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Abstract

The Chvatal-Erdos theorems imply that if G is a graph of order n >
3 with x(G) > a(G), then G is hamiltonian, and if x(G) > a(G), then
G is hamiltonian-connected. We generalize these results by replacing
the connectivity and independence number conditions with a weaker
minimum degree and independence number condition in the presence
of sufficient connectivity. More specifically, it is noted that if G is a
graph of order n and k > 2 is a positive integer such that x(G) > k,
§5(G) > (n+k* —k)/(k+ 1), and 6(G) > a(G) + k — 2, then G is
hamiltonian. It is shown that if G is a graph of order n and k > 3 is a
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positive integer such that k(G) > 4k?+1, §(G) > (n+k* —2k)/k, and
§(G) > a(G) + k — 2, then G is hamiltonian-connected. This result
supports the conjecture that if G is a graph of order n and k > 3
is a positive integer such that x(G) > k, §(G) > (n + k* — 2k)/k,
and §(G) > a(G) + k — 2, then G is hamiltonian-connected, and the
conjecture is verified for k = 3 and 4.

Keywords: Hamiltonian, Hamiltonian-connected, Chvatal-Erdos con-
dition, independence number.
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1. IINTRODUCTION

We deal only with finite simple graphs and our notation generally follows
the notation of Chartrand and Lesniak in [1]. Given a subset of vertices (or
subgraph) H of a graph G and a vertex v, let di(v) denote the degree of v
relative to H, and Ny (v) the neighborhood of v in H. The minimum degree,
independence number, and connectivity of G will be denoted by §(G), a(G),
and x(QG) respectively.

Two classical results of Chvatal and Erdos [2] are the following:

Theorem 1. If G is a graph of order n > 3 such that kK(G) > «(G), then
G is hamiltonian.

Theorem 2. If G is a graph of order n > 3 such that k(G) > «(G), then
G is hamiltonian-connected.

The following result on the existence of hamiltonian cycles, which is an
analogue of Theorem 1, will be proved. Actually, we note that Proposition
1 is an easy consequence of a result of Fraisse [5] and follows from a result
of Ota [6] with the appropriate interpretation of the condition on a.

Proposition 1. Let G be a graph of order n and k > 2 a positive integer
such that K(G) >k, §(G) > (n+k?—k—1)/(k+1). If 6(G) > a(G) +k—2,
then G is hamiltonian.

Corresponding to the hamiltonian result of Theorem 1 and an analogue to
Theorem 2, we make the following conjecture.
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Conjecture 1. Let G be a graph of order n and k > 3 a positive integer
such that k(G) > k, §(G) > (n + k? — 2k)/k. If §(G) > a(G) + k — 2, then

G is hamiltonian-connected.

We prove the following two results supporting Conjecture 1. The first result
has the same degree and independence number conditions and conclusion as
the conjecture, but requires a higher connectivity assumption on the graph.
The second result verifies the conjecture for the cases k = 3 and 4.

Theorem 3. Let G be a graph of sufficiently large order n and k > 3 a
positive integer such that k(G) > 4k®> + 1, 6(G) > (n + k* — 2k)/k. If
(G) > a(GQ) + k — 2, then G is hamiltonian-connected.

Theorem 4. Let G be a graph of sufficiently large order n and k = 3 or 4
such that k(G) >k, 6(G) > (n+ k? — 2k)/k. If §(G) > a(G) + k — 2, then
G is hamiltonian-connected.

In Section 2 we will give a short proof of Proposition 1 and present a family of
graphs which show that none of the conditions in Proposition 1 and Theorem
4 can be weakened. In Section 3 we prove the main results.

2. PRELIMINARY RESULTS AND SHARPNESS EXAMPLES

We begin by describing graphs H; for 1 < ¢ < 5 which demonstrate the
sharpness of the conditions in Propositon 1 and Theorem 4.

For k > 2, let Hl(k) = Kk+(k+1)K(n_k)/(k+1), where n = k mod (k—l—l).
Since there are k4 1 components in the graph Hy(k) — K}, the graph H; (k)
is not hamiltonian. Also, x(H;(k)) =k, §(H1(k)) = (n+ k> —k—1)/(k+1),
and a(Hy(k)) = k+ 1 < §(H;(k)) for n sufficiently large.

For k > 2, let Ha(k) = K(—i)/(k+1) + ((n +1)/(k + 1)) Ky where n =k
mod (k+1). Since there are strictly more than (n—k)/(k+1) components in
H(k) = K(n—k)/(k+1), the graph Ha(k) is not hamiltonian. Also, §(Ha(k)) =
(n+k2—k—1)/(k+1), and a(Hz(k)) = (n+1)/(k+1) = §(Ha(k)) — (k—2).

For k > 3, let H3(k) = Ky + kK (—k)/k, when n = 0 mod k. Since there
are as many components in Hs(k) — K} as there are vertices in K, the
graph H3(k) is not hamiltonian-connected. Also, k(Hs(k)) = k, 6(Hs(k)) =
(n+ k? — 2k)/k, and a(H3(k)) = k < 6(Hy(k)) for n sufficiently large.



248 J.R. FAUDREE, R.J. FAUDREE, R.J. GOULD, ...

For k > 3, let Hy(k) = K,/ + (n/k)Ky_1 where n = 0 mod k. The graph
H, (k) is not hamiltonian-connected, since there are as many components in
Hy(k)— K,y as there are vertices in K,, /. Also, §(Hy(k)) = (n+k*—2k)/k,
and a(Hy(k)) =n/k = 6(Hy(k)) — (k—2).

For (n+1)/3 < §(G) < n/2, the graph H5(8) = K5+ (KsUK,,_o5) is 0-
connected, not hamiltonian and not hamiltonian-connected, and a(H5(d)) =
d(Hs5(0)) + 1.

The graph H;(k) implies the minimum degree condition of Theorem 1
cannot be decreased for k > 2. Note that the graph Ho(k — 1) satisfies
the relationship 0(Ha(k — 1)) = a(Ha(k — 1)) + k — 3, and all of the other
conditions of Theorem 1, so the conditions cannot be decreased in Theorem
1 for k > 3. The graph Hj5(9) verifies the sharpness of Theorem 1 when
k=2.

The graph Hs(k) implies that the minimum degree conditions of Con-
jecture 1 and Theorem 4 cannot be decreased. Note that the graph Hy(k—1)
satisfies the relationship 0(Hy4(k — 1)) > a(H4(k — 1)) + k — 3 and all of the
other conditions of Conjecture 1, so the conditions cannot be decreased in
Conjecture 1 and also Theorem 4 for k > 4. The graph H5(9) verifies the
sharpness of Conjecture 1 and Theorem 4 when k = 3.

The above examples verify the sharpness of Theorem 1, Conjecture 1
and Theorem 4 when n satisfies the appropriate congruence relative to k.
Analogous examples, which are less symmetric, can be described for gen-
eral n.

Before starting our main proofs, for convenience we describe additional
notation. Given a positive integer p, 0,(G) = min{d(vy)+d(ve)+- - -+d(vp) :
{vi,v2,...,vp} is an independent set of G}. Given a positive integer A, a
cycle C'in a graph G is a Dy-cycle if each component of G — C' has fewer
than A vertices. With this notation, we can state the following result of
Fraisse in [5].

Theorem A. If G is a k-connected graph of order n > 3 with o;11(G) >
n+k(k —1), then G contains a Dy-cycle.

Proof (of Proposition 1). Select a maximal length cycle C of G that is a
Dy-cycle. Theorem A implies that such a cycle exists. If C' is hamiltonian,
then the proof is complete, so assume not. Select a vertex v in one of the
components, say H, of G—C'. Since |H| < k—1, we know dg(v) < k—2, and
so do(v) > 6(G) —k +2. Let S = Ng(v), and let ST denote the successors
of S on C for some orientation of C. Since C' is a maximal length Dg-cycle,
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the set S* = ST U {v} is an independent set with at least §(G) — k + 3
vertices. This is a contradiction, since a(G) < 6(G) — k + 2. This completes
the proof of Proposition 1. [ |

Proposition 1 is also a direct consequence of the main result of Ota [6], and
is related to the following corollary of the main result of Ota [6].

Theorem B. Let G be a k-connected graph of order n(n > 3) with a(G) <
(n+1)/(k+1)+ 1. If ox11(G) > n+ k? — k, then G is hamiltonian.

3. MAIN RESULTS

Theorem 3. Let G be a graph of sufficiently large order n and k > 3 a
positive integer such that k(G) > 4k®> + 1, 6(G) > (n + k* — 2k)/k. If
(G) > a(GQ) + k — 2, then G is hamiltonian-connected.

Proof. Suppose that G is not hamiltonian-connected, and select distinct
vertices z,y € V(G) and let P be a path in G from z to y with the maximum
number of vertices, say m < n. Let t = 4k% + 1, so k(G) > t.

We would like to show that each vertex of H = G — P may be adjacent
to at most o(G) vertices of P. Suppose a vertex v € H has a set S of at least
a(G) + 1 adjacencies in P. Since, for either orientation of P, at most one
vertex of S will not have a successor, we know |ST| > |S| — 1. Because P is
a path of maximum length, S™U{v} must be an independent set of order at
least o(G)+ 1, which is a contradiction. Thus, §(H) > 0(G) —a(G) > k—2.

Let s be the cardinality of a maximum length cycle C' C H, if a cycle
exists. If H has no cycle, let s = 1.

Claim 1. s <2(m —1)/(t — 1).

Proof. Since the conditions of Theorem 3 imply that G is hamiltonian, so
there is a path between x and y that contains at least (n + 1)/2 vertices.
Thus, we have m > §(G), since §(G) > (n+ 1)/2 would imply hamiltonian-
connected by the result of Dirac ([3]). Assume s < ¢t = 4k + 1. Then,
since m > §(G) > (n+ k®> + k — 1)/(k + 1), for n sufficiently large, s <
2(m —1)/(t — 1). Thus, assume s > t. There exist ¢ vertex-disjoint paths
between C' and P. Two of these paths, say @)1 and @2, have end vertices
in P with at most (m — 1)/(t — 1) — 1 vertices of P between them. The
end vertices of @)1 and Q2 on C have at least (s — 2)/2 vertices between
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them in one direction around the cycle C. The maximality of P implies
that (s —2)/2+2 < (m—1)/(t — 1) — 1. Therefore, s < 2(m —1)/(t — 1).
This completes the proof of the claim. [ |

Claim 2. The order of the path P is given by m > kn/(k + 1).

Proof. Our proof is by contradiction. Since the longest cycle in H has
length s, the endvertices of a longest path in H have degree less than s.
Therefore, there exist two vertices, say u and v, such that dg(u), dg(v) < s.
Furthermore, since §(H) > k — 2, this path, denoted by @, from u to v in
H has at least k — 1 vertices.

Since P is a maximum length path, no vertex of H can be adjacent to
two consecutive vertices of P. Let U = Np(u),V = Np(v), W =UNV
and, without loss of generality, assume that |U| < |V|. Thus, there are
|U| + |V| — |W] vertices of P adjacent to either u or v, and there are the
same number, or possibly one more or one less of “open” intervals of P with
no adjacencies to either u or v. Since the path P is of maximum length, each
“open” interval contains at least one vertex, and those intervals between a
vertex in U and a vertex in V', which will we call “long” intervals, contain at
least k — 1 vertices. There are at least |IW| — 1 such “long” intervals. Thus,

U+ VI = W[+ -=D(W] =1+ U+ [V]=2[W])
= 2U|+2|V|+ (k—4)|W]| -k + 1.

m

Y

(1)

All of the vertices in (UUV) T U{u} are independent, since any edge between
vertices in this set would contradict the fact that P was chosen of maximum
length. This implies that |U| 4 |V| —|W| < a(G) < §(G) — k+ 2. Therefore
(0(G) —dg(u)) + (6(G) —dy(v)) — 6(G) + k — 2 < |[W], and so

[W|>66G)—4(m—1)/(t —1) + k.
Hence, by Equation 1, we get

m > A6(G) —s+ 1)+ (k—4)W| —k+1
> 4(5(G) — 2(m — 1)/(t — 1) + 1)
(k= 4)(6(G) —4(m—1)/(t —1) + k) — k + 1.

Using the bounds m < kn/(k+1) and §(G) > (n+k%—2k)/k in the previous
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equation gives
(t 44k —9kn/(k+1) > (t —1)(n+k? = 2k) + (t — 1) (k* — 5k +5) + 4k — 8.

However, this implies ¢ < 4k? — 8k + 1 which is a contradiction. Finally
we may conclude that |P| = m > kn/(k + 1) completing the proof of the
claim. -

Assume that P is not a hamiltonian path. Select a longest path @ in H,
say with ¢ vertices and with end vertices u and v. Note that since §(H) >
k — 2, we get ¢ > k — 1. Recall that each vertex of H has at most a(G)
adjacencies in P. In fact, |[Np(Q)| < a(G) for the same reason. Assume
that s = dg(u) > dg(v), thus u has s > k — 2 adjacencies on (. Denote the
predecessors of these s vertices by {u = uq,us,...us}. Between v and any
of the vertices u; for 1 <1i < s, there is a path with ¢ vertices, and between
u; and u; for ¢ # j there is a path with at least (s + 1)/2 vertices. There
is no loss of generality in assuming that dg(u;) < s for all 4, and so each
vertex of S = {u1,ug,...,us,v} has at least §(G) — s adjacencies in P.

As before, let U = Np(u),V = Np(v), W = U NV, and assume that
|U| < |V|. Since dp(u),dp(v) > (n/k) +k—2—s and a(G) < n/k, we have
[W| =|U|+|V|-|lUUV|>2((n/k)+k—2—s)—n/k = (n/k)+2k—4—2s.
This implies

n—s—1>n—-q>(s+2)|W[+ (U= [W[)+ (V|- |W]) -1
>m>(s+2)((n/k)+2k—4—2s)+2(s+2—k)— 1.

Therefore, we know
252 — ((n/k) + 2k — 5)s +n — (2n)/k — 2k + 4 > 0.

However, for k —2 < s < n/(2k) — 1 the previous inequality is contradicted,
so we can assume that s > n/(2k) — 1. We have previously shown in Claim
1 that s < n/(2k?). Therefore, the assumption that the path P was not a
hamiltonian path between x and y is contradicted. This completes the proof
of Theorem 3. n

The conditions of Theorem 3 are sharp except for the condition on the
connectivity x(G), but for small values of k, we prove Theorem 4 which uses
the sharp condition for k(G).
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Theorem 4. Let G be a graph of sufficiently large order n and k = 3 or 4
such that k(G) >k, §(G) > (n+ k% — 2k)/k. If §(G) > a(G) + k — 2, then

G is hamiltonian-connected.

Proof. Suppose that G is not hamiltonian-connected, and select distinct
vertices x and y and let P be a path of G from z to y with a maximum
number of vertices, say m < n. Let H = G — P. If k(G) > 4k? + 1, then the
proof is complete by Theorem 3, so we can assume that k < k(G) < 4k2.

We would like to show each vertex of H can be adjacent to at most a(G)
vertices of P. Otherwise, a vertex v € H has a set S of at least (G) + 1
adjacencies in P. Note that |[ST| > |S|—1, since at most one vertex of S will
not have a successor. Since P is a path of maximum length, this implies that
ST U {v} is an independent set of order at least a(G) + 1, a contradiction.
Thus, 6(H) > §(G) — a(G) > k — 2.

We next show that |P| > (k — 1)n/k 4+ k — 1, so assume not. Select a
minimal cutset S of G, and let C1,C5,...,C} be the components of G — S.
Thus, k < |S| = s < 4k%, and we can assume that |C1| > |Ca| > --- > |Cy].

First consider the case k = 3, and so 6(G) > n/3+2, a(G) < 4(G) — 1,
and k(G) < 36. If t > 4, then |Cy| < (n — s)/t, and for any vertex v €
Cy, dv) < (n—s)/t+s—1 < n/3, a contradiction. Therefore, t < 3.
If t = 3, then n/3+s—6 > |C1] > |Ca] > |C3] > n/3+ 3 — s, and
5(C;) > n/3 — s+ 2 for each i. If s = 3, then for any vertex v in Cs, d(v) <
(n—3)/342, a contradiction. Thus, s > 4. Each of the graphs C; are nearly
complete, and are hamiltonian-connected even after the deletion of any small
number of vertices. Also, there is an s-matching between S and each of the
components C;, since S is a minimal cut set. Since s > 4, independent
of the location of the vertices z and y, it is an easy and straightforward
case analysis to show that there is a path P from z to y containing all of
the vertices of G — S and either 2,3 or 4 vertices of S. Thus, in this case,
|P|>n—s+2>2n/3+2.

We now consider the case when ¢t = 2. Hence, n/3 4+ 3 —s < |Cq| <
|C1] < 2n/3 — 3, and §(C;) > n/3 4+ 2 — s for each i. The component Cy
is hamiltonian-connected, but if |Cy| < 2n/3 4+ 3 — 2s, the component C
is also hamiltonian-connected. Consider the case when C is hamiltonian-
connected. If one of x or y is not in Cy, then it is straightforward to form
a path from z to y using all of the vertices of C; and Cs along with 2 or
3 vertices of S. This implies |P| > n—s+2 > 2n/3 4+ 2. If z and y are
both in C then there is a hamiltonian path @ in C; from z to y. There
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is also a matching with s edges between S and Q). Using two of these s
edges, whose end vertices in () are of minimum distance apart on @, along
with a hamiltonian path of Cs gives a path P from x to y of length at least
n—(Ci|—=s5)/(s—1)—(s—2)>n—(2n/3—-3-3s)/(s—1)—s+2 >
n/3 + 2. Thus, we can assume that C; is not hamiltonian-connected, and
so |C1| > 2n/3+4 — 2s.

If k(Cy) < 2, then there is a cut set, say S/, with |[S’| = 1 or 2, such
that C7 — S’ has two components, say C| and C]. The minimum degree in
each component is at least n/3 — s, so each of these components, and also
(s is nearly complete. Also, there are s — 2 independent edges between S
and each of the components C] and C{ and s independent edges between
S and Cs. Hence, just as in the case when there were 3 components of
G — S, it is an easy and straightforward case analysis to find a path P with
at least n — s + 2 vertices from z to y, independent of the location of x and
y. Therefore, we can assume that x(Cq) > 3.

Since (1 is 3-connected, by a result of Dirac [3], there is a cycle C' in Cy
of length at least 2n/3 + 4 — 2s, and there are s independent paths from S
to C'. Select two end vertices of these s paths that have a minimum distance
between them on C'. If x and y are not in C'1, then a path from x to y can be
formed using all of the vertices of Cy (since Co is hamiltonian-connected),
at least two vertices of S, and all of the vertices of C' except for possibly
(IC| — s)/s. Thus the path P will have at least (n/34+3—s)+ 2+ (s—1)
(2n/3+4—2s)/s > T™n/9+T7—3s > 2n/3+ 2 vertices. If z and y are in C1q,
then by a result of Enomoto in [4] there is a path between x and y with at
least 2n/3 + 4 — 2s vertices. Thus, just as in the case of the cycle, a path
with at least Tn/9 + 8 — 5s/2 > 2n/3 + 2 vertices can be formed. If z € C}
and y & Cq, then using a path @ from x to some vertex z in Cy with a least
2n/3 4+ 4 — 2s vertices, a path between x and y can be formed using all of
the vertices of @ and Cy, thereby using more than 2n/3 + 2 vertices. This
completes the proof of the claim that there is a path from z to y with at
least 2n/3 4 2 vertices.

Let P be a path between z and y of maximum length m, and let H =
G — P. Select a path (Q with a maximum number of vertices, say ¢, in H with
end vertices u and v. Without loss of generality, let s = dg(u) > dg(v),
which means u has s adjacencies in () and g > s+ 1. Denote the predecessors
of these s vertices by S = {u = uy,us9,...,us}, and let S = S'U{v}. Observe
that no vertex of H can be adjacent to two consecutive vertices of P, since
P is a maximum length path. Let U = Np(u),V = Np(v), W =UNV, and
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so |U|,|V| > 6(G) — s+ 1. There are |U| + |V| — |W/| vertices of P adjacent
to either u or v, and there are the same number or possibly one more or
one less “open” interval of P with no adjacencies to either v or v. Since the
path P is of maximal length, each of the “open” intervals will have at least
one vertex, and those intervals between a vertex in U and a vertex in V,
which will we call “long” intervals, will have at least ¢ vertices.

If U =V =W, then |W| > n/3 + 3 — ¢, and there will be at least
|[W| —1 “long” intervals. Hence,

n—qg>m>(qg+1)(n/3+2—-¢q)+1.

This implies the inequality ¢ — (n/3 + 2)q + 2n/3 — 3 > 0. However, for
2 < ¢ < n/3, this gives a contradiction. If ¢ = 1, then u has at least §(G)
adjacencies in P, which implies the existence of an independent set of order
J(G) > a(G), a contradiction.

In general, if s is small, then u and v will have nearly identical neigh-
borhoods in P. More specifically, [U U V| < a(G) < §(G) — 1 to avoid an
independent set with more than «(G) vertices. Since |U|,|V| > §(G) — s,
this implies that [U N V| > 6(G) — 2s + 1. An immediate consequence of
this is that there are 6(G) — 2s vertex disjoint intervals of P (between the
common adjacencies of v and v on P) each with at least s+ 2 vertices. This
implies

n>(s+1)+(6(G)—2s)(s+2)+1>(s+ 1)+ (n/3—2s+2)(s+2) + 1,

which is a contradiction for s < 3. Thus, we assume ¢ > 5 and s > 4. When
U+#V, we get

n—gqzm>|Ul+ V] = [W[+gW|+ (U] + V] -2[W]) -1
=2)U| +2|V|+ (¢ — 3)|W| - 1.

Since n > 2|U| + 2|V|, we know |U| < n/4 and s > n/3+2—n/4 > n/12,
for otherwise this gives a contradiction.

Let R be the set of r vertices of P with at least two adjacencies in S.
The interval between two adjacencies of distinct vertices of S will have at
least (s41)/2 vertices. If r > 6(G)—s, then there will be at least 6(G) —s—1
distinct intervals of P with at least (s+ 1)/2 vertices with no adjacencies in
@, and one of the intervals will have at least ¢ such vertices. This implies
that

n—qg>m>(0(G)—s—2)(s+1)/2+q+G) —s.
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The previous equation implies that s2 — (§(G)—5)s —35(G)+2+2n—4q > 0.
However, this is a contradiction for 4 < s < n/3 — 3, so we may assume that
r <4(G) —s.

There are at least 7 — 1 distinct intervals of P with at least (s + 1)/2
vertices with no adjacencies in S and also an additional s intervals with this
same property because the predecessor and the successor of the interval are
from distinct vertices of S. There are at least s(6(G) — s —r — 1) additional
intervals with at least one vertex with no adjacencies in S. This implies that

n—s—1>m>r—1)(s+3)/2+s(s+3)/2+s(6(G) —s—r—1)2.

Since the lower bound on m in the previous equation is a decreasing function
of r, this implies that the extreme value when r = §(G) — s — 1 is also a
lower bound, and so n > (§(G) —2)(s +3)/2+s+1 > (n/3)(7/2) +4, a
contradiction. This completes the proof of the case k = 3. The proof of
the case k = 4 is identical, except the analysis to show that there is a path
between x and y with at least 3n/4 4 3 vertices is much more tedious. This
completes the proof of Theorem 4. [ |

4. (QUESTIONS

The obvious problem is to extend Theorem 4 to all values of £k > 5 and
verify Conjecture 1 when the order n of the graph is sufficiently large. It is
also desirable to be able to drop the n sufficiently large condition.

Many degree conditions that imply a graph is hamiltonian have ana-
logues that imply much more, such as panconnected, hamiltonian ordered,
etc. Are there similar analogues for the Chvatal-Erdos type conditions?
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