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Abstract

A graph G is said to be chromatic-choosable if ch(G) = χ(G).
Ohba has conjectured that every graph G with 2χ(G) + 1 or fewer
vertices is chromatic-choosable. It is clear that Ohba’s conjecture is
true if and only if it is true for complete multipartite graphs. In this
paper we show that Ohba’s conjecture is true for complete multipartite
graphs K4,3∗t,2∗(k−2t−2),1∗(t+1) for all integers t ≥ 1 and k ≥ 2t + 2,
that is, ch(K4,3∗t,2∗(k−2t−2),1∗(t+1)) = k, which extends the results
ch(K4,3,2∗(k−4),1∗2) = k given by Shen et al. (Discrete Math. 308
(2008) 136–143), and ch(K4,3∗2,2∗(k−6),1∗3) = k given by He et al. (Dis-
crete Math. 308 (2008) 5871-5877).
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1. Introduction

The concept of list coloring was introduced independently by Vizing [13],
and by Erdős, Rubin and Taylor [2]. For a graph G = (V,E) and each vertex
u ∈ V (G), let L(u) denote a set (or a list) of colors available for u; then
L = {L(u)|u ∈ V (G)} is said to be a list assignment of G. If |L(u)| = k
for all u ∈ V (G), then we say that L is a k-list assignment of G. An L-

coloring is a vertex-coloring c such that: c(u) 6= c(v) for every uv ∈ E(G),
and c(u) ∈ L(u) for every u ∈ V (G). A graph G is L-colorable if G admits
an L-coloring. A graph G is k-choosable if G is L-colorable for every k-list
assignment L. The choice number ch(G) of a graph G is the smallest k
such that G is k-choosable. A graph G is called chromatic-choosable [6], if
ch(G) = χ(G). For the chromatic-choosable graphs, there are many results
and conjectures (see [14]). The following glamorous conjecture is due to
Ohba.

Conjecture 1.1 (Ohba [6]). If |V (G)| ≤ 2χ(G) + 1, then ch(G) = χ(G).

It seems that verifying Conjecture 1.1 is not easy for all graphs. As a general
situation, Reed and Sudakov [8] proved the following weaker version of this
conjecture.

Theorem 1.1 (Reed and Sudakov [8]). If |V (G)| ≤ 5
3χ(G) − 4

3 , then

ch(G) = χ(G).

Because every χ-chromatic graph is a subgraph of a complete χ-partite
graph, Ohba’s conjecture is true if and only if it is true for complete multipar-
tite graphs. Moreover, if a complete k-partite graph is chromatic-choosable,
then all k-chromatic subgraphs of G are chromatic-choosable. Thus Conjec-
ture 1.1 is equivalent to the following conjecture.

Conjecture 1.2. If G is a complete k-partite graph with |V (G)| = 2k + 1,
then ch(G) = χ(G) = k.

At present, for some special classes of complete multipartite graphs, Con-
jecture 1.2 have been verified (see [1, 3, 4, 7, 9, 10, 11]). We denote by
Kl∗r the complete r-partite graph with l vertices in each part, and denote
by Kl∗r,m∗s,n∗t,... the complete (r + s + t + · · ·)-partite graph Kl∗r ∨ Km∗s ∨
Kn∗t∨· · ·, where ∨ denotes ‘join’. We need the following results from [4, 10].
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Theorem 1.2 (Shen et al. [10]). For every integer k ≥ 4,
ch(K4,3,2∗(k−4),1∗2) = k.

Theorem 1.3 (He et al. [4]). For every integer k ≥ 6,
ch(K4,3∗2,2∗(k−6),1∗3) = k.

In this paper, we extend the results of Theorem 1.2 and Theorem 1.3 to
the more general graphs K4,3∗t,2∗(k−2t−2),1∗(t+1) for all integers t ≥ 0 and
k ≥ 2t + 2. Namely, we show that ch(K4,3∗t,2∗(k−2t−2),1∗(t+1)) = k for all
integers t ≥ 0 and k ≥ 2t + 2. We will prove our main result in Section 3.
In Section 2, we state some lemmas as a preparation for proving our main
result.

2. Some Lemmas

For a graph G = (V,E) and a subset W ⊂ V , let G[W ] denote the subgraph
of G induced by W . For a list assignment L of G, let L|W denote L restricted
to W , and L(W ) denote the union

⋃
u∈W L(u). If A is a set of colors, let

L\A denote the list assignment obtained from L by removing the colors in
A from each L(u) with u ∈ V (G). When A consists of a single color a, we
write L−a instead of L\{a}. We say that G with L satisfies Hall’s condition

in G, if |L(W )| ≥ |W | for every subset W ⊂ V (G). It is clear that if G with
L satisfies Hall’s condition, then by Hall’s marriage theorem, there exists an
L-coloring for G in which all vertices receive distinct colors.

In [5], Kierstead proved the following lemma (our statement is stronger
than Kierstead’s, but the proof is identical).

Lemma 2.1 (Kierstead [5]). Let L be a list assignment for a graph G =
(V,E). Then G is L-colorable if G[W ] is L|W -colorable for some maximal

non-empty subset W ⊆ V (G) such that |L(W )| < |W |.

From Lemma 2.1, Kierstead obtained a corollary as follows.

Corollary 2.1 (Kierstead [5]). A graph G = (V,E) is k-choosable if G is

L-colorable for every k-list assignment L such that |
⋃

u∈V L(u)| < |V |.

Corollary 2.1 is only stated for k-choosability, where every vertex has a list
of the same size k. By a similar method, in [9] we extended k-choosability
to f -choosability (see [2,12]), and obtained a more general version of Corol-
lary 2.1, which can be applied even when different vertices may have lists of
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different sizes. Furthermore, by the more general version of Corollary 2.1,
we obtained a lemma in [9] as follows. For brevity, we denote by [t] the set
{1, 2, . . . , t} for an integer t ≥ 1.

Lemma 2.2 (Shen et al. [9]). Let G = K3∗t,1∗(1+t) (t ≥ 0) with 2t + 1
parts: Vi = {xi, yi, zi} for i ∈ [t], and Vi = {zi} for i ∈ [2t + 1]\[t]. If

L is a list assignment of G such that in {L(xi), L(yi), L(zi)} there are two

lists both with size 2t and the third one with size 2t + 1 for each i ∈ [t],
|L(zt+1)| = 2t + 1, and |L(zi)| = 2t for each i ∈ [2t + 1]\[t + 1], then G is

L-colorable.

3. Ohba’s Conjecture is True for Graphs K4,3∗t,2∗(k−2t−2),1∗(t+1)

In order to prove that ch(K4,3∗t,2∗(k−2t−2),1∗(t+1)) =χ(K4,3∗t,2∗(k−2t−2),1∗(t+1))
= k (t ≥ 0, k ≥ 2t + 2) by induction, we show that ch(K4,3∗t,1∗(t+1)) =
χ(K4,3∗t,1∗(t+1)) = 2t + 2 first.

Theorem 3.1. For each integer t ≥ 0, ch(K4,3∗t,1∗(t+1)) = 2t + 2.

Proof. For G = K4,3∗t,1∗(t+1) , denote its k parts as V1 = {x1, y1, z1, w1},
Vi = {xi, yi, zi} for i ∈ [t + 1] \ [1], Vi = {zi} for i ∈ [2t + 2] \ [t + 1]. Let L
be a (2t + 2)-list assignment of G. We will prove by induction on t that G
is L-colorable.

The case where t = 0 is trivial. If t = 1 then Theorem 3.1 holds
by Theorem 1.2. So we may assume t ≥ 2 and suppose that Theorem
3.1 is true for smaller values of t. If there exists i ∈ [t + 1] such that⋂

u∈Vi
L(u) 6= ∅, then we choose a color c1 ∈

⋂
u∈Vi

L(u) to color all the
vertices in Vi, and a different color c2 ∈ L(z2t+2) to color the vertex z2t+2.
Let G′ = G − Vi − z2t+2 and L′ = L − c1 − c2. Clearly, G′ is a subgraph of
K4,3∗(t−1),1∗t and |L′(u)| ≥ 2t for each u ∈ V (G′). Thus, we can finish the
proof applying the induction hypothesis. So we suppose that

⋂

u∈Vi

L(u) = ∅ for all i ∈ [t + 1].(1)

Case 1. There exist three vertices in V1, say x1, y1, z1, such that L(x1)∩
L(y1) ∩ L(z1) 6= ∅.

We choose a color c1 ∈ L(x1) ∩ L(y1) ∩ L(z1) to color all the vertices
x1, y1, z1, and a different color c2 ∈ L(z2t+2) to color the vertex z2t+2. Let
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G′ = G − x1 − y1 − z1 − z2t+2 and L′ = L − c1 − c2. Clearly, |L′(u)| ≥ 2t
for every u ∈ V (G′). By (1), |L′(w1)| ≥ 2t + 1, and for each i ∈ [t + 1] \ [1]
at least one of the sets L′(xi), L′(yi), L′(zi) contain at least 2t + 1 colors,
without loss of generality, say |L′(zi)| ≥ 2t + 1 for all such i. Therefore
G′ = K3∗t,1∗(t+1) and L′ satisfies requirements of Lemma 2.2. Thus G′ is
L′-colorable by Lemma 2.2, and hence G is L-colorable.

Case 2. No color appears on more than two vertices in the part V1.
We suppose that |

⋃
u∈V (G) L(u)| < |V (G)| by Corollary 2.1. Thus there

must exist two vertices in Vt+1, say xt+1 and yt+1, such that L(xt+1) ∩
L(yt+1) 6= ∅. Choose a color c1 ∈ L(xt+1) ∩ L(yt+1) to color both xt+1

and yt+1. Let G′ = G − xt+1 − yt+1 and L′ = L − c1. We only need to
show that G′ is L′-colorable. Let W be a maximal subset of V (G′) such
that |L′(W )| < |W |. By Lemma 2.1, it suffices to show that G′[W ] is L′|W -
colorable. We claim that |V1 ∩ W | ≤ 3. Otherwise, |L′(W )| ≥ (|L(x1)| +
|L(y1)|+|L(z1)|+|L(w1)|−2)/2 = (8t+6)/2 = 4t+3 = |V ′(G)| ≥ |W |. This
is a contradiction. Without loss of generality, let w1 /∈ W . As G′[W ] is a
subgraph of G′−w1, it suffices to show that G′−w1 is L′-colorable. Choose
a color c2 ∈ L′(z2t+2) to color the vertex z2t+2. Let G′′ = G′ − w1 − z2t+2,
L′′ = L′ − c2. Clearly, |L′′(u)| ≥ 2t for every u ∈ V (G′′). By (1) and
the condition of Case 2, it is easy to see that |L′′(zt+1)| = 2t + 1, and for
each i ∈ [t] at least one of the sets L′′(xi), L′′(yi), L′′(zi) contain at leat
2t + 1 colors, without loss of generality, say |L′′(zi)| ≥ 2t + 1 for all such
i. Therefore G′′ = K3∗t,1∗(t+1) and L′′ satisfies requirements of Lemma 2.2.
Thus G′′ is L′′-colorable by Lemma 2.2, and hence G′ − w1 is L′-colorable.

Theorem 3.2. For each integer t ≥ 0 and k ≥ 2t + 2,
ch(K4,3∗t,2∗(k−2t−2),1∗(t+1) ) = k.

Proof. For G = K4,3∗t,1∗(t+1) , denote its k parts as V1 = {x1, y1, z1, w1},
Vi = {xi, yi, zi} for i ∈ [t + 1] \ [1], Vi = {zi} for i ∈ [2t + 2] \ [t + 1], and
Uj = {uj , vj} for j ∈ [k− 2t− 2]. Let L be a k-list assignment of G. We will
prove by induction on t and k that G is L-colorable.

At first, we use induction on t. If t = 0, by the result
ch(Ks+3,2∗(k−s−1),1∗s) = k for s ≥ 0 [1], then Theorem 3.2 holds (let s = 1).
If t = 1, then Theorem 3.2 is just Theorem 1.2. So we may suppose that
t ≥ 2 and suppose that Theorem 3.2 is true for smaller values of t. If
there exists i ∈ [t + 1] such that

⋂
u∈Vi

L(u) 6= ∅, then we can choose
a color c1 ∈

⋂
u∈Vi

L(u) to color all the vertices in Vi, and a different
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color c2 ∈ L(z2t+2) to color the vertex z2t+2. Let G′ = G − Vi − z2t+2

and L′ = L − c1 − c2. Clearly, G′ is a subgraph of K4,3∗(t−1),2∗(k−2t),1∗t ,
and we can finish the proof applying the induction hypothesis. So we can
suppose that

⋂

u∈Vi

L(u) = ∅ for all i ∈ [t + 1].(2)

Then under the above supposition we use induction on k to prove that G is
L-colorable for the given t. If k = 2t + 2 then Theorem 3.2 is just Theorem
3.1. So we suppose that k ≥ 2t+3 and Theorem 3.2 is true for smaller value
of k. If there exists j ∈ [k − 2t − 2] such that L(uj) ∩ L(vj) 6= ∅ then we
can choose a color c1 ∈ L(uj) ∩ L(vj) to color both uj and vj, and apply
induction to G−Uj and L−c1, we can obtain that G is L-colorable. So we can
suppose that

L(uj) ∩ L(vj) = ∅ for all j ∈ [k − 2t − 2].(3)

Case 1. There exist three vertices in V1, say x1, y1, z1, such that L(x1)∩
L(y1) ∩ L(z1) 6= ∅.

We choose a color c1 ∈ L(x1) ∩ L(y1) ∩ L(z1) to color all the vertices
x1, y1, z1. Let G′ = G−x1−y1−z1 and L′ = L− c1. Clearly, |L′(u)| ≥ k−1
for every u ∈ V (G′). By (2), |L′(w1)| = k, and for each i ∈ [t + 1] \ [1]
at least one of the sets L′(xi), L′(yi) and L′(zi) contain k colors, without
loss of generality, say |L′(zi)| = k for all such i. Similarly, by (3), for each
j ∈ [k − 2t − 2] at least one of the sets L′(uj), L′(vj) contains k colors, so
that |L′(uj) ∪ L′(vj)| ≥ 2k − 1. We wish to show that G′ is L′-colorable.

Let W be a maximal subset of V (G′) such that |L′(W )| < |W |. By
Lemma 2.1, it suffices to show that G′[W ] is L′|W -colorable. Note that

|W ∩ Uj | ≤ 1 for all j ∈ [k − 2t − 2],(4)

since otherwise, we have that 2k − 1 ≤ |L′(uj) ∪ L′(vj)| ≤ |L′(W )| < |W | ≤
|V (G′)| = 2k − 2, a contradiction.

Let U =
⋃
{Uj |j ∈ [k − 2t − 2]} and m = |{j|W ∩ Uj 6= ∅, j ∈

[k − 2t − 2]}| ≤ k − 2t − 2. It follows from (4) that m = |W ∩ U |. Color
the vertices of W ∩ U with m distinct colors. Let the set of these m colors
be C, and G′′ = G′ − U , W ′ = W\U , L′′ = L′\C. It suffices to prove that
G′′ is L′′-colorable, since this will imply that G′′[W ′] is L′′|W ′-colorable (as
G′′[W ′] is a subgraph of G′′), so that G′[W ] is L′|W -colorable. We choose
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a color c2 ∈ L′′(z2t+2) to color the vertex z2t+2. Let G′′′ = G′′ − z2t+2

and L′′′ = L′′ − c2. Since |L′(u)| ≥ k − 1 for every u ∈ V (G′), it fol-
lows that |L′′′(u)| ≥ k − 1 − m − 1 ≥ 2t for every u ∈ V (G′′′). And
since |L′(w1)| = k, |L′(zi)| = k for every i ∈ [t + 1] \ [1], it follows that
|L′′′(w1)| ≥ k − m − 1 ≥ 2t + 1, |L′′′(zi)| ≥ k − m − 1 ≥ 2t + 1 for all such
i. Therefore G′′′ = K3∗t,1∗(t+1) and L′′′ satisfies requirements of Lemma 2.2.
Thus G′′′ is L′′′-colorable by Lemma 2.2, and hence G′′ is L′′-colorable.

Case 2. No color appears on more than two vertices in the part V1.
We suppose that |

⋃
u∈V (G) L(u)| < |V (G)| by Corollary 2.1. Thus there

must exist two vertices in Vt+1, say xt+1 and yt+1, such that L(xt+1) ∩
L(yt+1) 6= ∅. Choose a color c1 ∈ L(xt+1) ∩ L(yt+1) to color xt+1 and yt+1.
Let G′ = G− xt+1 − yt+1 and L′ = L− c1. We only need to show that G′ is
L′-colorable. Let W be a maximal subset of V (G′) such that |L′(W )| < |W |.
By Lemma 2.1, it suffices to show that G′[W ] is L′|W -colorable. By a similar
argument in Case 1, we also have the inequality (4). Moreover, we claim that
|V1 ∩W | ≤ 3. Otherwise, |L′(W )| ≥ (|L(x1)| + |L(y1)| + |L(z1)|+ |L(w1)| −
2)/2 = (4k − 2)/2 = 2k − 1 = |V ′(G)| ≥ |W |. This is a contradiction.
Without loss of generality, let w1 /∈ W , G′′ = G′ −U −w1 and L′′ = L′ \ C,
where the meanings of U and C are the same as in Case 1. It suffices to
show that G′′ is L′′-colorable. Choose a color c2 ∈ L′(z2t+2) to color the
vertex z2t+2. Let G′′′ = G′′ − z2t+2, L′′′ = L′′ − c2. Clearly, |L′′′(u)| ≥ 2t
for every u ∈ V (G′′′). By (2) and the condition of Case 2, it is easy to see
that |L′′′(zt+1)| ≥ 2t + 1, and for each i ∈ [t] at least one of the sets L′′′(xi),
L′′′(yi), L′′′(zi) contain at least 2t + 1 colors, without loss of generality, say
|L′′′(zi)| ≥ 2t+1 for all such i. Therefore G′′′ = K3∗t,1∗(t+1) and L′′′ satisfies
requirements of Lemma 2.2. Thus G′′′ is L′′′-colorable by Lemma 2.2, and
hence G′′ is L′′-colorable.
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