NORDHAUS-GADDUM RESULTS FOR WEAKLY CONVEX DOMINATION NUMBER OF A GRAPH

Magdalena Lemańska
Department of Applied Physics and Mathematics
Gdańsk University of Technology
Narutowicza 11/12, 80-952 Gdańsk, Poland
e-mail: magda@mif.pg.gda.pl

Abstract

Nordhaus-Gaddum results for weakly convex domination number of a graph G are studied.

Keywords: weakly convex domination number, Nordhaus-Gaddum results.
2010 Mathematics Subject Classification: 05C05, 05C69.

1. Introduction

Let $G=(V, E)$ be a connected undirected graph of order n. The neighbourhood of a vertex $v \in V$ in G is the set $N_{G}(v)$ of all vertices adjacent to v in G. For a set $X \subseteq V$, the open neighbourhood $N_{G}(X)$ is defined to be $\bigcup_{v \in X} N_{G}(v)$ and the closed neighbourhood $N_{G}[X]=N_{G}(X) \cup X$. The degree $\operatorname{deg}_{G}(v)$ of a vertex v in G is the number of edges incident to v, $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The minimum and maximum degree of a vertex in G we denote $\delta(G)$ and $\Delta(G)$, respectively. If $\operatorname{deg}_{G}(v)=n-1$, then v is called an universal vertex of G. A set $D \subseteq V$ is a dominating set of G if $N_{G}[D]=V$. The domination number of G, denoted $\gamma(G)$, is the minimum cardinality of a dominating set in G.

Given a graph G and a set $S \subseteq V$, the private neighbourhood of $v \in S$ relative to S is defined as $P N[v, S]=N_{G}[v]-N_{G}[S-\{v\}]$, that is, $P N[v, S]$ denotes the set of all vertices of the closed neighbourhood of v, which are
not dominated by any other vertex of S. The vertices of $P N[v, S]$ are called private neighbours of v relative to S.

The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of the shortest $(u-v)$ path in G. A $(u-v)$ path of length $d_{G}(u, v)$ is called $(u-v)$-geodesic. A set $X \subseteq V$ is weakly convex in G if for every two vertices $a, b \in X$ there exists an $(a-b)$ - geodesic in which all vertices belong to X. A set $X \subseteq V$ is a weakly convex dominating set if X is both weakly convex and dominating. The weakly convex domination number $\gamma_{\text {wcon }}(G)$ of a graph G equals the minimum cardinality of a weakly convex dominating set. Weakly convex domination number was first introduced by Jerzy Topp, Gdańsk University of Technology, 2002.

The classical paper of Nordhaus and Gaddum [4] established the following inequalities for the chromatic numbers χ and $\bar{\chi}$ of a graph G and its complement \bar{G}, where $n=|V|$:

$$
\begin{aligned}
& 2 \sqrt{n} \leq \chi+\bar{\chi} \leq n+1 \\
& n \leq \chi \bar{\chi} \leq \frac{(n+1)^{2}}{4}
\end{aligned}
$$

There are a large number of results in the graph theory literature of the form $\alpha+\bar{\alpha} \leq n \pm \epsilon$, where $\epsilon \in Q$, for a domination parameter α. Results of this form have previously been obtained for example for the domination number $\gamma[3]$ and the connected domination number $\gamma_{c}[2]$.

Theorem 1. For any graph G such that G and \bar{G} are connected,

1. $\gamma(G)+\gamma(\bar{G}) \leq n+1$,
2. $\gamma_{c}(G)+\gamma_{c}(\bar{G}) \leq n+1$.

We are concerned with analogous inequalities involving weakly convex domination number. For unexplained terms and symbols see [1].

2. Results

Since G and \bar{G} must be connected, we consider graphs G with $n(G) \geq 4$. We begin with the following result of Nordhaus-Gaddum type for weakly convex domination number.

Theorem 2. For any graph G such that G and \bar{G} are connected, $4 \leq$ $\gamma_{w c o n}(G)+\gamma_{w c o n}(\bar{G}) \leq n+2$.

Proof. If there is an universal vertex in G, then \bar{G} is not connected. Thus there is no universal vertex in G and no universal vertex in \bar{G} and hence $\gamma_{w c o n}(G) \geq 2$ and $\gamma_{w c o n}(\bar{G}) \geq 2$. Thus $\gamma_{w c o n}(G)+\gamma_{w c o n}(\bar{G}) \geq 4$. Notice that equality $\gamma_{w c o n}(G)+\gamma_{w c o n}(\bar{G})=4$ holds if $G \cong P_{4}$.

Of course $\gamma_{w c o n}(G) \leq n$ and $\gamma_{w c o n}(G) \leq n$. We consider some cases, depending on the diameter of G.

Case 1. If $\operatorname{diam}(G)=1$, then there is an universal vertex in G and \bar{G} are not connected.

Case 2. If $\operatorname{diam}(G) \geq 3$, then let x, y be two vertices of V such that $d_{G}(x, y)=\operatorname{diam}(G)$. Then $\{x, y\}$ is a weakly convex dominating set of \bar{G} and $\gamma_{c o n}(G)+\gamma_{c o n}(\bar{G}) \leq n+2$.

Case 3. Let $\operatorname{diam}(G)=2$. If $\operatorname{diam}(G) \geq 3$, then we can exchange G and \bar{G} and we have Case 2. Thus $\operatorname{diam}(G)=2$ and $\operatorname{diam}(\bar{G})=2$. Let x be any vertex of G. Since $\operatorname{diam}(G)=2$, for every $v \in V$ is $d_{G}(v, x) \leq 2$. Let $Y=\left\{y \in V: d_{G}(x, y)=1\right\}$ and $Z=\left\{z \in V: d_{G}(x, z)=2\right\}$, $|Y|=k,|Z|=l$, where $k, l \geq 1$ (if $l=0$, then there is an universal vertex in G and \bar{G} are not connected). Then $n=k+l+1$ and it is easy to observe that $D=\{x\} \cup Y$ is a connected dominating set of G. For every two vertices u, v belonging to D, the distance between u and v is not greater than two and if $d_{G}(u, v)=2$, then x belonging to D is on (u, v)-geodesic. Thus D is a weakly convex dominating set of G and $\gamma_{w c o n}(G) \leq|D|=k+1$.

Since \bar{G} is connected and $\operatorname{diam}(\bar{G})=2$, every vertex from Y has a neighbour in $\{x\} \cup Z$ in \bar{G} and hence $D^{\prime}=\{x\} \cup Z$ is a connected dominating set of \bar{G}. For every two vertices u, v belonging to D^{\prime}, the distance between u and v is not greater than two and if $d_{G}(u, v)=2$, then x belonging to D^{\prime} is on (u, v)-geodesic. Thus D^{\prime} is a weakly convex dominating set of \bar{G} and $\gamma_{w c o n}(\bar{G}) \leq\left|D^{\prime}\right|=l+1$.

$$
\text { Thus } \gamma_{\text {wcon }}(G)+\gamma_{\text {wcon }}(\bar{G}) \leq k+1+l+1 \leq n+1 \leq n+2 \text {. }
$$

The next theorem concerns of the graphs G for which weakly convex domination number is equal to the number of vertices. Let $g(G)$ denotes the girth of the graph G.

Theorem 3. If G is a connected graph with $\delta(G) \geq 2$ and $g(G) \geq 7$, then $\gamma_{w c o n}(G)=n$.

Proof. Let G be a connected graph with $\delta(G) \geq 2$ and $g(G) \geq 7$. Suppose that $\gamma_{w c o n}(G)<n$. Let D be a minimum weakly convex dominating set of G. Since $\gamma_{w c o n}(G)<n$, there exists a vertex x in G such that $x \notin D$. Denote $N_{G}(x)=\left\{x_{1}, \ldots, x_{p}\right\}$, where $p \geq 2$ (because $\delta(G) \geq 2$). It is easy to observe that since $g(G) \geq 7$, for every x_{i}, x_{j} is $x_{i} x_{j} \notin E(G)$ for $1 \leq i, j \leq p$.

Notice that for every x_{i}, x_{j}, where $x_{i} \neq x_{j}$ and $1 \leq i, j \leq p$ we have $d_{G}\left(x_{i}, x_{j}\right)=2$ and every shortest path between x_{i} and x_{j} contains x.

Suppose there are vertices $x_{1}, x_{2} \in N_{G}(x)$ such that $x_{1}, x_{2} \in D$. Then, since D is weakly convex, there is a vertex $v \in D$ such that $v \in N_{G}\left(x_{1}\right) \cap$ $N_{G}\left(x_{2}\right)$. But then we can find a cycle $C=\left(x_{1}, x, x_{2}, v, x_{1}\right)$ which length is less than seven, what gives a contradiction.

Thus $\left|N_{G}(x) \cap D\right| \leq 1$. Since x has to be dominated, we have $\mid N_{G}(x) \cap$ $D \mid=1$. Without loss of generality assume that $x_{1} \in N_{G}(x) \cap D$. Thus, since $\delta(G) \geq 2$, there exists at least one vertex belonging to $N_{G}(x)$ say x_{2}, such that $x_{2} \notin D$. Since $\delta(G) \geq 2$ and x_{2} is dominated, there exists a vertex $y \in N_{G}\left(x_{2}\right)$ such that $y \neq x$ and $y \in D$. Since $g(G) \geq 7$, we have $N_{G}(y) \cap N_{G}(x)=\emptyset$ and $N_{G}(y) \cap N_{G}\left(x_{i}\right)=\emptyset$, where $1 \leq i \leq p$.

Since D is a weakly convex set, $d_{G}\left(y, x_{1}\right)=3$ and there is a $\left(x_{1}-y\right)$ geodesic P_{1} such that all vertices of P_{1} belong to D. Thus we have at least two $\left(x_{1}-y\right)$-geodesics: P_{1} and $P_{2}=\left(x_{1}, x, x_{2}, y\right)$ what produces a cycle of length less than seven. That gives contradiction with $g(G) \geq 7$ and hence we have $\gamma_{w c o n}(G)=n$.

The simplest example of a graph G such that $\gamma_{w c o n}(G)=n$ can be a graph $G=C_{n}$ with $n \geq 7$. For $\overline{C_{n}}$ we have $\gamma_{w c o n}\left(\overline{C_{n}}\right)=2$ and $\gamma_{w c o n}(G)+$ $\gamma_{w c o n}(\bar{G})=n+2$.

Corollary 4. If G and \bar{G} are connected, $\delta(G) \geq 2$ and $g(G) \geq 7$, then $\gamma_{w c o n}(G)+\gamma_{w c o n}(\bar{G})=n+2$.

Theorem 5. For any graph G such that G and \bar{G} are connected, $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$. Furthermore, $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$ if and only if G or \bar{G} is isomorphic to C_{5}.

Proof. Again we consider three cases, depending on the diameter of G.
If $\operatorname{diam}(G)=1$, then $\gamma_{w c o n}(G)=1$ and \bar{G} is not connected.
If $\operatorname{diam}(G) \geq 3$, then similarly like in the proof of Theorem $2, \gamma_{w c o n}(\bar{G})$ $=2$ and since $n \geq 4, \gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq 2 n<\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.

Let $\operatorname{diam}(G)=2$. Similarly like in the proof of the previous theorem, let x be any vertex of G, let $Y=\left\{y \in V: d_{G}(x, y)=1\right\}$ and $Z=\{z \in V$: $\left.d_{G}(x, z)=2\right\},|Y|=k,|Z|=l$, where $k, l \geq 1$.

If $k=1$, then $\gamma_{w c o n}(G)=1$, there is an universal vertex in G and \bar{G} is not connected.

If $k=2$, then, since $\{x\} \cup Y$ is a weakly convex dominating set of G, $\frac{\gamma_{w c o n}}{G}(G) \leq 3$. Let $Y=\{\underline{u}, v\}$. Notice that $\{x\}$ dominates itself and Z in \bar{G} and to dominate Y in \bar{G}, it is enough to take two vertices a, b from Z such that $a u \in E(\bar{G})$ and $b v \in E(\bar{G})$ (such vertices a, b must exist since \bar{G} is connected and $\operatorname{diam}(\bar{G})=2)$. Since $a, b \in Z, a x \in E(\bar{G})$ and $b x \in E(\bar{G})$ and thus $\{x, a, b\}$ is a weakly convex dominating set of \bar{G}. Hence $\gamma_{w c o n}(\bar{G}) \leq 3$.

Since G and \bar{G} are connected and $\operatorname{diam}(G)=2$, we have $|Z| \geq 2$ and $n \geq 5$. It is easy to observe that $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.

If $\gamma_{w c o n}(G)=3, \gamma_{w c o n}(\bar{G})=3$ and $n=5$ we have equality $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$ and C_{5} realizes this equality. In the other cases we have $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})<\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.

Now let $k \geq 3$. Since $\{x\} \cup Y$ is a weakly convex dominating set of G, we have $\gamma_{w c o n}(G) \leq k+1$. We consider three cases:

Case 1. If $l>k$, then $k<\left\lfloor\frac{n}{2}\right\rfloor$. Observe that x dominates itself and Z in \bar{G}. Since \bar{G} is connected and $\operatorname{diam}(\bar{G})=2$, every vertex from Y has a neighbour in Z. Let $Y=\left\{y_{1}, \ldots, y_{k}\right\}$ and let $\left\{z_{1}, \ldots, z_{k}\right\}$ be the set of vertices from Z such that $y_{1} z_{1} \in E(\bar{G}), \ldots, y_{k} z_{k} \in E(\bar{G})$. Thus $\{x\} \cup\left\{z_{1}, \ldots, z_{k}\right\}$ is a weakly convex dominating set of \bar{G} and $\gamma_{w c o n}(\bar{G}) \leq$ $k+1$. Hence $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq(k+1)^{2}$ and since $k<\left\lfloor\frac{n}{2}\right\rfloor$, we have $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})<\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.

Case 2. If $l=k$, then $k \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $l \leq\left\lfloor\frac{n}{2}\right\rfloor$. Since $\{x\} \cup Z$ is a weakly convex dominating set of \bar{G}, we have $\gamma_{\text {wcon }}(\bar{G}) \leq l+1$. Thus $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq(k+1)(l+1) \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.

Case 3. If $l<k$, then $l<\left\lfloor\frac{n}{2}\right\rfloor$. Similarly like in Case 2 we have $\gamma_{w c o n}(\bar{G}) \leq l+1$. Notice that $\{x\}$ dominates itself and Y in G and to dominate Z in G it is enough to take l vertices from Y. Thus $\gamma_{w c o n}(G) \leq l+1$ and $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq(l+1)^{2}<\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.

We have already shown that for C_{5} equality $\gamma_{c o n}(G) \gamma_{c o n}(\bar{G})=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$ holds. Conversely, let G be a graph for which we have equality. Then (from the earlier part of the proof) we have $\operatorname{diam}(G)=2$ and $l=k$.

If $k=2$, then $l=2$ and $n=5$. Since $\operatorname{diam}(G)=2$, there is no end vertex in Z. Let $Z=\left\{z_{1}, z_{2}\right\}, Y=\left\{y_{1}, y_{2}\right\}$. If both z_{1}, z_{2} have two neighbours in Y, then \bar{G} is not connected. If one vertex of Z, without loss of generality if z_{1} has two neighbours in Y, then $\gamma_{w c o n}(G)=2=\gamma_{w c o n}(\bar{G})$ and $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})<\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$. Thus every of vertices z_{1} and z_{2} has only one neighbour in Y. If z_{1}, z_{2} have a common neighbour in Y, say y_{1}, then y_{1} is an end vertex in \bar{G} and $\operatorname{diam}(\bar{G})>2$. Thus every vertex from Z has exactly one neighbour in Y and every vertex from Y has exactly one neighbour in Z, without loss of generality let $z_{1} y_{1} \in E(G)$ and $z_{2} y_{2} \in E(G)$. Since there is no end vertex in G, we have $z_{1} z_{2} \in E(G)$. If $y_{1} y_{2} \in E(G)$, then we have an end vertex in \bar{G} and $\operatorname{diam}(\bar{G})>2$; hence $y_{1} y_{2} \notin E(G)$ and $G \cong C_{5}$.

Now let $l=k, k \geq 3$. We distinguish two cases.

1. There exists a vertex $y \in Y$ such that $P N[y, Y]=\emptyset$. Then $(\{x\} \cup Y)-\{y\}$ is a weakly convex dominating set of G and $\gamma_{c o n}(G) \leq k$. Since $\{x\} \cup Z$ is a weakly convex dominating set of \bar{G}, we have $\gamma_{w c o n}(\bar{G}) \leq l+1$ and since $k \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $l \leq\left\lfloor\frac{n}{2}\right\rfloor$, we have $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq k(l+1) \leq$ $\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)<\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$.
2. For every $y \in Y$ we have $P N[y, Y] \neq \emptyset$. Let us denote $Y=\left\{y_{1}, \ldots, y_{k}\right\}$, $Z=\left\{z_{1}, \ldots, z_{k}\right\}$ and $P N\left[y_{1}, Y\right]=\left\{z_{1}\right\}, \ldots, P N\left[y_{k}, Y\right]=\left\{z_{k}\right\}$. Then $\left\{x, z_{1}, z_{2}\right\}$ is a weakly convex dominating set of \bar{G} and $\gamma_{w c o n}(\bar{G}) \leq 3$. Thus we have $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq 3(k+1)<\left(\left\lfloor\frac{n}{2}+1\right)^{2}\right\rfloor$.
Hence if $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})=\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{2}$, then $G \cong C_{5}$.
Corollary 6. If G and \bar{G} are connected, $\operatorname{diam}(G) \leq 2$ and $G \neq C_{5}$, then $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.

Theorem 7. If G and \bar{G} are connected, $G \neq C_{7}$ and $G \neq C_{5}$, then $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.
Proof. Let G be a graph such that G and \bar{G} are connected and $G \neq C_{5}$ and $G \neq C_{7}$. From Corollary 6 , if $\operatorname{diam}(G) \leq 2$, then $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq$ $\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$; so let $\operatorname{diam}(G) \geq 3$. Then $\gamma_{w c o n}(\bar{G})=2$ and $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})$ $\leq 2 n \leq\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$ for $n \geq 8$.

Since $\operatorname{diam}(G) \geq 3$ and G, \bar{G} are connected, we have $n \geq 4$.
If $n=4$, then $G \cong \bar{G} \cong P_{4}$ and $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})<\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.
If $n=5$, then $\gamma_{w c o n}(G) \leq 3$ and since $\gamma_{w c o n}(\bar{G})=2$ we have $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G}) \leq\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.

If $n=6$, then $\gamma_{w c o n}(G) \leq 4$ and since $\gamma_{w c o n}(\bar{G})=2$ is $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})$ $<\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.

If $n=7$, then, since $G \neq C_{7}$, we have $\gamma_{w c o n}(G) \leq 5$ and since $\gamma_{w c o n}(\bar{G})=$ 2, again we have $\gamma_{w c o n}(G) \gamma_{w c o n}(\bar{G})<\left\lfloor\frac{n}{2}\right\rfloor\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)$.

Figure 1. Graph G_{1}.
The example of the extremal graph of Theorem 7 can be the graph G_{1} from Figure 1.

References

[1] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998).
[2] S.T. Hedetniemi and R. Laskar, Connected domination in graphs, in: B. Bollobás (ed.), Graph Theory and Combinatorics (Academic Press, London, 1984) 209-218.
[3] F. Jaegar and C. Payan, Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un graphe simple, Compt. Rend. Acad. Sci. Paris 274 (1972) 728-730.
[4] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177.

