is a k-independent set of G of size $\beta_k(G)$, then we call S a $\beta_k(G)$ -set. A vertex in a k-independent set S is said to be full if it has exactly k-1 neighbors in S, and a vertex in V-S with at least k neighbors in S is said to be k-dominated by S.

In [3] Gunther, Hartnell and Rall studied the graphs whose independence numbers are unaffected by addition or deletion of any edge. They gave constructive characterizations of such trees.

A graph G is called β_k^- -stable if $\beta_k(G-e) = \beta_k(G)$ for every edge e of E(G). In this paper we are interested in determining conditions under which a graph G is β_k^- -stable. In Section 2, we characterize the β_k^- -stable trees by proving the following:

Theorem 1. Let T be a tree. Then for every positive integer k the following conditions are equivalent:

- (a) T is a β_k^- -stable tree.
- (b) T has a unique $\beta_k(T)$ -set.
- (c) for every $\beta_k(T)$ -set S, each vertex $x \in V S$ is (k+1)-dominated by S or there are at least two full vertices in $N(x) \cap S$.
- (d) $\Delta(T) \leq k-1$ or $T \in \mathcal{F}_k$ (The family \mathcal{F}_k is defined in Section 2).

We note the result in [3] concerning trees whose independence number is unaffected by the deletion of an edge is a special case of Theorem 1.

2. β_k^- -Stable Graphs

We begin with the following observation.

Observation 2. Let G be a graph. If $uv \in E(G)$ and $\beta_k(G - uv) > \beta_k(G)$, then u and v are in every $\beta_k(G - uv)$ -set.

Proposition 3. For any graph G and edge $e \in E(G)$, $\beta_k(G) \leq \beta_k(G-e) \leq \beta_k(G) + 1$.

Proof. The lower bound is immediate from the fact that every k-independent set of a graph G is also a k-independent set of any spanning subgraph of G. Suppose that $\beta_k(G - uv) > \beta_k(G)$ for some edge $uv \in E(G)$, and let S be a $\beta_k(G - uv)$ -set for some $uv \in E(G)$. By Observation 2, both u and v are in S. Then $S - \{u\}$ is a k-independent set of G implying that $\beta_k(G) \ge |S| - 1 = \beta_k(G - uv) - 1$.

Next we provide a necessary and sufficient condition for β_k^- -stable graphs.

Theorem 4. A graph G is β_k^- -stable if and only if for every $\beta_k(G)$ -set S, each vertex $x \in V - S$ is (k + 1)-dominated by S or there are at least two full vertices in $N(x) \cap S$.

Proof. Let G be a β_k^- -stable graph and S any $\beta_k(G)$ -set. Assume there is a vertex $x \in V - S$ having at most k neighbors in S and there is at most one full vertex in $N(x) \cap S$. Let y be the full vertex in $N(x) \cap S$, if one exists, and an arbitrary vertex in $N(x) \cap S$ otherwise. Then $S \cup \{x\}$ is a k-independent set of G - xy, and so $\beta_k(G - xy) \geq |S| + 1 > \beta_k(G)$, contradicting the assumption that G is β_k^- -stable.

Conversely, let e = uv be any edge of E(G) and S a $\beta_k(G - e)$ -set. Assume that $\beta_k(G - e) > \beta_k(G)$. By Observation 2, u and v are in S. Then $S' = S - \{u\}$ is a k-independent set of G. Thus $\beta_k(G - e) > \beta_k(G) \ge |S'| = \beta_k(G - e) - 1$, and so Proposition 3 implies that S' is a $\beta_k(G)$ -set. Since $u \in S$, u has in G - e at most k - 1 neighbors in S. Thus u has in G at most k neighbors in S'. Moreover, $N(u) \cap S'$ contains at most v as a full vertex in *G* for otherwise *S* is not a *k*-independent set since it would contain a vertex having more than k-1 neighbors in *S*. But then *S'* is a $\beta_k(G)$ -set for which $u \notin S'$ and *u* does not satisfy the conditions of the theorem, a contradiction. Thus $\beta_k(G-e) = \beta_k(G)$ for every $e \in E(G)$, and hence *G* is a β_k^- -stable graph.

The following result shows that graphs with unique $\beta_k(G)$ -sets are β_k^- -stable.

Theorem 5. If G is a graph with a unique $\beta_k(G)$ -set, then G is a β_k^- -stable graph.

Proof. Let S be the unique $\beta_k(G)$ -set. If every vertex of V - S is (k + 1)-dominated by S, then by Theorem 4, G is β_k^- -stable. Now assume that $u \in V - S$ is a vertex with at most k neighbors in S. Assume further that $N(u) \cap S$ contains at most one full vertex. Let y be the full vertex in $N(u) \cap S$ if one exists and an arbitrary vertex in $N(u) \cap S$ otherwise. Then $\{u\} \cup (S - \{y\})$ is second $\beta_k(G)$ -set, a contradiction. Thus for every vertex $u \in V - S$ not (k + 1)-dominated by $S, S \cap N(u)$ contains at least two full vertices, and so by Theorem 4, G is β_k^- -stable.

Note that the converse of Theorem 5 is not true for arbitrary graphs. Clearly the complete graph K_n , $n \ge 4$, is a β_2^- -stable graph but any two vertices of K_n form a $\beta_2(K_n)$ -set. Our next result shows that the converse of Theorem 5 holds for trees.

Lemma 6. If T is a β_k^- -stable tree, then T has a unique $\beta_k(T)$ -set.

Proof. Assume that T is β_k^- -stable. Clearly the result holds if $\Delta(T) \leq k - 1$, since V(T) is the unique $\beta_k(T)$ -set. Suppose that $\Delta(T) \geq k$, and let $B(T) = \{x \in V(T) : \deg_T(x) \geq k\}$. We proceed by induction on |B(T)|. If |B(T)| = 1, then the unique vertex in B(T) should have degree at least k + 1 for otherwise removing any edge incident to such a vertex increases the k-independence number, a contradiction. It follows that V(T) - B(T) is the unique $\beta_k(T)$ -set. Assume that every β_k^- -stable tree T' with |B(T')| < |B(T)| has a unique $\beta_k(T')$ -set.

We now root T at a vertex r of maximum eccentricity. Let w be a vertex of degree at least k at maximum distance from r. Such a vertex exists since $\Delta(T) \ge k$. Let u be the parent of w in the rooted tree, and v be the parent of u. Let S be a $\beta_k(T)$ -set. We distinguish between two cases.

k-Independence Stable Graphs Upon Edge Removal

Case 1. $d_T(w) \ge k + 1$. Let $T' = T - T_w$. If $w \in S$, then at least one child of w, say w', is not in S. But then $S \cup \{w'\}$ is a k-independent set of T - ww', a contradiction. Thus w belongs to no $\beta_k(T)$ -set. It follows that $D(w) \subseteq S$. Now it can be seen that $\beta_k(T) = \beta_k(T') + \beta_k(T_w)$. Since T is a β_k^- -stable tree, $\beta_k(T - uw) = \beta_k(T) = \beta_k(T') + \beta_k(T_w)$. Moreover, if for some edge $e \in E(T')$, $\beta_k(T' - e) > \beta_k(T')$, then $\beta_k(T - e) \ge \beta_k(T' - e) + \beta_k(T_w) >$ $\beta_k(T') + \beta_k(T_w) = \beta_k(T)$, and so T is not β_k^- -stable, a contradiction. It follows that for every edge $e \in E(T')$, $\beta_k(T' - e) = \beta_k(T')$ and so T' is a β_k^- -stable. By induction on T', T' has a unique $\beta_k(T')$ -set, say X. Since no $\beta_k(T)$ -set contains $w, S \cap V(T')$ is a $\beta_k(T')$ -set. Hence $S \cap V(T') = X$. Moreover, $S \cap V(T_w) = D(w)$. Thus, S is the unique $\beta_k(T)$ -set.

Case 2. $d_T(w) = k$. By our choice of w, every descendant of w has degree at most k-1. Hence, $w \in S$ for otherwise by Theorem 4, w is k+1dominated by S or $N(w) \cap S$ contains two full vertices, which is impossible. Assume that u is in S. Since $w \in S$, it follows that at least one child of w, say w', is not in S. But then $S \cup \{w'\}$ is a k-independent set of T - uwwith $|S \cup \{w'\}| > \beta_k(T)$, contradicting our assumption that T is β_k^- -stable. Hence $u \notin S$. We may assume that every child of u has degree at most k, otherwise Case 1 applies. It follows that $D(u) \subseteq S$. Note that D(u) is a $\beta_k(T_u)$ -set, and we have shown that $S \cap V(T_u) = D(u)$ for any $\beta_k(T)$ -set S. Let $T' = T - T_u$, and let $S' = S \cap V(T')$. Since $u \notin S$ and S' is a k-independent set, we conclude that S' is a $\beta_k(T')$ -set. Moreover, since T is a β_k^- -stable tree, $\beta_k(T - uv) = \beta_k(T) = \beta_k(T') + \beta_k(T_u)$. Now if S' does not satisfy conditions of Theorem 4, then clearly $S = S' \cup D(u)$ does not satisfy these conditions in T, and so T is not β_k^- -stable, a contradiction. It follows that T' is a β_k^- -stable tree, and by our inductive hypothesis on T', $S \cap V(T')$ is the unique $\beta_k(T')$ -set. Since u does not belong to any $\beta_k(T)$ -set, $S = D(u) \cup S'$ is the unique $\beta_k(T)$ -set.

Lemma 7. Let T_1 and T_2 be trees with unique β_k -sets S_1 and S_2 , respectively. If T is a tree obtained from $T_1 \cup T_2$ by adding an edge uv where $u \in V(T_1)$ and $v \in V(T_2) - S_2$, then $S_1 \cup S_2$ is the unique $\beta_k(T)$ -set.

Proof. Let T_1 and T_2 be trees with unique β_k -sets S_1 and S_2 , respectively, and let T be a tree obtained from $T_1 \cup T_2$ by adding an edge uv where $u \in V(T_1)$ and $v \in V(T_2) - S_2$. Clearly, since $v \notin S_2$, $S_1 \cup S_2$ is a kindependent set of T. Thus, $\beta_k(T) \geq |S_1 \cup S_2|$. Let D be a $\beta_k(T)$ -set, and let $D_1 = D \cap V(T_1)$ and $D_2 = D \cap V(T_2)$. Since D_i is a k-independent set in T_i , we have $\beta_k(T_i) \geq |D_i|$ for $i \in \{1,2\}$. Hence, $\beta_k(T_1) + \beta_k(T_2) \geq |D_1| + |D_2| = |D| = \beta_k(T)$. Therefore, $\beta_k(T) = \beta_k(T_1) + \beta_k(T_2)$ and D is a $\beta_k(T)$ -set. Moreover, it follows that D_i is a k-independent set of T_i having cardinality $\beta_k(T_i)$ for $i \in \{1,2\}$ and so $D_i = S_i$ implying that $D = S_1 \cup S_2$ is the unique $\beta_k(T)$ -set.

In [1], Blidia, Chellali and Volkmann defined the following trees. For a positive integer p, a nontrivial tree T is called an \mathcal{N}_p -tree if T contains a vertex, say w, of degree at least p-1 and $\deg_T(x) \leq p-1$ for every vertex of $x \in V(T) - \{w\}$. We will call w the special vertex of T. The subdivided star $K_{1,p}$ ($p \geq 3$) is an example of an \mathcal{N}_p -tree.

We define a related family of trees, which we call $\mathcal{N}_{k,j}^*$ -trees. A tree T is an $\mathcal{N}_{k,j}^*$ -tree with special vertex w if N(w) contains $j \geq 0$ vertices of degree k, the remaining vertices in T except possibly w have degree at most k-1, and if $j \leq 1$, $d_T(w) \geq k+1$. We note that if $j \geq 2$, the only degree restriction on the special vertex w is that $d_T(w) \geq j$. An \mathcal{N}_k -tree with special vertex of degree at least k + 1 is an example of an $\mathcal{N}_{k,j}^*$ -tree. A tree T is a weak $\mathcal{N}_{k,1}^*$ -tree with special vertex w if w has degree at most k, N(w) contains one vertex of degree k, and the remaining vertices in T except possibly whave degree at most k - 1.

Observation 8. For an $\mathcal{N}_{k,j}^*$ -tree T with special vertex w, $V(T) - \{w\}$ is the unique $\beta_k(T)$ -set.

In order to characterize trees T with a unique $\beta_k(T)$ -set, we define the family \mathcal{F}_k of all trees T that can be obtained from a sequence T_1, T_2, \ldots, T_p $(p \ge 1)$ of trees, where $T_1 = T^*$ is an $\mathcal{N}_{k,j}^*$ -tree, $T = T_p$, and, if $p \ge 2$, T_{i+1} can be obtained recursively from T_i by one of the four operations listed below.

- Operation \mathcal{O}_1 : Attach an \mathcal{N}_k -tree with special vertex z of degree at least k+1 by adding an edge from z to any vertex of T_i .
- Operation \mathcal{O}_2 : Attach an \mathcal{N}_k -tree with special vertex z of degree k by adding an edge from z to any vertex belonging to a $\beta_k(T_i)$ -set.
- Operation \mathcal{O}_3 : Attach an $\mathcal{N}_{k,j}^*$ -tree with special vertex z, where $j \ge 1$, by adding an edge from z to any vertex in T_i .
- Operation \mathcal{O}_4 : Attach a weak $\mathcal{N}_{k,1}^*$ -tree T^* with special vertex z, by adding the edge zx, where x is a vertex in a $\beta_k(T_i)$ -set, with the condition that if x is not full, then z has degree k in T^* .

We state two lemmas.

Lemma 9. Let T be a tree and k a positive integer. If $\Delta(T) \leq k-1$ or $T \in \mathcal{F}_k$, then T has a unique $\beta_k(T)$ -set.

Proof. It is clear that if $\Delta(T) \leq k - 1$, then V(T) is the unique $\beta_k(T)$ -set. Suppose now that $\Delta(T) \geq k$ and $T \in \mathcal{F}_k$. Then T is obtained from a sequence T_1, T_2, \ldots, T_p $(p \geq 1)$ of trees, where $T_1 = T^*$ with special vertex $w, T = T_p$, and, if $p \geq 2, T_{i+1}$ can be obtained recursively from T_i by one of the four operations defined above. Clearly the property is true if p = 1. This establishes the basis case.

Assume now that $p \ge 2$ and that the result holds for all trees $T \in \mathcal{F}_k$ that can be constructed from a sequence of length at most p-1, and let $T' = T_{p-1}$. By the inductive hypothesis, T' has a unique $\beta_k(T')$ -set. Let T be a tree obtained from T' and S a $\beta_k(T)$ -set. We consider the following four cases.

Case 1. T is obtained from T' by using Operation \mathcal{O}_1 . Let H be the \mathcal{N}_k -tree with special vertex z of degree at least k+1 added to T'. Note that $V(H) - \{z\}$ is the unique $\beta_k(H)$ -set, and since T' has a unique $\beta_k(T')$ -set, say S', Lemma 7 implies that $S' \cup (V(H) - \{z\})$ is the unique $\beta_k(T)$ -set.

Case 2. T is obtained from T' by using Operation \mathcal{O}_2 . Let H be an \mathcal{N}_k -tree with special vertex z of degree k added to T' with edge uz, where u is a vertex of a $\beta_k(T')$ -set S'. Clearly $S' \cup (V(H) - \{z\})$ is a k-independent set of T and so $\beta_k(T) \geq \beta_k(T') + |V(H)| - 1$. Moreover, if S contains z, then since $d_T(z) = k + 1$ at least one of its neighbors in H is not in S, and hence z can be substituted by such a vertex in S. Therefore we may assume that $z \notin S$, and hence $V(H) - \{z\} \subseteq S$. Thus $S \cap V(T')$ is a k-independent set of T' implying that $\beta_k(T') \geq \beta_k(T) - |V(H)| + 1$, and the following equality is obtained $\beta_k(T) = \beta_k(T') + |V(H)| - 1$. Now assume that S is not the unique $\beta_k(T)$ -set, and let M be a second $\beta_k(T)$ -set. Note that we have seen that $z \notin S$. Since at most |V(H)| - 1 vertices from H are in M, it follows that $|M \cap V(T')| \geq \beta_k(T')$. Since T' has a unique $\beta_k(T')$ -set, $M \cap V(T') = S \cap V(T')$ is the unique $\beta_k(T')$ -set. Hence $u \in M$. If $z \in M$, then two vertices of $N_H(z)$, say $y', y'' \notin M$ but then $\{y', y''\} \cup (M - \{z\})$ is a k-independent set of T larger than M which is impossible. Thus $z \notin M$. It follows that M contains $V(H) - \{z\}$, implying that M = S, a contradiction. Therefore S is the unique $\beta_k(T)$ -set.

Case 3. T is obtained from T' by using Operation \mathcal{O}_3 . Then T is obtained from T' by adding an $\mathcal{N}_{k,j}^*$ -tree T^* with special vertex z by adding the edge zx, where $x \in V(T')$. From Observation 8, we know that $V(T^*) - \{z\}$ is the unique $\beta_k(T^*)$ -set. Since T' has the unique $\beta_k(T')$ -set S', it follows from Lemma 7 that $S' \cup (V(T^*) - \{z\})$ is the unique $\beta_k(T)$ -set.

Case 4. T is obtained from T' by using Operation \mathcal{O}_4 . Then T is obtained from T' by adding a weak $\mathcal{N}_{k,1}^*$ -tree T_0 with special vertex z by adding the edge zx, where $x \in \beta_k(T')$ -set S'. Then $S' \cup (V(T_0) - \{z\})$ is a k-independent set of T and hence $\beta_k(T) \geq \beta_k(T') + |V(T_0)| - 1$. Also since $N_{T_0}(z)$ contains a vertex, say y, of degree k, S does not contain all vertices of N[y]. Hence we may assume that $z \notin S$. It follows that $V(T_0) - \{z\} \subseteq S$ and so $S \cap T'$ is a k-independent set implying that $\beta_k(T') \ge \beta_k(T) - |V(T_0)| + 1$. Thus we have $\beta_k(T) = \beta_k(T') + |V(T_0)| - 1$. Assume now that S is not the unique $\beta_k(T)$ -set, and let M be a second $\beta_k(T)$ -set. Since T_0 contains a vertex of degree k, M does not contain all vertices of $V(T_0)$. If $z \notin M$ or $x \notin M$, then $M \cap V(T')$ would be a second $\beta_k(T')$ -set, a contradiction. Thus $z \in M$ and $x \in M$. The uniqueness of a $\beta_k(T')$ -set implies that $M \cap V(T')$ is the unique $\beta_k(T')$ -set. Clearly x is not full in $M \cap V(T')$. By our construction in that case both y and z have degree k in T_0 . Then there are two vertices y' and y'' in $N_{T_0}(z)$ that do not belong to M, but then $\{y', y''\} \cup (M - \{z\})$ would be a k-independent set of T larger than M, a contradiction. Thus S is the unique $\beta_k(T)$ -set.

Lemma 10. Let T be a tree and k a positive integer. If T admits a unique $\beta_k(T)$ -set, then either $\Delta(T) \leq k-1$ or $T \in \mathcal{F}_k$.

Proof. If $\Delta(T) \leq k - 1$, we are finished. Suppose that $\Delta(T) \geq k$, and let $B(T) = \{x \in V(T) : \deg_T(x) \geq k\}$. Clearly $B(T) \neq \emptyset$. We use an induction on the size of B(T). If |B(T)| = 1, then T is an \mathcal{N}_k -tree with special vertex, say z, of degree at least k + 1, for otherwise $V(T) - \{z\}$ and $V(T) - \{z'\}$ are two $\beta_k(T)$ -sets, where z' is any vertex adjacent to z. Hence T is an $\mathcal{N}_{k,i}^*$ -tree. This establishes the basis case.

Let $|B(T)| \ge 2$ and assume that every tree T' with |B(T')| < |B(T)|having a unique $\beta_k(T')$ -set is in \mathcal{F}_k . Let T be a tree with a unique $\beta_k(T)$ set S.

Root T at a vertex r of maximum eccentricity, and let w be a vertex of degree at least k at maximum distance from r. Let u be the parent of w in the rooted tree. We distinguish between three cases.

k-Independence Stable Graphs Upon Edge Removal

Case 1. $d_T(w) \ge k+2$. Let $T' = T - T_w$. Clearly |B(T')| < |B(T)|. The uniqueness of S implies that w does not belong to S for otherwise it can be replaced by one of at least two vertices of $N[w] - \{u\}$ not in S. It follows that $\beta_k(T) = \beta_k(T') + |V(T_w)| - 1$ and $S \cap V(T')$ is the unique $\beta_k(T')$ -set. Applying the inductive hypothesis, $T' \in \mathcal{F}_k$ and hence $T \in \mathcal{F}_k$ since it is obtained from T' by using Operation \mathcal{O}_1 .

Case 2. $d_T(w) = k + 1$. If $w \in S$, then a child w' of w is not in S. Therefore $\{w'\} \cup (S - \{w\})$ is a second $\beta_k(T)$ -set, a contradiction. Thus $w \notin S$ and so $u \in S$ for otherwise $\{w\} \cup (S - \{w'\})$ is a second $\beta_k(T)$ -set, a contradiction. Now let $T' = T - T_w$. It is straightforward to show that $\beta_k(T) = \beta_k(T') + |V(T_w)| - 1$. The uniqueness of S implies that $S \cap V(T')$ is the unique $\beta_k(T')$ -set, where $u \in S \cap V(T')$. Since |B(T')| < |B(T)| the inductive hypothesis on T' implies that $T' \in \mathcal{F}_k$. Thus $T \in \mathcal{F}_k$ because it is obtained from T' by using Operation \mathcal{O}_2 .

Case 3. $d_T(w) = k$. Assume for a contradiction that $w \notin S$. Then S must contain u else $S \cup \{w\}$ is a k-independent set of T larger than S. Hence $\{w\} \cup (S - \{u\})$ is a second $\beta_k(T)$ -set, a contradiction. Therefore $w \in S$. If $u \in S$, then $k \ge 2$ and a child w' of w is not in S and so $\{w'\} \cup (S - \{u\})$ is a second $\beta_k(T)$ -set, a contradiction. Thus $u \notin S$. By our choice of w, $D[w] \subseteq S$ and hence w is a full vertex in S. Also our choice of w implies that every child of u has degree at most k and each vertex in D(u) - N(u)has degree at most k-1. Thus, S contains all descendants of u. If w is the unique full vertex in S adjacent to u and u has at most k neighbors in S, then $\{u\} \cup (S - \{w\})$ would be a second $\beta_k(T)$ -set, a contradiction. Thus either u is adjacent to at least two full vertices in S or u is adjacent to at least k+1 vertices in S. Let $T' = T - T_u$. If $B(T') = \emptyset$, then T is an $\mathcal{N}_{k,i}^*$ -tree and hence $T \in \mathcal{F}_k$. Thus assume that $B(T') \neq \emptyset$, and let v be the parent of u. Note that $V(T_u) - \{u\}$ is a k-independent set. It can be seen that $\beta_k(T) = \beta_k(T') + |V(T_u)| - 1$ and $S \cap V(T')$ is a $\beta_k(T')$ -set. Moreover, the uniqueness of S implies that $S \cap V(T')$ is the unique $\beta_k(T')$ -set. Thus by induction on $T', T' \in \mathcal{F}_k$. Now if T_u is an $\mathcal{N}_{k,j}^*$ -tree with special vertex u, where $j \ge 1$, then $T \in \mathcal{F}_k$ because it is obtained from T' by using Operation \mathcal{O}_3 . Hence assume that T_u is not an $\mathcal{N}_{k,j}^*$ -tree. This implies that w is the only child of u with degree k and u has degree at most k in T_u . Thus, T_u is a weak \mathcal{N}_{k}^* tree. Recall that u is adjacent to two full vertices in S or u is adjacent to at least k+1 vertices in S. If u is adjacent to two full vertices in S, then since w is the only full vertex in D(u), it follows that v is full in S.

Since $u \notin S$, it follows that v is full in $S \cap V(T')$. If u is adjacent to k + 1 vertices in S, then u has degree k in T_u and v is in S. Thus, $v \in S \cap V(T')$. In both cases, T can be obtained from T' by using Operation \mathcal{O}_4 . Hence $T \in \mathcal{F}_k$.

According to Theorems 4, 5, and Lemmas 6, 9 and 10, we have completed the proof of Theorem 1.

References

- [1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. **306** (2006) 2031–2037.
- [2] J.F. Fink and M.S. Jacobson, *n-domination in graphs*, in: Graph Theory with Applications to Algorithms and Computer (John Wiley and sons, New York, 1985) 283–300.
- [3] G. Gunther, B. Hartnell and D.F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Appl. Math. 46 (1993) 167–172.

Received 6 December 2008 Revised 30 June 2009 Accepted 30 June 2009