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Abstract

For a graph G and any two vertices u and v in G, let d(u, v) denote
the distance between u and v and let diam(G) be the diameter of G.
A multilevel distance labeling (or radio labeling) for G is a function f

that assigns to each vertex of G a positive integer such that for any two
distinct vertices u and v, d(u, v)+ | f(u) − f(v) |≥ diam(G) + 1. The
largest integer in the range of f is called the span of f and is denoted
span(f). The radio number of G, denoted rn(G), is the minimum span
of any radio labeling for G. A thorn graph is a graph obtained from a
given graph by attaching new terminal vertices to the vertices of the
initial graph. In this paper the radio numbers for two classes of thorn
graphs are determined: the caterpillar obtained from the path Pn by
attaching a new terminal vertex to each non-terminal vertex and the
thorn star Sn,k obtained from the star Sn by attaching k new terminal
vertices to each terminal vertex of the star.

Keywords: multilevel distance labeling, radio number, caterpillar,
diameter.
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1. Introduction

Radio labeling (or multilevel distance labeling) of graphs is motivated by
restrictions in assigning channel frequencies for radio transmitters [6]. More
precisely, for a set of given stations, it is required to assign to each station a
channel such that interference is avoided and the span of assigned channels
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is minimized. Channels are positive integers, and the level of interference
is related to the distances between stations. For small distances the inter-
ference is stronger, so the stations that are geographically close must be
assigned channels with large frequency difference, while for stations that
are further apart this difference can be small. This type of problem can
be modeled by a graph, where vertices represent stations and every vertex
has a positive number assigned, representing a channel. Every pair of close
stations is connected by an edge.

Let G be a connected graph with vertex set V (G) and diameter diam(G).
For any two vertices u and v of G, d(u, v) represents the distance between
them. A vertex u for which there exists a vertex v such as d(u, v) = diam(G)
is called a peripheral vertex. A radio labeling (or multilevel distance labeling)
of G is a one-to-one mapping f : V (G) → Z

+ which assigns to each vertex
a positive integer, satisfying the condition

d(u, v)+ | f(u) − f(v) |≥ diam(G) + 1

for every two distinct vertices u, v. This condition is referred to as radio

condition (or multilevel distance labeling condition). The span of f , denoted
by span(f), is the maximum integer in the range of f . The radio number of
G, denoted rn(G), is the smallest span in all radio labelings of G. Since the
radio condition contains only the difference of the labels, a radio labeling
realizing rn(G) must have the minimum label equal to 1.

For many classes of graphs is not easy to determine their radio number.
For radio numbers of paths and cycles in [2] and [3] only upper bounds were
obtained. Later, in [8], Liu and Zhu determined the exact values of these
radio numbers. In [9] Rahim and Tomescu considered radio labelings for
helm graphs (a helm graph Hn is obtained from the wheel Wn by attaching
a vertex of degree one to each of the n vertices of the cycle of the wheel).

Liu [7] determined a lower bound for the radio number of trees and
characterized the trees achieving this bound. To be able to discuss these
results, we introduce the following notions.

Let T be a tree rooted at a vertex w. For any two vertices u and v, if
u is on the path connecting w and v, then u is an ancestor of v and v is a
descendent of u. The level function on V (T ), for a fixed root w, is defined
by

Lw(u) = d(w, u), ∀u ∈ V (T ).
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For any u, v ∈ V (T ), define

Φw(u, v) = max{Lw(t) | t is a common ancestor of u and v}.

Let w′ be a neighbor of w. The subtree induced by w′ together with all the
descendents of w′ is called a branch.

Remark 1.1 ([7]). Let T be a tree rooted at w. For any vertices u and v

we have:

(1) Φw(u, v) = 0 if and only if u and v belong to different branches, unless
one of them is w;

(2) d(u, v) = Lw(u) + Lw(v) − 2Φw(u, v).

For any vertex w in T , the status of w in T is defined by

sT (w) =
∑

u∈V (T )

Lw(u) =
∑

u∈V (T )

d(u,w).

The status of T is the minimum status among all vertices of T :

s(T ) = min{sT (w) | w ∈ V (T )}.

A vertex w∗ of T is called a weight center of T if sT (w∗) = s(T ).

Remark 1.2. The set of all weight centers of a tree T is known as the
median of T ([1]).

Because in [7] a radio labeling is also allowed to take value 0, the radio
numbers and limits determined in [7] are one less than the radio numbers
previously defined in this article. We will recall the results from [7], making
the necessary adjustments by adding one to the bounds and radio numbers
arising from these results.

Theorem 1.3 [7]. Let T be a tree with n vertices and diameter d. Then

rn(T ) ≥ (n − 1)(d + 1) + 2 − 2s(T ).

Moreover, the equality holds if and only if for every weight center w∗ there

exists a radio labeling f with f(u1) = 1 < f(u2) < · · · < f(un) for which all

the following properties hold, for every i with 1 ≤ i ≤ n − 1 :
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(1) ui and ui+1 belong to different branches, unless one of them is w∗;

(2) {u1, un} = {w∗, v}, where v is some vertex with Lw∗(v) = 1;

(3) f(ui+1) = f(ui) + d + 1 − Lw∗(ui) − Lw∗(ui+1).

Thorn graphs were introduced by Gutman in [5]. For a graph G with
V (G) = {v1, v2, . . . , vn}, a thorn graph of G with nonnegative parameters
p1, p2, . . . , pn is obtained by attaching pi new vertices of degree one to the
vertex vi, for each 1 ≤ i ≤ n. A thorn path is called caterpillar. In the fol-
lowing sections we will determine the radio number for two classes of thorn
graphs: a particular class of caterpillars and the thorn star.

2. Radio Labeling and Radio Number for a Class of

Caterpillars

For n ≥ 2 we denote by CPn the caterpillar obtained from the path with n

vertices Pn by attaching a new terminal vertex to each non-terminal vertex
of Pn. CPn has m = 2n − 2 vertices and diameter d = n − 1.

In this section we will determine the radio number for this type of
caterpillar, more precisely we will show that: rn(CP3) = 5, rn(CPn) =
4k2 − 6k + 4 for n = 2k and rn(CPn) = 4k2 − 2k + 4 for n = 2k + 1, k ≥ 2.

We will consider two cases, in accordance with the parity of n.

Case 1. n is even.

Let n = 2k, k ≥ 1. In this case we denote by v1, . . . , v2k the vertices of
Pn from which the caterpillar CPn is obtained, by v′i−1 the terminal vertex
attached to vi, for 2 ≤ i ≤ k, and by v′i+1 the terminal vertex attached to
vi, for k + 1 ≤ i ≤ 2k − 1 (Figure 1).

Figure 1. CP2k

We have m = 4k − 2 and d = 2k − 1.
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Theorem 2.1. For n = 2k, k ≥ 1, the radio number for CPn is rn(CPn) =
4k2 − 6k + 4.

Proof. We use Theorem 1.3.

Let n = 2k, k ≥ 1. In this case CPn has two weight centers, vk and vk+1.
We have

s(CPn) = sCPn(vk) =
∑

u∈V (CPn)

d(u, vk)

= 3 · 1 + 4(2 + · · · + k − 1) + 2 · k

= 2k2 − 1.

By Theorem 1.3,

rn(CPn) ≥ (m − 1)(d + 1) + 2 − 2s(T ) = (4k − 3)(2k) + 2 − 2(2k2 − 1)

= 4k2 − 6k + 4.

Moreover, in order to prove equality, it suffices to find a radio labeling f

for CPn with span(f) = 4k2 − 6k + 4 (or, equivalently, a radio labeling
that satisfies the properties (1)–(3) in Theorem 1.3 for every weight center
of CPn; furthermore, since CPn is symmetrical, it suffices to give a radio
labeling for CPn with these properties only for weight center vk).

For that, we order the vertices of CPn as follows: alternate vj and
v′k+j for j = k, k − 1, . . . , 2, then v1, v2k, then alternate v′j and vk+j for
j = k−1, k−2, . . . , 1. We rename the vertices of CPn in the above ordering
by u1, u2, . . ., um.

We define a labeling f for CPn using the rules given by (2) and (3) from
Theorem 1.3 as follows: f(u1) = 1, f(ui+1) = f(ui) + d + 1− d(ui+1, ui) for
1 ≤ i ≤ m − 1.

For example, if k = 4, the order in which the vertices are labeled and
their labels are shown in Figure 2.

Since we have the following distances: d(vj , v
′

k+j) = k, for 2 ≤ j ≤ k;
d(v′k+j , vj−1) = k+1, for 2 ≤ j ≤ k; d(v1, v2k) = 2k−1, d(v2k, v

′

k−1) = k+1;
d(v′j , vk+j) = k, for 1 ≤ j ≤ k−1 and d(vk+j , v

′

j−1) = k+1, for 2 ≤ j ≤ k−1,
we obtain:

span(f) = f(um) = f(vk+1) = f(u1) + (m − 1)(d + 1) −

m−1∑

i=1

d(ui+1, ui)

= 4k2 − 6k + 4.
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Figure 2. CP2k

The following relations also hold:
f(vj) = f(vj+1) + 2k − 1 for 1 ≤ j ≤ k − 1;
f(vj) = f(vj+1) + 2k − 1 for k + 1 ≤ j ≤ 2k − 1;
similary,
f(v′j) = f(v′j+1) + 2k − 1 for k + 2 ≤ j ≤ 2k − 1;
f(v′j) = f(v′j+1) + 2k − 1 for 1 ≤ j ≤ k − 2;
f(v′k−1) = f(v′k+2) + 2k − 1;
f(v2k, v

′

k+2) = k;
|f(v′i)−f(vj)| ≥ 2k−1 if v′i and vj are not consecutive in the order previously
established.

Consecutive vertices in the ordering verify the radio constraint by con-
struction. Then it is easy to check that for every two distinct vertices u and
v the radio condition is verified, considering each particular case of pairs
of vertices (both vertices are from Pn, both are terminal or they are of dif-
ferent type), so f is a radio labeling for CPn. Moreover, from the way f

was defined, it satisfies the properties (1)–(3) in Theorem 1.3 for the weight
center vk, since the vertices ui and ui+1 belong to different branches for
2 ≤ i ≤ m − 1, u1 = vk and um = vk+1, with Lvk

(vk+1) = d(vk, vk+1) = 1.

Case 2. n is odd.

Let n = 2k + 1. For k = 1, it is easy to see that rn(CP3) = 5, CP3 being
the star S3. If k ≥ 2, in order to label the vertices of CPn, we denote by
v1, . . . , v2k+1 the vertices of Pn from which the caterpillar is obtained and
by v′i the terminal vertex attached to vi, for 2 ≤ i ≤ 2k (Figure 3). We have
m = 4k and d = 2k.



Radio Number for some Thorn Graphs 207

Figure 3. CP2k+1

Theorem 2.2. For n = 2k + 1, k ≥ 2 the radio number for CPn is

rn(CPn) = 4k2 − 2k + 4.

Proof. We shall see that it is not sufficient to use only Theorem 1.3 to
prove the equality. Let n = 2k + 1, k ≥ 2. In this case CPn has a single
weight center, vk+1. We have:

s(CPn) = sCPn(vk+1) =
∑

u∈V (CPn)

d(u, vk+1)

= 3 · 1 + 4(2 + · · · + k) = 2k2 + 2k − 1.

By Theorem 1.3,

rn(CPn) ≥ (m − 1)(d + 1) + 2 − 2s(T )

= (4k − 1)(2k + 1) + 2 − 2(2k2 + 2k − 1)

= 4k2 − 2k + 3.

We will prove that there is no radio labeling for CPn that satisfies the
properties (1)–(3) for the weight center vk+1 of CPn, so the inequality is
strict.

Suppose that there exists a radio labeling f for CPn with these proper-
ties. We order the vertices of CPn by their labels and rename the vertices
in this ordering by u1, u2, . . . , um: 1 = f(u1) < f(u2) < · · · < f(um). Let
ui, ui+1, ui+2 be three consecutive vertices in this ordering, 1 ≤ i ≤ m − 2.
We can assume, without loss of generality, that d(ui, ui+1) ≥ d(ui+1, ui+2).
We shall prove the following claims:

(a) If one of the vertices ui, ui+1, ui+2 belongs to the path that connects
the other two, then min{d(ui, ui+1), d(ui+1, ui+2)} ≤ k;

(b) min{d(ui, ui+1), d(ui+1, ui+2)} ≤ k + 1;

(c) If v is a peripheral vertex in CP2k+1 and v = ui, then i is different
from 1 and m. Moreover, if its neighboring vertices ui−1 and ui+1 are
different from vk+1, then one of the vertices ui−1 or ui+1 is v′k+1.
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Claim (a). We assume first that one of the vertices ui, ui+1, ui+2 belongs
to the path that connects the other two.

Suppose that min{d(ui, ui+1), d(ui+1, ui+2)} > k. Then d(ui, ui+1) > n
2

and d(ui+1, ui+2) > n
2 . Because we assumed that d(ui, ui+1) ≥ d(ui+1, ui+2),

ui+2 must lie on the path connecting ui and ui+1, hence d(ui, ui+2) =
d(ui, ui+1) − d(ui+1, ui+2). By property (3) from Theorem 1.3, f(ui+1) −
f(ui) = d + 1 − d(ui, ui+1) = n − d(ui, ui+1), hence we have:

f(ui+2) − f(ui) = f(ui+2) − f(ui+1) + f(ui+1) − f(ui)

= n − d(ui, ui+1) + n − d(ui+1, ui+2)

= 2n − (d(ui, ui+1) + d(ui+1, ui+2))

= 2n − (d(ui, ui+1) − d(ui+1, ui+2) + 2d(ui+1, ui+2))

= 2n − d(ui, ui+2) − 2d(ui+1, ui+2)

< 2n − d(ui, ui+2) − 2n
2 = n − d(ui, ui+2).

This contradicts that f is a radio labeling. It follows that Claim (a) is true.

Claim (b). In order to prove Claim (b) it suffices to consider the case when
no vertex belongs to the path connecting the other two.

Suppose that min{d(ui, ui+1), d(ui+1, ui+2)} > k + 1. It results that
d(ui, ui+1) ≥ k+2 and d(ui+1, ui+2) ≥ k+2. Since d(ui, ui+1) ≥ d(ui+1, ui+2),
by Theorem 1.3 (1), we can only have the following situation: ui+2 does not
belong to the path connecting ui and ui+1, but there exists a vertex u′

i+2

adjacent to ui+2 that belongs to this path. Then

d(ui, ui+2) = d(ui, ui+1) − d(ui+1, u
′

i+2) + 1

= d(ui, ui+1) − (d(ui+1, ui+2) − 1) + 1

= d(ui, ui+1) − d(ui+1, ui+2) + 2.

Hence

f(ui+2) − f(ui) = 2n − (d(ui, ui+1) + d(ui+1, ui+2))

= 2n − (d(ui, ui+2) + 2d(ui+1, ui+2) − 2)

= 2n − d(ui, ui+2) − 2d(ui+1, ui+2) + 2

≤ 2n − d(ui, ui+2) − 2(k + 2) + 2
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= 2n − d(ui, ui+2) − (n + 3) + 2

= n − 1 − d(ui, ui+2)

< n − d(ui, ui+2),

which is a contradiction since

f(ui+2) − f(ui) ≥ d + 1 − d(ui, ui+2) = n − d(ui, ui+2),

so Claim (b) follows.

Claim (c). Let v be a peripheral vertex in CP2k+1 (v is one of vertices v1,
v2k+1, v′2, v′2k). For any vertex u not belonging to the same branch as v we
have d(v, u) ≥ k + 1. Also, d(v, u) = k + 1 holds only for those two vertices
u which are also adjacent to the center vk+1. Let i be an index between 1
and m such that v = ui. By property (1) from Theorem 1.3, {u1, um} =
{vk+1, v

∗}, with d(vk+1, v
∗) = 1, hence i is different from 1 and m and we

have f(ui−1) < f(v) < f(ui+1). Moreover, if ui−1 and ui+1 are different
from center vk+1, since min{d(ui−1, v), d(v, ui+1)} ≥ k + 1, the assumptions
from Claim (a) are not verified, so none of the vertices ui−1, v, ui+1 belongs
to the path connecting the other two, and min{d(ui−1, v), d(v, ui+1)} = k+1.
It follows that one of the vertices ui−1 or ui+1 is v′k+1.

Hence we proved Claim (c).
Since f satisfies theorem 1.3 (2), for at least three peripheral vertices

their neighboring vertices ui−1 and ui+1 are different from the center vk+1.
It follows that at least three peripheral vertices have the property that one
of the vertices ui−1 or ui+1 is v′k+1, which is impossible.

Therefore there is no radio labeling f for CPn that verifies the properties
(1)–(3) in Theorem 1.3 for the weight center vk+1 of CPn. Hence rn(CPn) >

4k2 − 2k + 3.
To prove that rn(CPn) = 4k2 −2k +4 it suffices to find a radio labeling

f for CPn with span(f) = 4k2 − 2k + 4. For that, we order the vertices
of CPn as follows: vk+1, v1, v′k+1, then alternate v′2k−j and v′k−j for j =
0, 1, . . . , k−2, then v2k+1, then alternate vk−j and v2k−j for j = 0, 1, . . . , k−2.
We rename the vertices of CPn in the above ordering by u1, u2, . . . , um.

We define a labeling f for CPn using the rules given by (3) from Theorem
1.3 as follows: f(u1) = 1, f(ui+1) = f(ui) + d + 1 − d(ui+1, ui) for 1 ≤ i ≤
m − 1, with one exception: f(v2k+1) = f(v′2) + 2.



210 R. Marinescu-Ghemeci

For example, if k = 4, the order in which the vertices are labeled and their
labels are shown in Figure 4.

Figure 4. CP2k+1

As in Case 1, from the definition of f and the distances between consecutive
vertices in the above ordering, we obtain:

span(f) = 4k + 1 + (2k − 1)(k − 2) + 2 + (2k + 1)(k − 1) = 4k2 − 2k + 4.

Also, it is easy to verify that for every two distinct vertices u and v the radio
condition is verified, considering each particular pair of vertices as in Case
1 and taking in consideration the following facts: every consecutive vertex
in the ordering considered above verify the radio constraint by construction,
|f(vi) − f(vj)| ≥ 2k + 1 if vi and vj are not consecutive; similary |f(v ′

i) −
f(v′j)| ≥ 2k − 1 if v′i and v′j are not consecutive; f(vk) − f(v′2) = k + 2 ≥
2k + 1 − d(vk, v′2), f(v′i) − f(v1) ≥ f(v′2k) − f(v1) = 2k for i 6= k + 1,
f(v2k+1) − f(v′k+2) = k + 1 ≥ 2k + 1 − d(v2k+1, v

′

k+2) and the remaining
differences for non-consecutive vertices v ′

i and vj are |f(v′i)−f(vj)| ≥ 2k+1.
So f is a radio labeling for CPn, hence rn(CP2k+1) = 4k2 − 2k + 4.

3. Radio Labeling and Radio Number for a Thorn Star

The thorn star Sn,k is the graph obtained from the star graph Sn by attach-
ing k new terminal vertices to each terminal vertex of the star. We denote
by z the center of the star, with v1, v2, . . . , vn the terminal vertices from the
initial star Sn and with ui1, ui2, . . . , uik, 1 ≤ i ≤ n the new terminal vertices
attached to the vertex vi, for 1 ≤ i ≤ n.
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We have |V (Sn,k)| = 1 + n + nk = (k + 1)n + 1 and diam(Sn,k) = 4.

We will show that rn(Sn,k) = (k + 3)n + 2 for n ≥ 3 and rn(S2,k) = 3k + 8.

Theorem 3.1. For n ≥ 3 and k ≥ 1, rn(Sn,k) = (k + 3)n + 2.

Proof. We will first show that rn(Sn,k) ≥ (k + 3)n + 2. For that we use
Theorem 1.3. The weight center of Sn,k is z, hence we have

s(Sn,k) = sSn,k
(z) =

∑

i=1..n

d(z, vi) +
∑

i = 1..n

j = 1..k

d(z, uij) = n + 2nk.

It follows that rn(Sn,k) ≥ 5(k + 1)n + 2 − 2(n + 2nk) = (k + 3)n + 2.

To prove equality, it suffices to find a radio labeling f for Sn,k with
span(f) = (k + 3)n + 2.

We define a label f for Sn,k as follows:

f(z) = 1, f(vn) = 5, f(vj) = (k + 3)n + 2 − 3(n − j − 1) for 1 ≤ j ≤ n − 1
(vertices vj have as labels numbers starting with kn+8, the maximum label
of these vertices being (k + 3)n + 2), and terminal vertices are labeled with
values from 7 to kn + 6 as follows: f(ujt) = 7 + (j − 1) + (t − 1)n, for
1 ≤ j ≤ n, 1 ≤ t ≤ k. For n = 4 and k = 3 the labeling is shown in Figure 5.

Figure 5. A radio labeling for S4,3.

Hence span(f) = f(vn−1) = (k + 3)n + 2. It remains to verify the radio
condition for each pair of vertices. We have the following cases:

• d(ujt, vj) = 1, 1 ≤ j ≤ n, 1 ≤ t ≤ k. It suffices to show that in this case
we have |f(vj) − f(ujt)| ≥ 4.
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For 1 ≤ j ≤ n − 1

|f(vj) − f(ujt)| = f(vj) − f(ujt)

= (k + 3)n + 2 − 3(n − j − 1) − 7 − (j − 1) − (t − 1)n

= (k + 1 − t)n + 2j − 1 ≥ n + 2 − 1 ≥ 4.

For j = n

|f(vn) − f(unt)| = f(unt) − f(vn)

= 7 + (n − 1) + (t − 1)n − 5 = tn + 1 ≥ n + 1 ≥ 4.

• d(ujt, ujs) = 2, 1 ≤ j ≤ n, 1 ≤ t 6= s ≤ k. In this case we have

|f(ujt) − f(ujs)| = |(t − 1)n − (s − 1)n| = |(t − s)n| ≥ n ≥ 3.

• d(ujt, uls) = 4, 1 ≤ j 6= l ≤ n, 1 ≤ t, s ≤ k. From the way f was defined
we have f(ujt) 6= f(uls).

• d(z, ujt) = 2, 1 ≤ j ≤ n, 1 ≤ t ≤ k. We have

f(ujt) − f(z) ≥ 7 − 1 = 6.

• d(z, vj) = 1, 1 ≤ j ≤ n. We then deduce

f(vj) − f(z) ≥ f(vn) − f(z) = 5 − 1 = 4.

• d(vk, vj) = 2, 1 ≤ j 6= k ≤ n. In this case the following relations hold:

|f(vk) − f(vj)| ≥ 3 for k, j < n,

f(vj)−f(vn) ≥ f(v1)−f(vn) = (k +3)n+2−3(n−2)−5 = kn+3 ≥ 3.

• d(vj , uit) = 3, for 1 ≤ j 6= i ≤ n, 1 ≤ t ≤ k.
For j = n we obtain

|f(uit) − f(vn)| ≥ 7 − 5 = 2.
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For j 6= n

|f(uit) − f(vj)| ≥ (kn + 8) − (kn + 6) = 2.

In all cases the radio condition is satisfied.

As in case of caterpillars CPn with n odd, in order to prove that rn(S2,k) =
3k + 8 it is not sufficient to find a suitable labeling of the vertices of S2,k

and then apply Theorem 1.3 for the reverse inequality; we also need some
additional results.

Forwards we say that the vertex v1 and the terminal vertices attached
to it are vertices of type 1, vertex v2 and the terminal vertices attached to
it are vertices of type 2, and the center z is of type 3.

For a radio labeling f of S2,k, we order the vertices ascending by their
labels and rename the terminal vertices ujt in this order by y1, y2, . . . , y2k;
we have

f(y1) < f(y2) < · · · < f(y2k).

We denote by Y the sequence y1, y2, . . . , y2k, by fY the sequence of the labels
attached to vertices of Y : f(y1), f(y2), . . . , f(y2k), and with dfY

the sequence
of differences between consecutive labels from fY , where the i-th element of
the sequence is denoted by di

fY
= f(yi+1) − f(yi), for 1 ≤ i ≤ 2k − 1.

On the class of radio labeling of S2,k we define the function ∆Y as
follows:

∆Y (f) =

2k−1∑

i=1

di
fY

= f(y2k) − f(y1).

Remark 3.2.

1. In the sequence dfY
it is not possible to have two consecutive elements

with value 1.

2. ∆Y attains a minimum only for radio labelings f ∗ of S2,k with the se-
quence of differences

df∗

Y
= {1, 2, 1, 2, . . . , 1, 2, 1}.

For those labelings ∆Y (f∗) = 3k − 2.

3. f(y2k) = f(y1) + ∆Y (f).
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Proof. 1. Suppose that there exists an index i such that di
fY

= 1 and

di+1
fY

= 1. It follows that

f(yi+1) − f(yi) = f(yi+2) − f(yi+1) = 1.

Since the pairs of vertices yi and yi+1, respectively yi+1 and yi+2 must satisfy
the radio condition, it follows that d(yi, yi+1) = d(yi+1, yi+2) = 4, hence
yi and yi+2 are of the same type. We obtain d(yi, yi+2) = 2. Since the
radio condition must be satisfied for the vertices yi and yi+2, it follows that
f(yi+2) − f(yi) ≥ 5 − d(yi, yi+2) = 3. But

f(yi+2) − f(yi) = f(yi+2) − f(yi+1) + f(yi+1) − f(yi) = 1 + 1 = 2,

a contradiction.

2. Using the first remark, it is obvious that the minimum can be ob-
tained only in the conditions stated in this remark. In this conditions we
have

∆Y (f∗) = 1 · k + 2 · (k − 1) = 3k − 2.

We denote ∆∗

Y = ∆Y (f∗) = 3k − 2.

Lemma 3.3. Let f be a radio labeling for S2,k. If for a type t, with t ∈ {1, 2}
there exists an index i between 1 and 2k such that f(yi) < f(vt) < f(yi+1),
then the following properties hold:

1. di
fY

≥ 4;

2. If di
fY

≤ 5, then yi and yi+1 are of type 3 − t;

3. If i + 2 ≤ 2k, then di
fY

+ di+1
fY

≥ 6;

4. If i − 1 ≥ 1, then di−1
fY

+ di
fY

≥ 6.

Proof. From the radio condition we have:

f(vt) − f(yi) ≥ 5 − d(vt, yi),

f(yi+1) − f(vt) ≥ 5 − d(vt, yi+1).

It follows that

f(yi+1) − f(yi) ≥ 10 − [d(vt, yi) + d(vt, yi+1)].
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But d(vt, yi) has value 1 if yi is of type t, and 3 otherwise. We then obtain
di

fY
= f(yi+1) − f(yi) ≥ 10 − (3 + 3) = 4. Moreover, if di

fY
≤ 5, then

d(vt, yi) + d(vt, yi+1) ≥ 5, from which it follows that d(vt, yi) = d(vt, yi+1) =
3, hence yi and yi+1 are of type 3 − t.

In order to prove properties 3 and 4 of the lemma it suffices to consider
the case di

fY
= 4, since for greater values of di

fY
the inequalities are obvious.

In this case from the property 2 of the lemma it follows that yi and yi+1 are
of type 3 − t and d(vt, yi) = d(vt, yi+1) = 3.

If yi+2 has the same type as yi and yi+1, then d(yi+1, yi+2) = 2 and from
the radio condition we have

f(yi+2) ≥ f(yi+1) + 5 − d(yi+1, yi+2) ≥ f(yi+1) + 3.

Then

di
fY

+ di+1
fY

= 4 + f(yi+2) − f(yi+1) ≥ 4 + 3 = 7.

Otherwise, if yi+2 has type t, d(vt, yi+2) = 1 and from the radio condition
we obtain

f(yi+2) ≥ f(vt) + 5 − d(vt, yi+2) = f(vt) + 4 = f(yi+1) + 2,

hence

di
fY

+ di+1
fY

≥ 4 + 2 = 6.

Property 4 can be proved analogously.

Remark 3.4. Let f be a radio labeling for S2,k. If there exists an index i

between 1 and 2k − 1 such that f(yi) < f(z) < f(yi+1), then di
fY

≥ 6.

Proof. From the radio condition we have:

f(yi+1) − f(yi) ≥ 10 − [d(z, yi) + d(z, yi+1)] = 10 − (2 + 2) = 6.

Using these results we can determine a lower bound for rn(S2,k).

Theorem 3.5. For k ≥ 1, rn(S2,k) ≥ 3k + 8.

Proof. Let f be a radio labeling for S2,k. We prove that span(f) ≥ 3k +8.
We consider the following cases, by comparing the labels f(z), f(v1), f(v2)
with the labels from fY .
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Case 1. None of the labels f(z), f(v1), f(v2) are between f(y1) and
f(y2k).

In this case the sequence of all vertices ordered by their labels is obtained
starting from the sequence Y by adding, in turn, each of the vertices z, v1,
v2 at the beginning or at the end of the current sequence. We denote by z ′,
v′1, respectively v′2 the vertex near which z, v1, respectively v2 are added in
the sequence. Then, using the radio condition, we obtain:

span(f) ≥ 1 + ∆Y (f) + |f(z) − f(z′)| + |f(v1) − f(v′1)| + |f(v2) − f(v′2)|

≥ 1 + ∆Y (f) + 5 − d(z, z′) + 5 − d(v1, v
′

1) + 5 − d(v2, v
′

2)

= ∆Y (f) + 16 − [d(z, z′) + d(v1, v
′

1) + d(v2, v
′

2)].

Let S = d(z, z′) + d(v1, v
′

1) + d(v2, v
′

2). For t ∈ {1, 2} and 1 ≤ i ≤ 2k we
have: d(z, yi) = 2, d(vt, yi) = 1 if yi is of type t, d(vt, yi) = 3 if yi is of type
t, d(v1, v2) = 2 and d(vt, z) = 1. Moreover, at most two of the vertices z ′,
v′1, v′2 are in Y . It follows that S ≤ 7.

If S ≤ 6, then

span(f) ≥ ∆Y (f) + 16 − S ≥ ∆∗

Y + 16 − S ≥ 3k − 2 + 16 − 6 = 3k + 8.

If S = 7, then at least one of the vertices v ′

t with t ∈ {1, 2} is y1 or y2k and
d(vt, v

′

t) = 3. We can assume, without loss of generality, that v ′

1 = y1. We
have f(v1) < f(y1) < f(y2). We will prove that f(y2k) ≥ f(v1) + 3k + 1.

From the radio condition for v1 and y1 we obtain

f(y1) ≥ f(v1) + 5 − d(v1, y1) = f(v1) + 2

and then f(y2) ≥ f(v1) + 4.

If f(y1) ≥ f(v1) + 3, then

f(y2k) = f(y1)+∆Y (f) ≥ f(y1)+∆∗

Y ≥ f(v1)+3+3k−2 = f(v1)+3k+1.

Otherwise we have f(y1) = f(v1) + 2 and it follows that d(v1, y1) = 3 and
y1 is of type 2.

Moreover, if y2 is of type 1, from the radio condition we have

f(y2) ≥ f(v1) + 5 − d(v1, y2) = f(v1) + 4 = f(y1) + 2.
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Otherwise

f(y2) ≥ f(y1) + 5 − d(y1, y2) = f(y1) + 3(≥ f(v1) + 4).

In both situations we obtain d1
fY

= f(y2) − f(y1) ≥ 2, hence ∆Y (f) > ∆∗

Y ,
and the following relation holds:

f(y2k) = f(y1) + ∆Y (f) ≥ f(y1) + ∆∗

Y + 1

≥ f(v1) + 2 + 3k − 2 + 1 = f(v1) + 3k + 1.

Then
span(f) ≥ f(y2k) + |f(z) − f(z′)| + |f(v2) − f(v′2)|

≥ f(v1) + 3k + 1 + 10 − [d(z, z′) + d(v2, v
′

2)]

≥ 1 + 3k + 1 + 10 − [S − d(v1, v
′

1)]

≥ 3k + 12 − (7 − 1) = 3k + 8.

Case 2. Only one of the values f(v1) and f(v2) is between f(y1) and
f(y2k) (f(z) is not between f(y1) and f(y2k)).

We can assume, without loss of generality, that f(v1) ∈ {f(y1), . . . ,
f(y2k)}. Then there exists an index p between 1 and 2k − 1 such that
f(yp) < f(v1) < f(yp+1). From lemma 3.3 we have d

p
fY

≥ 4.

If d
p
fY

≥ 6, using remark 3.2 we obtain:

∆Y (f) ≥ 6 + 1 · k + 2 · (k − 2) = 3k + 2.

Otherwise we have 4 ≤ d
p
fY

≤ 5, and, from Lemma 3.3, it follows that yp

and yp+1 are of type 2 and k ≥ 2. Then p− 1 ≥ 1 or p+2 ≥ 2k. We assume
p+2 ≥ 2k, since the case p−1 ≥ 1 can be treated analogously. Using lemma
3.3 it follows that d

p
fY

+ d
p+1
fY

≥ 6. Moreover, since yp and yp+1 are of type
2, there exists an index q between 1 and 2k − 1 such that yq and yq+1 are of
type 1, and then

d
q
fY

= f(yq+1) − f(yq) ≥ 5 − d(yq+1, yq) = 5 − 2 = 3.

It follows that ∆Y (f) ≥ 6 + 3 + 1 · (k − 1) + 2 · (k − 3) = 3k + 2.

In all cases we obtain ∆Y (f) ≥ 3k + 2, and it follows that
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span(f) ≥ f(y2k) + |f(z) − f(z′)| + |f(v2) − f(v′2)|

≥ 1 + ∆Y (f) + |f(z) − f(z′)| + |f(v2) − f(v′2)|

≥ 1 + 3k + 2 + 10 − [d(z, z′) + d(v2, v
′

2)]

≥ 3k + 3 + 10 − (2 + 3) = 3k + 8.

Case 3. f(v1) and f(v2) are between f(y1) and f(y2k), but f(z) is not.
Then there exist two indices p and q between 1 and 2k − 1 such that

f(yp) < f(v1) < f(yp+1) and f(yq) < f(v2) < f(yq+1).

By Lemma 3.3 we have d
p
fY

≥ 4 and d
q
fY

≥ 4. We prove that ∆Y (f) ≥ 3k+4.

If d
p
fY

≥ 5 and d
q
fY

≥ 5, then, from Remark 3.2, it follows that

∆Y (f) ≥ 5 + 5 + 1 · k + 2 · (k − 3) = 3k + 4.

If d
p
fY

= 4 and d
q
fY

≥ 5, then, using the same lemma, for p+1 ≤ 2k we have

d
p
fY

+ d
p+1
fY

≥ 6 and for p − 1 ≥ 1 we have d
p−1
fY

+ d
p
fY

≥ 6. Hence, if there

exists, d
p+1
fY

≥ 2 and d
p−1
fY

≥ 2 we obtain

∆Y (f) ≥ 4 + 5 + 1 · (k − 1) + 2 · (k − 2) = 3k + 4

since in the sequence dfY
it is not possible to have two consecutive elements

with value 1. Analogously we can prove that, if d
p
fY

≥ 5 and d
q
fY

= 4, then
∆Y (f) ≥ 3k + 4.

It remains to consider the situation when d
p
fY

= d
q
fY

= 4. Using an
argument similar to the previous one, it can be proved that in the sequence
dfY

the value 1 cannot be on one of the positions p− 1, p+1, q− 1, q +1, if
such a position exist. Then ∆Y (f) ≥ 4+4+1 · (k − 2)+2 · (k − 1) = 3k +4.

In all situations we have ∆Y (f) ≥ 3k + 4, hence

span(f) ≥ 1 + ∆Y (f) + |f(z) − f(z′)|

≥ 1 + 3k + 4 + 5 − d(z, z′) ≥ 3k + 10 − 2 = 3k + 8.

Case 4. f(z) is between f(y1) and f(y2k), but f(v1) and f(v2) are not.
Then there exists an index p between 1 and 2k − 1 such that f(yp) <

f(z) < f(yp+1). By remark 3.4 we have d
p
fY

≥ 6. We assume, without
loss of generality, that f(v1) < f(y1) and f(v2) satisfies one of the relations:
f(v2) < f(v1) or f(v2) > f(y2k).
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If p = 1, then the smallest labels are f(v1) < f(y1) < f(z) < f(y2) and we
obtain ∆Y (f) ≥ 6 + 1 · (k − 1) + 2 · (k − 1) = 3k + 3, hence it follows

span(f) ≥ 1 + ∆Y (f) + |f(v1) − f(y1)| + |f(v2) − f(v′2)|

≥ 1 + 3k + 3 + 5 − d(v1, y1) + 5 − d(v2, v
′

2)

≥ 1 + 3k + 3 + 5 − 3 + 5 − 3 = 3k + 8.

If p > 1, then, using same type of arguments as in case 1, we will prove
that f(y2) ≥ f(v1) + 4. Since in dfY

is not possible to have two consecutive
elements with value 1, it will follow that

f(y2k) ≥ f(y2) + 6 + 1 · (k − 1) + 2 · (k − 2)

≥ f(v1) + 4 + 3k + 1 ≥ 3k + 6

and so

span(f) ≥ f(y2k) + |f(v2) − f(v′2)| ≥ 3k + 6 + 5 − d(v2, v
′

2) ≥ 3k + 8.

From the radio condition, f(y1) ≥ f(v1) + 2. If the inequality is strict, then
it is obvious that f(y2) ≥ f(y1)+1 ≥ f(v1)+4. Otherwise we have f(y1) =
f(v1) + 2 and, using the radio condition, we obtain d(v1, y1) = 3, which
implies that y1 is of type 2. As in case 1, it follows that f(y2) ≥ f(v1) + 4.

Case 5. Only f(z) and one of the labels f(v1) or f(v2) are between
f(y1) and f(y2k); assume f(v2) is between f(y1) and f(y2k).

Then there exist two indices p and q between 1 and 2k − 1 such that
f(yp) < f(z) < f(yp+1) and f(yq) < f(v2) < f(yq+1). By Lemma 3.3 and
Remark 3.4 we have d

p
fY

≥ 6 and d
q
fY

≥ 4. We will prove that ∆Y (f) ≥
3k + 5. It will follow that

span(f) ≥ 1 + ∆Y (f) + |f(v2) − f(v′2)| ≥ 1 + 3k + 5 + 5 − 3 = 3k + 8.

Thus, if d
q
fY

≥ 5, then

∆Y (f) ≥ 6 + 5 + 1 · k + 2 · (k − 3) = 3k + 5.

Otherwise, if d
q
fY

= 4, using arguments similar to the previous cases, it
follows that in the sequence dfY

value 1 cannot be on positions q − 1, q + 1,
if these positions exist. Then ∆Y (f) ≥ 4+6+1 ·(k−1)+2 ·(k−2) = 3k+5.
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Case 6. All of the labels f(z), f(v1), f(v2) are between f(y1) and f(y2k).

Then there exist three indices p, q and r between 1 and 2k − 1 such that
f(yp) < f(z) < f(yp+1), f(yq) < f(v1) < f(yq+1) and f(yr) < f(v2) <

f(yr+1) and we have d
p
fY

≥ 6, d
q
fY

≥ 4 and dr
fY

≥ 4.

If one of the values d
q
fY

or dr
fY

is strictly greater than 4, then ∆Y (f) ≥
6 + 5 + 4 + 1 · k + 2 · (k − 4) = 3k + 7. It follows that in the sequence dfY

value 1 cannot be on positions q − 1, q + 1, r − 1, r + 1, if these positions
exist, hence ∆Y (f) ≥ 4 + 4 + 6 + 1 · (k − 2) + 2 · (k − 2) = 3k + 8.

In both situations we have span(f) ≥ 1 + ∆Y (f) ≥ 3k + 8.

Theorem 3.6. For k ≥ 1, rn(S2,k) = 3k + 8.

Proof. By Theorem 3.5, it suffices to build a radio labeling f for S2,k with
span(f) = 3k + 8. Let f be a labeling defined as follows:

f(z) = 1,
f(u11) = 4, f(u1j) = 4 + 3(j − 1), for 2 ≤ j ≤ k,
f(u21) = 5, f(u2j) = 5 + 3(j − 1), for 2 ≤ j ≤ k,
f(v1) = 1 + f(u2k) + 5 − d(v1, u2k) = f(u2k) + 3,
f(v2) = f(v1) + 5 − d(v1, v2) = f(u2k) + 3 + 3 = f(u2k) + 6.
Then f(u2k) = 5 + 3(k − 1) = 3k + 2 and span(f) = f(v2) = 3k + 8.

For n = 4 and k = 3 the labeling is shown in Figure 6.

Figure 6. A radio labeling for S2,3.

We prove that f is a radio labeling for S2,k, by considering each possible
type of pairs of vertices and verifying the radio condition for it.

• For any 1 ≤ t ≤ 2, 1 ≤ j ≤ k we have

|f(utj) − f(z)| ≥ f(u11) − f(z) = 3 = 5 − d(z, utj).
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• For any 1 ≤ t ≤ 2, 1 ≤ i < j ≤ k we have

|f(utj) − f(uti)| = 3(j − i) ≥ 3 = 5 − d(utj , uti).

Moreover, d(utj , ut′i) = 4 for t′ = 3 − t and f(utj) 6= f(ut′i) from the
way f was defined.

• For any 1 ≤ i < j ≤ k the following relations hold

f(v1)− f(u1j) ≥ f(v1)− f(u1k) = 3k +5− (3k +1) = 4 = 5− d(v1, u1j).

f(v1)− f(u2j) ≥ f(v1)− f(u2k) = 3k +5− (3k +2) = 3 ≥ 5− d(v1, u2j).

f(v2)− f(u1j) ≥ f(v2)− f(u1k) = 3k +8− (3k +1) = 7 > 5− d(v2, u1j).

f(v2)− f(u2j) ≥ f(v2)− f(u2k) = 3k +8− (3k +2) = 6 ≥ 5− d(v2, u2j).

• We have the relations:

f(v2) − f(z) ≥ f(v1) − f(z) = f(u2k) + 3 − 1

= 3k + 4 ≥ 5 − d(z, v1) = 5 − d(z, v2),

f(v2) − f(v1) = 3.

For related problems see the survey paper [4].
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