
Discussiones Mathematicae 223
Graph Theory 30 (2010 ) 223–235

ON LOCATING-DOMINATION IN GRAPHS

Mustapha Chellali, Malika Mimouni

LAMDA-RO Laboratory

Department of Mathematics, University of Blida

B.P. 270, Blida, Algeria

e-mail: m chellali@yahoo.com

and

Peter J. Slater

Department of Mathematics and Computer Science Department

University of Alabama in Huntsville

Huntsville, AL 35899 USA

e-mail: slaterp@email.uah.edu

Abstract

A set D of vertices in a graph G = (V, E) is a locating-dominating
set (LDS) if for every two vertices u, v of V − D the sets N(u) ∩ D
and N(v) ∩ D are non-empty and different. The locating-domination
number γL(G) is the minimum cardinality of a LDS of G, and the upper
locating-domination number, ΓL(G) is the maximum cardinality of a
minimal LDS of G. We present different bounds on ΓL(G) and γL(G).

Keywords: upper locating-domination number, locating-domination
number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. The open

neighborhood N(v) of a vertex v consists of the vertices adjacent to v, the
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closed neighborhood of v is defined by N [v] = N(v)∪{v} and dG(v) = |N(v)|
is the degree of v. We denote by δ(G) the minimum degree of a graph G.

A set D ⊆ V is a dominating set if every vertex of V − D has a
neighbor in D. The domination number γ(G) is the minimum cardinal-
ity of a dominating set in G. A set D ⊆ V is a locating-dominating set

(LDS) if it is dominating and every two vertices x, y of V − D satisfy
N(x)∩D 6= N(y)∩D. The locating-domination number γL(G) is the mini-
mum cardinality of an LDS of G, and the upper locating-domination number,
ΓL(G) is the maximum cardinality of a minimal LDS of G. An LDS of min-
imum cardinality is called a γL(G)-set, and we define a ΓL(G)-set likewise.
Locating-domination was introduced by Slater [12, 13]. For recent studies on
locating-domination we cite [3, 4] and [5]. The independence number β0(G)
and the independent domination number i(G) are the maximum and the
minimum cardinality of a set that is both independent and dominating in G,
respectively.

So far as we know, no work has been done on the upper locating-
dominating number. In this paper we present some bounds on the upper
locating-dominating number as well as for the locating-domination num-
ber of a graph G. Before presenting the main results, we introduce some
definitions and notation.

A vertex of degree one is called a leaf and its neighbor is called a support

vertex. We denote the set of leaves of a graph G by L(G), the set of support
vertices by S(G), and let `(G) = |L(G)| and s(G) = |S(G)|. Denote by Tx

the subtree induced by a vertex x and its descendants in a rooted tree T .
The diameter diam(G) of a graph G is the maximum distance over all pairs
of vertices of G. The girth of a graph G, denoted g(G), is the length of a
shortest cycle (if any) in G. Note that if the graph does not contain any
cycles, then its girth is defined to be infinity. The corona of a graph G is
the graph constructed from a copy of G, where for each vertex v ∈ V (G), a
new vertex v′ and a pendant edge vv′ are added. We denote by Pn and Cn

the path and the cycle on n vertices, respectively.

2. Upper Locating-Domination Number

It is known that every connected graph G of order n ≥ 2 verifies γL(G) ≤
n − 1. We will see that this bound remains valid for the upper locating-
domination number and we characterize the graphs achieving equality.
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Theorem 1. Every connected nontrivial graph G of order n satisfies

ΓL(G) ≤ n − 1, with equality if and only if G is a complete graph or a

star.

Proof. Clearly the upper bound follows from the fact that the entire vertex
set of G is a locating-dominating set but is not minimal.

Let S be a ΓL(G)-set of size n − 1 and assume that V − S = {u}.
First assume that A = S − N(u) 6= ∅. The minimality of S implies that
A is independent for otherwise for some vertex z ∈ A having a neighbor
in A,S − {z} is an LDS of G, a contradiction. Since G is connected, every
vertex v ∈ A has at least one neighbor in S. Also N(v) = N(u) for otherwise
S−{v} is an LDS of G, a contradiction. Now if |N(u)| ≥ 2, then since every
vertex u′ ∈ N(u) is adjacent to all A, S−{u′} is an LDS of G, contradicting
the minimality of S. Hence |N(u)| = 1, and so G is a star. Now assume
that A = ∅. If all edges exist between the vertices of S, then G is a complete
graph. So let x, y be any two non-adjacent vertices of S. If x has a neighbor
in S, then S − {x} is an LDS of G, a contradiction. Thus x is isolated in S
and likewise for y. It follows that S is independent and hence G is a star.

The converse is obvious.

As an immediate consequence of Theorem 1 we obtain the following corollary
to disconnected graphs.

Corollary 2. If G is a graph of order n with δ(G) ≥ 1 and p components,

then ΓL(G) ≤ n−p, with equality if and only if every component is a complete

graph or a star.

Next we give the exact value of the upper locating-domination number for
paths.

Theorem 3. For every path Pn,

ΓL(Pn) =























4k if n = 7k,
4k + 1 if n = 7k + 1 or n = 7k + 2,
4k + 2 if n = 7k + 3 or n = 7k + 4,
4k + 3 if n = 7k + 5,
4k + 4 if n = 7k + 6.

Proof. We use an induction on the order n. It is a easy to check the re-
sult for n ≤ 7. Let n ≥ 8 and assume that every path Pn′ of order n′
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with 1 ≤ n′ < n satisfies the theorem. Let Pn be a path with V (Pn) =
{u1, u2, . . . , un}, and let D be any ΓL(Pn)-set. We claim that there is such
a D with |D ∩ {u1, u2, . . . , u7}| = 4. First we note that no three consecutive
vertices are in D. It follows that |D ∩ {u1, u2, . . . , u7}| ≤ 4. Suppose now
that |D ∩ {u1, u2, . . . , u7}| ≤ 3. If u7 ∈ D, then u2, u4 should be in D but
then {u1, u3} ∪ D − { u2} is a minimal LDS of Pn larger than D, a con-
tradiction. Thus u7 /∈ D. Clearly D′ = D ∩ { u8, . . . , un} is an LDS of the
path Pn′ = Pn −{u1, u2, . . . , u7}. If D′ is minimal, then {u1, u2, u5, u6} ∪D′

is a minimal LDS larger than D. Hence we assume that D ′ is not minimal
and so there is a vertex v ∈ D′ such that D′ − {v} is a minimal LDS for
Pn′ . But then {u1, u2, u5, u6} ∪ (D′ − {v}) would be a ΓL(Pn)-set since we
have supposed that |D ∩ {u1, u2, . . . , u7}| ≤ 3. Therefore we have an LDS D
with |D ∩ {u1, u2, . . . , u7}| = 4. Now to complete the proof we consider the
following two cases.

Case 1. u7 /∈ D. By the previous observations we can assume that
u1, u2, u5, u6 ∈ D and u3, u4 /∈ D. Let Pn′ be the path resulting from Pn by
removing the vertices u1, u2, . . . , u7. Thus D − {u1, u2, u5, u6} is a minimal
locating-dominating set of Pn′ and so ΓL(Pn′) ≥ ΓL(Pn) − 4. Also every
ΓL(Pn′)-set can be extended to a minimal locating-dominating set of Pn by
adding the set {u1, u2, u5, u6} and so ΓL(Pn′) = ΓL(Pn) − 4. Applying the
inductive hypothesis on Pn′ and by examining case by case the values of n′

we obtain the desired result.

Case 2. u7 ∈ D. We distinguish three subcases.

Subcase 2.1. u6 /∈ D and u8 ∈ D. Then by our claim |D ∩ {u1, u2, . . . ,
u5}| = 3, say u1, u3, u4. Thus D − {u1, u2, . . . , u7} is a minimal LDS of the
path induced by Pn − {u1, u2, . . . , u7} = Pn′ and so ΓL(Pn′) ≥ ΓL(Pn) − 4.
The equality is obtained since every ΓL(Pn′)-set can be extended to a min-
imal LDS for Pn by adding the set {u1, u2, u5, u6}. Using induction on Pn′

by considering as above all possible values of n′ we obtain the result.

Subcase 2.2. u6, u8 /∈ D. If n = 8, then {u1, u2, u5, u6, u8} is a minimal
LDS of P8 larger than D, a contradiction. Thus n ≥ 9. First assume that
u9 ∈ D. By our claim, and without loss of generality, we can assume that
{u2, u3, u5} ⊂ D. Let D′ = D − {u2, u3, u5, u7}. Note that {u2, u3, u5, u7} is
a minimal LDS of the path induced by {u1, u2, . . . , u8}. Now if D′ is not a
minimal LDS of Pn − {u1, u2, . . . , u7}, then u8 and u10 have u9 as a unique



On Locating-Domination in Graphs 227

neighbor in D′ but then {u1, u6, u8} ∪D − {u3, u7} is a minimal LDS of Pn

larger than D, a contradiction. Thus D ′ is a minimal LDS of Pn′ , where
n′ = n−7. It can be seen easily that ΓL(Pn) = ΓL(Pn′)+4. Using induction
on Pn′ we obtain the result. Now assume that u9 /∈ D. Clearly u10 ∈ D. By
our claim we assume that {u2, u3, u5} ⊂ D. Let D′′ = D − {u2, u3, u5, u7}
and P ′ be the path resulting from Pn by removing the vertices u1, . . . , u9.
Note that D′′ is an LDS of P ′. If D′′ is minimal, then D′′∪{u1, u2, u5, u6, u8}
is a minimal LDS of Pn larger than D, a contradiction. Thus we assume
that D′′ is not minimal. Then there is a vertex w ∈ D ′′ such that D′′ −
{w} is a minimal LDS of P ′ but then {u1, u2, u5, u6, u8} ∪ (D′′ − {w}) is a
ΓL(Pn)-set that does not contain u7 and such a case has been considered
in Case 1.

Subcase 2.3. u6 ∈ D. Then u8 /∈ D for otherwise D − {u7} would be
an LDS, contradicting the minimality of D. Likewise u5 /∈ D for otherwise
D−{u6} is LDS of G. It follows, without loss of generality, that u2, u3 ∈ D.
Then {u5} ∪D−{u6} is a ΓL(Pn)-set that does not contain either u6 or u8,
and such a case has been considered in Subcase 2.2.

Theorem 4. If G is a graph with girth g(G) ≥ 5, then every maximum

independent set S is a minimal locating-dominating set. Furthermore, if

δ(G) ≥ 2, then V − S is a locating-dominating set.

Proof. Let S be a β0(G)-set. We first prove that S is a locating-dominating
set of G. If β0(G) = 1, then G = K1 or K2, and the result is valid. So assume
that β0(G) ≥ 2. Suppose that S is not an LDS of G. Then there exists at
least two vertices, say u, v ∈ V −S with N(u)∩S = N(v)∩S. If u and v have
two common neighbors in S, then the subgraph induced by u, v and their
neighbors in S contains a cycle C4, contradicting the fact that g(G) ≥ 5.
Thus u and v have a unique common neighbor in S, say w. If uv ∈ E,
then {u, v, w} induces a cycle C3. Thus u and v are not adjacent but then
{u, v} ∪ S −{w} is an independent set larger than S, a contradiction. Thus
S is a locating-dominating set of G. Now since S is a minimal dominating
set, it follows that S is a minimal locating-dominating set.

Now if δ(G) ≥ 2, then since g(G) ≥ 5 no two vertices of S can have the
same neighborhood intersection. Thus V − S is a locating-dominating set.

As an immediate consequence we have the following corollaries.
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Corollary 5. If G is a graph with girth g(G) ≥ 5, then ΓL(G) ≥ β0(G) ≥
γL(G).

Corollary 6 (Blidia et al. [5] 2008). If T is a tree, then β0(T ) ≥ γL(T ).

Corollary 7. If G is a graph of order n with δ(G) ≥ 2 and girth g(G) ≥ 5,
then γL(G) ≤ n/2.

Note that the difference between ΓL(G)−β0(G) can be arbitrarily large even
for trees. To see this consider the tree Tt obtained by t ≥ 1 copies of a path
P6 and connecting the third vertex in each P6 to the third vertex in the next
P6. Clearly the set of leaves and support vertices form a ΓL(Tt)-set of size
4t while β0(Tt) = 3t.

Theorem 8. If T is a nontrivial tree of order n with ` leaves, then, ΓL(T ) ≤
2n+`−2

3 , and this bound is sharp.

Proof. We use an induction on the order n of T. The result can easily be
checked for every tree T with diam(T ) ∈ {1, 2, 3}. Assume that every tree
of order n′ < n with `′ leaves satisfies ΓL(T ′) ≤ 2n′+`′−2

3 . Let T be a tree of
order n with diam(T ) ≥ 4, and let D be any ΓL(T )-set.

If there is a support vertex u adjacent to at least two leaves, then let
T ′ = T − {u′}, where u′ is a leaf neighbor of u belonging to D. Such a leaf
exists since D contains either all leaves of u or all except one. Then D−{u′}
is a minimal LDS of T ′ and so ΓL(T ′) ≥ |D|−1. Since n′ = n−1, `(T ′) = `−1,
by induction on T ′, we obtain ΓL(T ) ≤ 2n+`−2

3 . From now on we assume
that ` − s(T ) = 0.

Assume now that T contains two adjacent support vertices x, y. Let Tx

and Ty be the subtrees obtained from T by removing the edge xy. Then
Dx = D ∩ V (Tx) is a minimal LDS of Tx and likewise Dy = D ∩ V (Ty) for
Ty. Thus ΓL(Tx) + ΓL(Ty) ≥ |Dx| + |Dy| = ΓL(T ). Since diam(T ) ≥ 4, one
of Tx or Ty, say Ty has diameter at least two. Using the induction, ΓL(Ty) ≤
2|V (Ty)|+|L(Ty)|−2

3 . If diam(Tx) = 1, then ΓL(Tx) = 1 = 2|V (Tx)|+1−2
3 and ` =

|L(Ty)| + 1. If diam(Tx) ≥ 2, then by induction ΓL(Tx) ≤ 2|V (Tx)|+|L(Tx)|−2
3 ,

and, since |V (Tx)| + |V (Ty)| = n and ` = |L(Ty)| + |L(Tx)|, for both cases
we obtain the desired result. Hence we may assume that no two support
vertices of T are adjacent.

We now root the tree at a leaf r of maximum eccentricity diam(T ) ≥ 4.
Let u be a support vertex at distance diam(T )− 1 from r on a longest path
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starting at r. Let v, w be the parents of u and v, respectively, and let u′

be the unique leaf-neighbor of u. Since v cannot be a support vertex, the
subtree Tv rooted at v is a subdivided star.

We first suppose that v ∈ D. Let T ′ = T −{u, u′}. Note that D contains
either u or u′, and hence D ∩ V (T ′) is a minimal LDS of T ′. Therefore
ΓL(T ′) ≥ |D| − 1 and `(T ′) ≤ `. By induction on T ′, we obtain ΓL(T ) <
2n+`−2

3 .
Now assume that v /∈ D. We consider the following two cases.

Case 1. dT (v) = k ≥ 3. If some child of v, say z, does not belong to D,
then let T ′ = T −{z, z′}, where z′ is the unique leaf adjacent to z. That case
is similar to the above situation and so ΓL(T ) < 2n+`−2

3 . Thus we assume
that D contains all children of v. Let T ′ = T − Tv. Clearly D contains no
leaf of Tv and D∩V (T ′) is a minimal LDS of T ′. Thus ΓL(T ′) ≥ |D| −k +1
and `(T ′) ≤ ` − k + 1. The result immediately follows by using induction
on T ′.

Case 2. dT (v) = k = 2. Since diam(T ) ≥ 4, let z be the parent of w.
If z = r, then T = P5, and ΓL(T ) < 2n+`−2

3 . Thus r 6= z. To complete our
proof we need to consider the following three situations for D. Recall that
v /∈ D. So we have either u′, w ∈ D and u /∈ D, or u,w ∈ D and u′ /∈ D or
u, u′ ∈ D and w /∈ D.

If the first situation occurs, then let T ′ = T − {u, u′}. In the second
situation, D − {u} is a minimal LDS either for T ′ = T − {u, u′} or T ′ =
T − {v, u, u′}, and the subtree T ′ for which D − {u} is a minimal LDS will
be considered. We leave it to the reader check that the above two situations
provide ΓL(T ) ≤ 2n+`−2

3 .
Consider now the last situation u, u′ ∈ D and w /∈ D. Let T ′ = T −{u′, u, v}.
Then D−{u′, u} is a minimal LDS of T ′ and hence ΓL(T ′) ≥ |D|−2. By using
induction and the facts n′ = n−3 and `(T ′) = ` we obtain ΓL(T ) ≤ 2n+`−2

3 .
The bound is sharp for nontrivial stars.

The following lower bound on the independence number for bipartite graphs
is given in [2].

Proposition 9 (Blidia, Chellali, Favaron, Meddah [2] 2007). If G is a

bipartite graph, then

β0(G) ≥
n + `(G) − s(G)

2
.
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By using Theorem 8 and Proposition 9 we obtain an upper bound on ΓL(T )
for trees in terms of β0(T ), number of leaves and support vertices.

Corollary 10. If T is a nontrivial tree, then

ΓL(T ) ≤
4

3
β0(T ) −

1

3
(`(T ) − 2s(T ) + 2).

We also obtain

Corollary 11. If T is a nontrivial tree, then

ΓL(T ) − β0(T ) ≤
1

6
(n − `(T ) + 3s(T ) − 4) .

3. Locating-Domination Number

We begin by recalling the following two results given in [4] on the locating-
domination number for trees.

Theorem 12 (Blidia et al. [4] 2007). If T is a tree of order n ≥ 2, then

γL(T ) ≤ (n + `(T ) − s(T ))/2.

Theorem 13 (Blidia et al. [4] 2007). If T is a tree of order n ≥ 3, then

γL(T ) ≥ (n + `(T ) − s(T ) + 1)/3.

A block graph is a graph in which every block (maximal 2-connected graph)
is a clique. It is well known that block graphs are C4 and (K4− e)-free
graphs.

Proposition 14. If G is a block graph with δ(G) ≥ 2, then γL(G)+
β0(G) ≤ n.

Proof. Let S be any β0(G)-set. Then every vertex of S has at least two
neighbors in V −S, and since G is C4 and (K4− e)-free each pair of vertices
x, y ∈ S satisfy N(x) ∩ (V − S) 6= N(y) ∩ (V − S). It follows that V − S is
an LDS of G implying that γL(G) ≤ |V − S| = n − β0(G).

The bound in Proposition 14 is attained for the graph Gk formed by k
triangles sharing the same vertex of a path P2.

Next we show that the locating-domination number is bounded below by
the independent domination number for the class of trees.
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Theorem 15. If T is a tree, then γL(T ) ≥ i(T ).

Proof. We use an induction on the order of T. It is a routine matter to
check the result if diam(T ) ∈ {0, 1, 2, 3}. Thus assume that every tree T ′ of
order n′ less than n satisfies γL(T ′) ≥ i(T ′). Let T be a tree of order n and
diameter at least four. Let D be a γL(T )-set containing all support vertices.
If any support vertex, say x, of T is adjacent to two or more leaves, then
let T ′ be the tree obtained from T by removing a leaf x′ adjacent to x and
belonging to D. Then D −{x′} is an LDS of T ′ and so γL(T ′) ≤ γL(T )− 1.
If S is any i(T ′)-set, then either S or S ∪ {x′} is a maximal independent
set of T, and so i(T ) ≤ i(T ′) + 1. Using induction on T ′ we obtained the
desired result. Thus we assume that every support vertex of T is adjacent
to exactly one leaf.

We now root the tree at a leaf r of maximum eccentricity diam(T ). Let
u be the vertex at distance diam(T ) − 1 from r on a longest path starting
at r. Let v be the parent of u and let u′ the unique leaf adjacent to u.

If v is a support vertex, then let T ′ = T − {u, u′}. Then γL(T ′) ≤
γL(T ) − 1 and i(T ) ≤ i(T ′) + 1. By induction on T ′ we have γL(T ) ≥
i(T ). Thus v is not a support vertex and so Tv is a subdivided star. Then
since D contains the support vertices of Tv, v /∈ D (else we replace it by
its parent). Let T ′ = T − Tv. Then D ∩ V (T ′) is an LDS of T ′ and so
γL(T ′) ≤ γL(T ) − dT (v) + 1. Moreover, every i(T ′)-set union the set of
support vertices in Tv is a maximal independent set of T implying that
i(T ) ≤ i(T ′) + dT (v) − 1. Using induction on T ′ we obtain γL(T ) ≥ i(T ).

By Corollary 5 and Theorem 15 we obtain the following inequality chain
relating locating-domination and independence parameters for every tree T :

(1) i(T ) ≤ γL(T ) ≤ β0(T ) ≤ ΓL(T ).

In [11], Ravindra showed that a tree T satisfies i(T ) = β0(T ) if and only if
T is a single vertex or T is a corona of a tree. By Ravindra’s result equality
throughout (1) holds if and only if T is a single vertex or T is a corona of
some tree T ′. However for the class of trees Tt defined in Section 2, we have
ΓL(Tt) − i(Tt) = 4t − 2t = 2t.

The graphs G of even order and without isolated vertices with γ(G) = n/2
have been characterized independently by Payan and Xuong [10] and Fink,
Jacobson, Kinch and Roberts [7].
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Theorem 16 (Payan, Xuong [10] 1982 and Fink et al. [7] 1985). Let G be

a graph of even order n without isolated vertices. Then γ(G) = n/2 if and

only if each component of G is either a cycle C4 or the corona of a connected

graph.

Observation 17. Let T be a tree of order at least three. Then γ(T ) ≤
n−`(T )+s(T )

2 with equality if and only if T is a tree of order `(T ) + s(T ).

Proof. Clearly the result holds if T is a star. Assume T is not a star and
let T ∗ be the tree obtained from T by removing for every support vertex
of T all its leaves except one. Since there is a minimum dominating set
containing all support vertices we have γ(T ) = γ(T ∗). Also T ∗ has order

n− `(T ) + s(T ) and by the well known Ore’s theorem γ(T ∗) ≤ n−`(T )+s(T )
2 .

Now by Theorem 16 γ(T ∗) = n−`(T )+s(T )
2 if and only if T ∗ is a corona of

some tree T ′ and so T is a tree where every vertex is either a leaf or a
support vertex, that is T has order `(T ) + s(T ).

Recall that a set R ⊆ V (G) is a packing set of G if N [x] ∩ N [y] = ∅ holds
for any two distinct vertices x, y ∈ R. The packing number ρ(G) is the
maximum cardinality of a packing in G.

Proposition 18. For every connected nontrivial graph G, γL(G) ≤ n−ρ(G).

Proof. Let R be a maximum packing set of G. Then since N [x]∩N [y] = ∅
for any two distinct vertices x, y ∈ R, V −R is a locating-dominating set of
G and so γL(G) ≤ |V − R| = n − ρ(G).

Farber [6] proved that the domination number and packing number are equal
for any strongly chordal graph including the class of trees. Thus we have
the following corollary to Proposition 18.

Corollary 19. For every nontrivial tree T, γL(T )+ γ(T ) ≤ n, with equality

if and only if T is a tree of order `(T ) + s(T ).

Proof. Assume that γL(T ) + γ(T ) = n. If T is a star, then it has order
`(T ) + s(T ). Thus we assume that T is not a star. Then by Theorem 12

and Observation 17 we have γL(T ) = n+`(T )−s(T )
2 and γ(T ) = n−`(T )+s(T )

2 .
It follows that T is a tree of order `(T ) + s(T ).

The converse is obvious.
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Next we extend the upper bound in Theorem 12 to bipartite graphs with
no cycle C4. We assume that `(P2) = s(P2) = 2.

Theorem 20. If G is a connected nontrivial bipartite graph with no cycle

C4, then γL(G) ≤ (n + `(G) − s(G))/2 ≤ ΓL(G).

Proof. If G is a tree, then by Corollary 5, Proposition 9 and Theorem 12
the result holds. Thus assume that G is not a tree. Let D be a set of leaves
of G chosen as follows: for every support vertex u adjacent in G to two or
more leaves, put in D all the leaves adjacent to u except one. Then |D| =
`(G) − s(G). Now consider the subgraph G′ obtained from G by removing
all its leaves. Since G is not a tree and is C4-free, G′ is nontrivial and then
has a unique bipartition A,B into non-empty independent sets. Clearly
every leaf of G′ is a support vertex in G and every vertex of G′ different
from a leaf has degree at least two neighbors in G′. Let A′ = A − S(G)
and B′ = B − S(G), and assume that |A′| ≤ |B′| . Since G is a bipartite
graph containing no cycle C4, no two vertices of B (resp., A) have common
neighbors in D ∪ S(G) ∪ A′ (resp., D ∪ S(G) ∪ B ′). Thus each of the sets
D∪S(G)∪A′ and D∪S(G)∪B ′ is a minimal locating-dominating set of G.
Therefore γL(T ) ≤ |D ∪ S(G) ∪A′| and ΓL(G) ≥ |D ∪ S(G) ∪B ′|. By using
the facts that |A′| ≤ (n − `(G) − s(G))/2 ≤ |B ′| the results are proved.

Note that the upper bound on γL(G) is not valid if G is a bipartite graph
containing a cycle C4. To see this consider the cycle C4 by attaching one new
vertex at a vertex of the cycle. Clearly γL(G) = 3 > (n + `(G) − s(G))/2.

Theorem 21. If G is a connected graph of order n ≥ 2 with at most one

cycle, then γL(G) ≤ (n + `(G) − s(G) + 1)/2.

Proof. If G is a tree, then by Theorem 12 the result is true. Thus we
assume that G contains a cycle C. Clearly if G = C, then γL(G) ≤ (n+1)/2.
So we assume that G 6= C and hence G contains a vertex of degree at least
three. Assume that the result does not hold and let G be the smallest
connected unicycle graph such that γL(G) > (n + `(G) − s(G) + 1)/2.

We first assume that all support vertices are on the cycle C. If C contains
only one support vertex b, then let A be a maximum independent set of
G[V (C)] that contains b. Then |A| = b|C| /2c , and A union the set of
leaves Lb adjacent to b is an LDS of G of size at most (n + |Lb|)/2 =
(n + `(G) − s(G) + 1)/2, a contradiction. Thus C contains at least two
support vertices.
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Assume that C contains two consecutive support vertices x and y joined by a
nontrivial path in which every vertex has degree two in G. Let H be the set of
vertices on such a path between x and y. Thus |H| ≥ 2. Let G′ = G−H. Then
n′ = n−|H| , `(G′) = `(G), s(G′) = s(G). Each of G′ and P|H| is a tree and so
by Theorem 12, γL(G′) ≤ (n′ + `(G′)−s(G′))/2 and γL(P|H|) ≤ (|H|+1)/2.
Then γL(G) ≤ (n′+`(G′)−s(G′))/2+(|H|+1)/2 = (n+`(G)−s(G)+1)/2,
a contradiction. Thus the distance between every two consecutive support
vertices on C is one or two. Hence n = s(G)+`(G)+k, where k is the number
of vertices of degree two. Clearly k ≤ s(G). Let L′(G) be a set of leaves
so that for each support vertex we put in L′(G) all its leaves except one.
Then |L′(G)| = `(G)− s(G) and clearly S(G)∪L′(G) is an LDS of G. Thus
γL(G) ≤ s(G)+`(G)−s(G) = `(G) < (n+`(G)−s(G)+1)/2, contradicting
our assumption. It follows that G contains at least one support vertex that
does not belong to C.

Let u be a support vertex of G at maximum distance from C. Let v be
the neighbor of u in the unique path from u to C. First assume d(v) ≥ 3,
and let G′ = G−(Lu∪{u}), where Lu is the set of leaves adjacent to u. If S ′

is any γL(G′)-set, then S ′∪Lu is an LDS of G and so γL(G) ≤ γL(G′)+ |Lu| .
Now since G′ has order n′ less than n and n′ = n− (|Lu|+1), `(G′) = `(G)−
|Lu| and s(G′) = s(G) − 1 it follows that

γL(G) ≤ (n′ + `(G′) − s(G′) + 1)/2 + |Lu| = (n + `(G) − s(G) + 1)/2,

a contradiction. Thus suppose that d(v) = 2 and let w be the second
neighbor of v. If d(w) = 2 or d(w) ≥ 3 and w is not a support vertex,
then let G′ = G − (Lu ∪ {u}). Then G′ satisfies the theorem and we have
n′ = n − (|Lu| + 1), `(G′) = `(G)− |Lu| + 1, s(G′) = s(G). Since every
γL(G′)-set can be extended to a locating-dominating set of G by adding Lu,
we obtain

γL(G) ≤ (n′ + `(G′) − s(G′) + 1)/2 + |Lu| = (n + `(G) − s(G) + 1)/2,

a contradiction. Thus we finally assume that d(w) ≥ 3 and w is a support
vertex and let G′ = G − (Lu ∪ {u, v}). Then G′ satisfies the theorem and
we have n′ = n − (|Lu| + 2), `(G′) = `(G)− |Lu| , s(G′) = s(G) − 1. Since
there is a γL(G′)-set that contains w such a set can be extended to an LDS
of G by adding {u}∪Lu −{u′}, where u′ is any leaf adjacent to u. It follows
that γL(G) ≤ (n′ + `(G′)− s(G′) + 1)/2 + |Lu| < (n + `(G)− s(G) + 1)/2, a
contradiction. This completes the proof.
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