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Abstract

Let γ(G) and γ2,2(G) denote the domination number and (2, 2)-
domination number of a graph G, respectively. In this paper, for any

nontrivial tree T , we show that 2(γ(T )+1)
3 ≤ γ2,2(T ) ≤ 2γ(T ). More-

over, we characterize all the trees achieving the equalities.
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1. Introduction

For notation and graph theory terminology we follow [2, 5, 6]. Let G =
(V (G), E(G)) be a simple graph. For u, v ∈ V (G), the distance dG(u, v)
between u and v is the length of the shortest uv-paths in G. The diameter
of G is d(G) = max{dG(u, v) : u, v ∈ V (G)}. For an integer k ≥ 1 and
v ∈ V (G), the open k-neighborhood of v is Nk(v,G) = {u ∈ V (G) : 0 <
dG(u, v) ≤ k}, and the closed k-neighborhood of v is Nk[v,G] = Nk(v)∪{v}.
If the graph G is clear from the context, we will simply use Nk(v) and
Nk[v] instead of Nk(v,G) and Nk[v,G], respectively. The degree deg(v)
of v is the number of vertices in N1(v). The minimum k-degree δk(G) is
defined by δk(G) = min{|Nk(v)| : v ∈ V (G)}. For S ⊆ V (G), Nk(S) =
∪v∈SNk(v), Nk[S] = Nk(S) ∪ S. For convenience, we also denote N1(S)
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and N1[S] by N(S) and N [S], respectively. Let G[S] be the subgraph of G
induced by S.

For S ⊆ V (G), S is a dominating set if N [S] = V (G) and a total dom-
inating set if N(S) = V (G). The domination number γ(G) (resp. total
domination number γt(G)) is the minimum cardinality among all dominat-
ing sets (resp. total dominating sets) of G. Any minimum dominating set
of G will be called a γ-set of G. For all graphs G without isolated ver-
tices, γt(G) ≤ 2γ(G). If S, T ⊆ V (G), we say that S dominates T in G
if T ⊆ N [S].

Let k and p be positive integers. A subset S of V (G) is defined to be a
(k, p)-dominating set of G if, for any vertex v ∈ V (G) \ S, |Nk(v) ∩ S| ≥ p.
The (k, p)-domination number of G, denoted by γk,p(G), is the minimum
cardinality among all (k, p)-dominating sets of G. Any minimum (k, p)-
dominating set of G will be called a γk,p-set of G. Clearly, for a graph G,
a (1, 1)-dominating set is a classic dominating set, that is, γ1,1(G) = γ(G).
For S, T ⊆ V (G), we say that S (k, p)-dominates T in G if |Nk(v) ∩ S| ≥ p,
for any v ∈ T − S.

The concept of (k, p)-domination in a graph G is a generalized domina-
tion which combined k-distance domination and p-domination in G. So the
investigation of (k, p)-domination of G is more interesting and has received
the attention of many researchers. In [1], Bean, Henning and Swart inves-
tigated the relationship between γk,p(G) and the order of G and posed a
conjecture: γk,p(G) ≤ p

k+p
|V (G)| if G is a graph with δk(G) ≥ k + p− 1. In

2005, Fischermann and Volkmann [3] confirmed that the conjecture is valid
for all positive integers k and p, where p is a multiple of k. In [7], Korneffel,
Meierling, and Volkmann not only showed that γ2,2(G) ≤ (|V (G)| + 1)/2
without the condition δ2(G) ≥ 3, but characterized all graphs achieving the
equality.

In this paper, we concentrate our attention on (2, 2)-domination of trees
and give upper and lower bounds of γ2,2(T ) in terms of the domination
number γ(T ). The main result is:

2(γ(T ) + 1)

3
≤ γ2,2(T ) ≤ 2γ(T )

for any nontrivial tree T . Moreover, we characterize all the trees achieving
the equalities.
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2. The Lower Bound

For a vertex v in a rooted tree T , let C(v) and D(v) denote the set of children
and descendants of v, respectively. And we define D[v] = D(v) ∪ {v}. Let
L(T ) and S(T ) denote the set of the leaves and the set of the support vertices
of T , respectively. We use Pl = u1u2 · · · ul to represent a path with l vertices.
As an immediate consequence from the definition of a (2, 2)-dominating set,
we have

Lemma 1. Let S be a (2, 2)-dominating set of G. If v is a support vertex

with at least two leaves in G, then |N [v] ∩ S| ≥ 2.

Lemma 2. Let G be a graph obtained from a graph G′ by joining u3 of a

path P4 = u1u2u3u4 to a vertex v of G′.

(1) If S is a γ2,2-set of G, then |S ∩ V (P4)| = 2;

(2) If S is a γ2,2-set of G containing vertices of degree one as few as pos-

sible, then S ∩ V (P4) = {u2, u3}.

We introduce the family T of trees T that can be obtained from a sequence
T1, T2, . . . , Tk of trees such that T1 = P4, T = Tk, and, for k ≥ 2, Ti+1

(1 ≤ i ≤ k − 1) is obtained recursively from Ti by one of the operations
defined below.

We recall that the corona cor(G) of a graph G is a graph obtained from G
by adding a pendant edge to each vertex of G. Let H = cor(P3) with vertex
set V (H) = {u, v, w, u′, v′, w′} and edge set E(H) = {uv, vw, uu′, vv′, ww′}.
Let A(T1) = S(T1).

• Operation O1 : Attach a vertex by joining it to a support vertex of Ti.
Let A(Ti+1) = A(Ti).

• Operation O2 : Attach a copy of H by joining w to a vertex of A(Ti).
Let A(Ti+1) = A(Ti) ∪ {u, v}.

• Operation O3 : Attach a copy of H by joining w′ to a leaf of Ti such
that the leaf is adjacent to a vertex in A(Ti) which has
at least two leaves in Ti.
Let A(Ti+1) = A(Ti) ∪ {u, v}.

By induction on the length k of the sequence of the construction of T ∈ T ,
the following lemma is clearly true from the construction.
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Lemma 3. Let T ∈ T . Then

(1) every vertex of A(T ) is a support vertex of T ;

(2) A(T ) is a (2, 2)-dominating set of T ;

(3) T [A(T )] = ∪t
i=1K2, where t is the number of the operations O2 and O3

used by the construction of T .

For a dominating set of a tree T , we can derive the following observation
from the definition.

Lemma 4. Let T be a tree of order at least three. Then T has a γ-set

containing all the support vertices.

From the definition of Operation Oi (i = 1, 2, 3) and Lemma 4, we can easily
prove

Lemma 5. Let T ′ ∈ T and T is obtained from T ′ by Operation Oi (i =
1, 2, 3).

(1) If i = 1, then γ(T ) = γ(T ′);

(2) If i = 2, then γ(T ) = γ(T ′) + 3;

(3) If i = 3, then γ(T ) = γ(T ′) + 3.

The following lemma characterizes the minimum (2, 2)-dominating set of
T ∈ T .

Lemma 6. Let T ∈ T and T 6= P4. Then γ2,2(T ) = 2(γ(T ) + 1)/3 and

A(T ) is the unique γ2,2-set of T .

Proof. Suppose T is obtained from a sequence T1, T2, . . . , Tk (k ≥ 2) of
trees, where T1 = P4, T = Tk, and, Ti+1 (1 ≤ i ≤ k − 1) can be obtained
from Ti by Operation Oj (j = 1, 2 or 3). We prove by induction on the
length k of the sequence T1, T2, . . . , Tk.

If k = 2, then T = T2. It can be checked directly that the results are
true for T = T2. Now assume k > 2 and the results hold for all the trees
in T that can be constructed from a sequence of length at most k − 1. Let
T ′ = Tk−1 and S be a γ2,2-set of T .

If T is obtained from T ′ by Operation O1 by attaching a vertex x to
a support vertex y of T ′, then, by Lemma 3 (2), A(T ′) = A(T ) is a (2, 2)-
dominating set of T . Hence |S| = γ2,2(T ) ≤ |A(T ′)|. Let y′ be a leaf of y
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in T ′. By the induction hypothesis on T ′, γ2,2(T
′) = 2(γ(T ′)+1)

3 and A(T ′) is
the unique γ2,2-set of T ′. We claim that x /∈ S, then S is a (2, 2)-dominating
set of T ′ with |S| = |A(T ′)|. And, by Lemma 5, γ2,2(T ) = |S| = |A(T ′)| =

γ2,2(T
′) = 2(γ(T ′)+1)

3 = 2(γ(T )+1)
3 . Suppose to the contrary that x ∈ S, let

S′ = (S \ {x}) ∪ {y′} if y′ /∈ S; otherwise (S \ {x}) ∪ {y}. Then S ′ is a
(2, 2)-dominating set of T ′ with |S′| ≤ |S| ≤ |A(T ′)|. Hence S ′ is a γ2,2-set
of T ′ containing a leaf y′. By the induction hypothesis on T ′, S′ = A(T ′),
which contradicts that every vertex of A(T ′) is a support vertex of T ′.

If T is obtained from T ′ by Operation O2 by attaching H to a vertex y
of A(T ′), then, by Lemma 3 (2), A(T ) = A(T ′)∪{u, v} is a (2, 2)-dominating
set of T . And so |S| = γ2,2(T ) ≤ |A(T ′)|+2. Since y ∈ A(T ′) ⊆ S(T ′), let y′

be a leaf of y in T ′. By the induction hypothesis on T ′, γ2,2(T
′) = 2(γ(T ′)+1)

3
and A(T ′) is the unique γ2,2-set of T ′. Now we prove S = A(T ). Note
that N2[y

′, T ′] = N2[y
′, T ] \ {w} and N2[y

′, T ′] = N [y, T ′]. Since S is a
γ2,2-set of T , |N [y, T ′] ∩ S| = |N2[y

′, T ′] ∩ S| ≥ 1. We claim that |N [y, T ′] ∩
S| ≥ 2. Otherwise, we have |N2[y

′, T ′] ∩ S| = |N [y, T ′] ∩ S| = 1. Then
|S ∩ {w,w′}| ≥ 1 (Suppose that S ∩ {w,w′} = ∅, then, to (2, 2)-dominate
w′, y ∈ S. By |N2[y

′, T ′] ∩ S| = 1, we have y′ /∈ S, and so y′ can’t be (2, 2)-
dominated by S, a contradiction). By Lemma 2 (1), |S ∩ {u, v, u′, v′}| = 2.
So |S ∩ V (H)| ≥ 3. Let y′′ be any vertex in N [y, T ′] which is not contained
in S. Then (S ∩ V (T ′)) ∪ {y′′} is a (2, 2)-dominating set of T ′. Since

|(S∩V (T ′))∪{y′′}|= |S∩V (T ′)|+1 ≤ |S|−3+1 = |S|−2 ≤ |A(T ′)| =γ2,2(T
′),

(S ∩ V (T ′)) ∪ {y′′} is a γ2,2-set of T ′. Since |N [y, T ′] ∩ S| = 1, N [y, T ′]
contains at least two vertices which are not in S, that is, we have at least
two choices of y′′. So T ′ has at least two distinct γ2,2-sets, a contradiction
with T ′ has a unique γ2,2-set. The claim holds. Hence S ∩ V (T ′) is a (2, 2)-
dominating set of T ′. By Lemma 2 (1), we have |S ∩ {u, v, u′, v′}| = 2, and
so |S ∩ V (T ′)| ≤ |S| − 2 = γ2,2(T ) − 2 ≤ |A(T ′)| = γ2,2(T

′). So S ∩ V (T ′) is
the unique γ2,2-set A(T ′) of T ′ and |S ∩ V (H)| = 2. It is easy to check that
S ∩V (H) = {u, v}. Hence S = (S ∩V (T ′))∪ (S ∩V (H)) = A(T ′)∪{u, v} =

A(T ). By Lemma 5, γ2,2(T ) = |S| = γ2,2(T
′)+2 = 2(γ(T ′)+1)

3 +2 = 2(γ(T )+1)
3 .

If T is obtained from T ′ by Operation O3 by attaching H to a leaf x
of T ′, then, by Lemma 3 (2), A(T ) = A(T ′) ∪ {u, v} is a (2, 2)-dominating
set of T and so |S| = γ2,2(T ) ≤ |A(T ′)| + 2. Let y be the support vertex
of x in T ′ and y′ another leaf of y. By the induction hypothesis on T ′,

γ2,2(T
′) = 2(γ(T ′)+1)

3 and A(T ′) is the unique γ2,2-set of T ′. Now we prove
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that S = A(T ). By Lemma 2 (1), |S∩{u, v, u′, v′}| = 2, and so |S∩(V (T ′)∪
{w,w′})| = |S| − 2 ≤ |A(T ′)| = γ2,2(T

′). Note that S ∩ (V (T ′) ∪ {w,w′})
(2, 2)-dominates T ′ in T . We claim that S∩{w,w′} = ∅. Otherwise, we have
|S ∩V (T ′)| < γ2,2(T

′), and so S ∩V (T ′) is not a (2, 2)-dominating set of T ′.
Hence |S ∩N2[y

′, T ′]| = 1, furthermore, S ∩N2[y
′, T ′] = {y′}. Hence we can

check easily that (S ∩ V (T ′)) ∪ {x} and (S ∩ V (T ′)) ∪ {y} are two different
γ2,2-sets of T ′, which contradicts with A(T ′) is the unique γ2,2-set of T ′. So
S ∩ V (T ′) is the unique γ2,2-set A(T ′) of T ′ and |S ∩ V (H)| = 2. It is easy
to check that S ∩ V (H) = {u, v}. Hence S = (S ∩ V (T ′)) ∪ (S ∩ V (H)) =
A(T ′) ∪ {u, v} = A(T ). By Lemma 5, γ2,2(T ) = |S| = γ2,2(T

′) + 2 =
2(γ(T ′)+1)

3 + 2 = 2(γ(T )+1)
3 .

Lemma 7. Let T ∈ T and c be a vertex in T such that c is not in any γ-set

of T . Then c is a leaf of T and the support vertex of c is adjacent with at

least two leaves in T .

Proof. Suppose T is obtained from a sequence T1, T2, . . . , Tk of trees such
that T1 = P4, T = Tk and, for k ≥ 2, Ti+1 (1 ≤ i < k) is obtained from Ti

by Operation Oj (j = 1, 2 or 3). Let D be a γ-set of T containing all the
support vertices. D exists by Lemma 4.

First we show that, for any vertex x /∈ L(T )∪S(T ), there exists a γ-set
of T containing x. Since x /∈ L(T )∪S(T ), by the definition of the operations,
there is some i (2 ≤ i < k) such that Ti+1 is obtained from Ti by Operation
O3 by joining w′ ∈ V (H) to a leaf y of Ti and x = y, w′ or w. Clearly, each
of y, w′ and w has degree two in T . To dominate w′, one of {y, w′, w} must
be contained in D. Since y and w are dominated by S(T ) ⊆ D, we can
choose one of {y, w′, w} arbitrarily such that it belongs to D and dominates
w′. Thus we can choose D containing x.

Since c is not in any γ-set of T , c is a leaf of T . Let y be the support
vertex of c in T . Suppose that y has a unique leaf c in T . Choose a
γ-set D of T such that D contains all the support vertices of T and the
number of private neighbors of y with respect to D is minimal (A vertex u
is called a private neighbor of a vertex v with respect to a dominating set D
if N(u) ∩ D = {v}). We claim that c is a unique private neighbor of y with
respect to D. Otherwise, let x be another private neighbor of y with respect
to D. Then x /∈ L(T )∪S(T ). By the above proof, there exists a γ-set D ′ of
T with x ∈ D′ such that D′ contains all the support vertices of T , but the
number of private neighbors of y with respect to D ′ is less than the number
of private neighbors of y with respect to D, a contradiction with the choice
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of D. Hence c is the unique private neighbor of y in D. Thus we can replace
y by c in D and get a γ-set of T containing c, a contradiction.

Theorem 8. Let T be a nontrivial tree, then

γ2,2(T ) ≥ 2(γ(T ) + 1)/3

with equality if and only if T ∈ T .

Proof. Let T be a tree of order n. We proceed by induction on n. If 1 <
n ≤ 4, then we can check that γ2,2(T ) ≥ 2(γ(T ) + 1)/3 with equality if and
only if T = P4 ∈ T . This establishes the base cases. Assume that the result
holds for every tree T ′ of order 4 ≤ |V (T ′)| = n′ < n. If d(T ) = 2, then T is a
star. Hence γ2,2(T ) = 2 and γ(T ) = 1. So we have γ2,2(T ) > 2(γ(T ) + 1)/3.
If d(T ) = 3, then T can be seen as a tree constructed from P4 by a sequence
of operations O1. Hence T ∈ T . By Lemma 6, γ2,2(T ) = 2(γ(T ) + 1)/3. So
in the following we will assume that d(T ) ≥ 4. Let P = uvwxyz · · · r be a
longest path in T . We root T at r.

Case 1. If deg(v) ≥ 3, then there exists another leaf v ′ adjacent to v.
Let T ′ = T − v′. By Lemma 4, we have γ(T ) = γ(T ′). By Lemma 1, we
can choose a γ2,2-set S of T such that S does not contain v ′. Thus S is a
(2, 2)-dominating set of T ′, too. By the induction hypothesis on T ′, we have

γ2,2(T ) = |S| ≥ γ2,2(T
′) ≥

2

3
(γ(T ′) + 1) =

2

3
(γ(T ) + 1).

Further if γ2,2(T ) = 2(γ(T ) + 1)/3, then γ2,2(T
′) = 2(γ(T ′) + 1)/3. By the

inductive hypothesis on T ′, T ′ ∈ T . Since v is a support vertex of T ′, T is
obtained from T ′ by Operation O1. Hence T ∈ T .

In the following, without loss of generality, we will assume that deg(v) =
2 and each support vertex of T is exactly adjacent with one leaf.

Case 2. If deg(w) = 2, then T − {wx} has a component P3 = uvw.
Let T ′ be the subtree of T − {wx} containing x and D ′ be a γ-set of T ′.
Since D′ ∪ {v} is a dominating set of T , γ(T ′) ≥ γ(T ) − 1. We choose S as
a γ2,2-set of T such that S contains as few vertices as possible of {u, v, w}.
We claim that S can be chosen such that u ∈ S. Otherwise {v, w} ⊆ S. If
x ∈ S, we replace v by u and obtain a γ2,2-set of T containing u. If x /∈ S,
we replace v, w by u, x and obtain a γ2,2-set of T containing fewer vertices
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of {u, v, w} than S, a contradiction. Hence S ∩ {u, v, w, x} = {u, x}, and
so S ∩ V (T ′) is a (2, 2)-dominating set of T ′. By the induction hypothesis
on T ′,

γ2,2(T )= |S|= |S∩V (T ′)|+1 ≥ γ2,2(T
′)+1≥

2(γ(T ′) + 1)

3
+1>

2(γ(T ) + 1)

3
.

Case 3. If deg(w) ≥ 3, then the subgraph induced by D(w) consists of
i isolated vertices and j copies of P2, where i ∈ {0, 1} and j ≥ 1. We first
show the following claim.

Claim 1. If there is a vertex c such that T − c contains at least two com-
ponents P2, then γ2,2(T ) > 2(γ(T ) + 1)/3.

The proof of Claim 1. Let ab and a′b′ be two components P2 in T − c
with bc ∈ E(T ) and b′c ∈ E(T ). Let T ′ = T −{a, b} and D′ be a γ-set of T ′.
Since D′∪{b} is a dominating set of T , γ(T ′) ≥ γ(T )−1. Let S be a γ2,2-set
of T containing leaves of T as few as possible. Then S ∩ {a, b, c} = {a} or
{b, c}. We now prove that S ∩ V (T ′) is a (2, 2)-dominating set of T ′. If
S ∩{a, b, c} = {a}, then, to (2, 2)-dominate a′ and b, a′ ∈ S and there exists
at least one neighbor of c in S. Hence S ∩ V (T ′) = S \ {a} is a (2, 2)-
dominating set of T ′. If S ∩ {a, b, c} = {b, c}, then b′ ∈ S and a′ /∈ S by the
choice of S. Hence S ∩ V (T ′) = S \ {b} is a (2, 2)-dominating set of T ′. By
the induction hypothesis on T ′,

γ2,2(T )= |S|=1+|S∩V (T ′)|≥ 1+γ2,2(T
′)≥ 1+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

This completes the proof of Claim 1.
By Claim 1, in the following, we assume j = 1 and complete the proof

according to the degree of x. Since deg(w) ≥ 3, we have i = 1 and
deg(w) = 3. Let w′ be the unique leaf of w in T . Since d(T ) ≥ 4, deg(x) ≥ 2.

Case 3.1. deg(x) = 2.
Let S be a γ2,2-set of T containing leaves of T and vertices in D[x] as few as
possible. Then, by Lemma 2 (2), S ∩ D[x] = {v, w}. If deg(y) = 1, then we
can easily prove that γ2,2(T ) > 2(γ(T ) + 1)/3. In the following, we assume
deg(y) ≥ 2.

If y ∈ S or y /∈ S and |N2(y)∩S| ≥ 3, then we let T ′ = T −D[x] and D′

be a γ-set of T ′. Clearly, S ∩ V (T ′) is a (2, 2)-dominating set of T ′. Since
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D′ ∪ {v, w} is a dominating set of T , γ(T ′) ≥ γ(T ) − 2. By the induction
hypothesis on T ′,

γ2,2(T )= |S|=2+|S∩V (T ′)| ≥ 2+γ2,2(T
′)≥ 2+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

Now, we consider the case y /∈ S and |N2(y) ∩ S| = 2.

Case 3.1.1. deg(y) = 2.
Let T ′ = T−D[y] and D′ be a γ-set of T ′. Since D′∪{v, w, x} is a dominating
set of T , γ(T ′) ≥ γ(T ) − 3. Since y /∈ S, S ∩ D[y] = S ∩ D[x] = {v, w}.
Hence S∩V (T ′) is a (2, 2)-dominating set of T ′. By the induction hypothesis
on T ′,

γ2,2(T )= |S|=2+|S∩V (T ′)|≥ 2+γ2,2(T
′)≥ 2+

2(γ(T ′) + 1)

3
≥

2(γ(T ) + 1)

3
.

Further, if γ2,2(T ) = 2
3(γ(T ) + 1), then we have γ2,2(T

′) = 2
3(γ(T ′) + 1)

and γ(T ′) = γ(T ) − 3. By the inductive hypothesis on T ′, T ′ ∈ T . If
T ′ = P4, one can easily check that γ(T ) = 4. This is a contradiction with
γ(T ′) = γ(T ) − 3. Hence T ′ 6= P4. By Lemma 6, S ∩ V (T ′) = A(T ′). Since
γ(T ′) = γ(T )− 3, z cannot be contained in any γ-set of T ′. By Lemma 7, z
is a leaf of T ′ and the support vertex, say a, of z has at least two leaves in T ′.
By Lemma 3 (1), a ∈ A(T ′) since S ∩ V (T ′) = A(T ′) and |N2(y) ∩ S| = 2.
Therefore, T is obtained from T ′ by Operation O3, and so T ∈ T .

Case 3.1.2. deg(y) ≥ 3.
Let I be the subgraph induced by {u, v, w,w′ , x} in T . Let J be the subgraph
induced by D(y). After proving the above cases, we only need consider the
cases that every component of J is isomorphic to I or an isolated vertex by
|N2(y) ∩ S| = 2 and w ∈ N2(y) ∩ S.

If y is a support vertex of T , let y′ denote the unique leaf of y (since
we assume that each support vertex of T has a unique leaf). To (2, 2)-
dominate y′, y′ ∈ S. Hence J has only one component which is isomorphic
to I and S ∩ D[y] = {v, w, y′}. Let T ′ = T − D[y] and D′ be a γ-set of T ′.
Since D′ ∪ {v, w, y} is a dominating set of T , γ(T ′) ≥ γ(T ) − 3. Clearly,
(S∩V (T ′))∪{z} is a (2, 2)-dominating set of T ′. By the induction hypothesis
on T ′,

γ2,2(T )= |S|=3+|S∩V (T ′)|≥ 2+γ2,2(T
′)≥ 2+

2(γ(T ′) + 1)

3
≥

2(γ(T ) + 1)

3
.
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We claim that the equality is not true in this case. If γ2,2(T ) = 2
3(γ(T )+1),

then γ2,2(T
′) = 2

3(γ(T ′) + 1) and (S ∩ V (T ′)) ∪ {z} is a γ2,2-set of T ′. By
the inductive hypothesis on T ′, T ′ ∈ T . If T ′ = P4, one can easily check
that γ(T ) = 4 < 2 + 3 = γ(T ′) + 3, a contradiction. Hence T ′ 6= P4. By
Lemma 6, (S ∩ V (T ′)) ∪ {z} = A(T ′). Hence z ∈ A(T ′). By Lemma 3 (3),
there is another vertex z ′ in A(T ′) which is adjacent to z, which contradicts
to |N2(y) ∩ S| = 2.

If y is not a support vertex of T , then there are exactly two components
of J which are isomorphic to I (since |N2(y) ∩ S| = 2). Let I1 be another
component of J with V (I1) = {u1, v1, w1, w

′

1, x1} and edge set E(I1) =
{u1v1, v1w1, w1x1, w1w

′

1}. Let T ′ = T −D(y) and D′ be a γ-set of T ′. Since
D′ ∪ {v, w, v1, w1} is a dominating set of T , γ(T ′) ≥ γ(T )− 4. By Lemma 2
(2) and the choice of S, S ∩ D[y] = {v, w, v1, w1}. Thus (S ∩ V (T ′)) ∪ {y}
is a (2, 2)-dominating set of T ′. Apply the inductive hypothesis on T ′,

γ2,2(T )= |S|=4+|S∩V (T ′)|≥ 3+γ2,2(T
′)≥ 3+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

Case 3.2. deg(x) ≥ 3.
Let J denote the subgraph induced by D(x). From the proofs of the above
cases, we only need to consider the case that every component of J is iso-
morphic to a path P4, a path P2, or an isolated vertex. Let s, t and h denote
the number of components of P4, P2 and isolated vertices in J , respectively.
Then s ≥ 1 and h ∈ {0, 1}. By Claim 1, we can assume that J has at most
one component which is isomorphic to P2, that is t ∈ {0, 1}. Let S be a
γ2,2-set of T containing leaves and the vertices of D[x] as few as possible.
Then, by Lemma 2 (2), S ∩ {u, v, w,w′} = {v, w}.

If |N [x] ∩ S| ≥ 3, let T ′ be the subgraph of T − {wx} containing x and
D′ be a γ-set of T ′. Then S ∩ V (T ′) is a (2, 2)-dominating set of T ′. Since
D′ ∪ {v, w} is a dominating set of T , γ(T ′) ≥ γ(T ) − 2. By the induction
hypothesis on T ′,

γ2,2(T )= |S|=2+|S∩V (T ′)|≥ 2+γ2,2(T
′)≥ 2+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

If |N [x] ∩ S| = 1, then, by deg(x) ≥ 3 and |N2(y) ∩ S| = 2, we have s = 1,
t = 1 and h = 0. Denote the component of J which is isomorphic to P2

by ab with xb ∈ E(T ). Let T ′ = T − D(x). Since any dominating set
of T ′ combined with {v, w, b} is a dominating set of T , γ(T ′) ≥ γ(T ) − 3.
To (2, 2)-dominate a, a ∈ S. By the choice of S, S ∩ D(x) = {v, w, a}.
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Hence (S ∩ V (T ′)) ∪ {x} is a (2, 2)-dominating set of T ′. By the induction
hypothesis on T ′,

γ2,2(T )= |S|=3+|S∩V (T ′)|≥ 2+γ2,2(T
′)≥ 2+

2(γ(T ′) + 1)

3
≥

2(γ(T ) + 1)

3
.

We claim that the equality is not true in this case. If γ2,2(T ) = 2
3(γ(T )+1),

then γ2,2(T
′) = 2

3(γ(T ′) + 1) and (S ∩ V (T ′)) ∪ {x} is a γ2,2-set of T ′.
By the inductive hypothesis on T ′, T ′ ∈ T . If T ′ = P4, one can easily
check that γ(T ) = 4 < γ(T ′) + 3, a contradiction. Hence T ′ 6= P4. By
Lemma 6, (S ∩V (T ′))∪{z} = A(T ′) contains a leaf x of T ′, a contradiction
to Lemma 3 (1).

In the following, we assume that |N [x] ∩ S| = 2. By |N [x] ∩ S| = 2 and
the choice of S, the number of components which are isomorphic to P4 in J
is at most two, that is, s ∈ {1, 2}. Now we will complete our proof according
to the choices of s, t and h.

Case 3.2.1. s = 1.
If t = 1, denote the component of J which is isomorphic to P2 by ab with
xb ∈ E(T ). Let T ′ = T − {a, b}. Clearly, γ(T ′) ≥ γ(T ) − 1. Note that
w ∈ N [x] ∩ S and |N [x] ∩ S| = 2. To (2, 2)-dominate a, S ∩ {a, b, x} = {a}
by the choice of S. So S ∩ V (T ′) is a (2, 2)-dominating set of T ′. By the
induction hypothesis on T ′,

γ2,2(T )= |S|=1+|S∩V (T ′)|≥ 1+γ2,2(T
′)≥ 1+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

If t = 0, then h = 1 since deg(x) ≥ 3. Denote the isolated vertex of J by
a. Let T ′ = T − D[x]. Clearly, γ(T ′) ≥ γ(T ) − 3. By the choice of S and
|N [x] ∩ S| = 2, y ∈ S. Then S ∩ V (T ′) is a (2, 2)-dominating set of T ′. By
the induction on T ′,

γ2,2(T )= |S|=2+|S∩V (T ′)|≥ 2+γ2,2(T
′)≥ 2+

2(γ(T ′) + 1)

3
≥

2(γ(T ) + 1)

3
.

Further if γ2,2(T ) = 2
3 (γ(T )+1), then γ2,2(T

′) = 2
3(γ(T ′)+1) and S∩V (T ′)

is a γ2,2-set of T ′. By the induction hypothesis on T ′, T ′ ∈ T . Note that
the subgraph induced by D[x] is isomorphic to H. If T ′ = P4, then it can
be easily checked that T is obtained from P4 by Operation O2 if y ∈ A(T ′),
or T /∈ T if y /∈ A(T ′). If T ′ 6= P4, then, by Lemma 6, S ∩ V (T ′) = A(T ′).
Hence y ∈ A(T ′) and T is obtained from T ′ by Operation O2. So T ∈ T .
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Case 3.2.2. s = 2.

Let u1v1w1w
′

1 be another component which is isomorphic to P4 of J , where
w1 is adjacent to x. By the choice of S, v1, w1 ∈ S. Then N [x]∩S = {w,w1}.

Case 3.2.2.1. t = 1.

Denote the component P2 by ab with bx ∈ E(T ). Since |N [x]∩S| = 2, b /∈ S
and so a ∈ S. Let T ′ = T −{a, b}, then S ∩ V (T ′) is a (2, 2)-dominating set
of T ′. Clearly, γ(T ′) ≥ γ(T ) − 1. By the induction hypothesis on T ′,

γ2,2(T )= |S|=1+|S∩V (T ′)|≥ 1+γ2,2(T
′)≥ 1+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

Case 3.2.2.2. t = 0 and deg(y) = 2.

Let T ′ = T − D[y] and D′ be a γ-set of T ′. Then D′ ∪ {v, w, v1, w1, x} is a
dominating set of T and so γ(T ′) ≥ γ(T )−5. Since S∩D[y] = {v, w, v1, w1},
S∩V (T ′) is a (2, 2)-dominating set of T ′. By the induction hypothesis on T ′,

γ2,2(T )= |S|=4+|S∩V (T ′)|≥ 4+γ2,2(T
′)≥ 4+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

Case 3.2.2.3. t = 0 and deg(y) ≥ 3.

If |N2(y)∩S| ≥ 4, let T ′ = T −D[x]. Clearly, S∩V (T ′) is a (2, 2)-dominating
set of T ′. Let D′ be a γ-set of T ′, then D′ ∪{v, w, v1, w1, x} is a dominating
set of T . Hence γ(T ′) ≥ γ(T ) − 5. By the inductive hypothesis on T ′,

γ2,2(T )= |S|=4+|S∩V (T ′)|≥ 4+γ2,2(T
′)≥ 4+

2(γ(T ′) + 1)

3
>

2(γ(T ) + 1)

3
.

If |N2(y) ∩ S| ≤ 3, then, by the proofs of the above cases, we only need to
consider the case that the components of T [D(y)] are isomorphic to T [D[x]]
or an isolated vertex. Since {w,w1} ⊆ N2(y) ∩ S and deg(y) ≥ 3, T [D(y)]
has only one T [D[x]] and an isolated vertex, say a. That is deg(y) = 3 and
y is a support vertex of T . Let T ′ = T − D[y] and D′ be a γ-set of T ′.
Since D′ ∪ {v, w, v1, w1, x, y} is a dominating set of T , γ(T ′) ≥ γ(T ) − 6.
Since N [x] ∩ S = {w,w1} and |N2(y) ∩ S| ≤ 3, S ∩ D[y] = {v, w, v1, w1, a}.
Hence (S ∩ V (T ′)) ∪ {z} is a (2, 2)-dominating set of T ′. By the induction
hypothesis on T ′,

γ2,2(T )= |S|=5+|S∩V (T ′)|≥ 4+γ2,2(T
′)≥ 4+

2(γ(T ′) + 1)

3
≥

2(γ(T ) + 1)

3
.
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We claim that the equality is not true in this case. If not, then γ2,2(T
′) =

2
3 (γ(T ′) + 1) and (S ∩ V (T ′)) ∪ {z} is a γ2,2-set of T ′. By the inductive
hypothesis on T ′, T ′ ∈ T . If T ′ = P4, we can easily check that the equality
does not hold. If T ′ 6= P4. By Lemma 6, (S ∩ V (T ′)) ∪ {z} = A(T ′). By
Lemma 3 (3), z has a neighbor z ′ in A(T ′). So {w,w1, a, z′} ⊆ N2(y) ∩ S,
which contradicts |N2(y) ∩ S| ≤ 3.

3. The Upper Bound

In this section, we give a trivial upper bound of γ2,2(G) in terms of γ(G) for
any connected graph, and characterize all the trees achieving the equality.

Proposition 9. If G is a connected graph, then γ2,2(G) ≤ γt(G) ≤ 2γ(G).

Proof. Let S be a minimum total dominating set of G. Then the subgraph
induced by S contains no isolated vertex. Hence, for any v ∈ V (G) − S,
|N2(v)∩S| ≥ 2. That is, S is a (2, 2)-dominating set of G. Hence γ2,2(G) ≤
|S| = γt(G) ≤ 2γ(G).

In the following, we will use the result given by Henning [4] to characterize
the trees T with γ2,2(T ) = 2γ(T ). Let G be a graph and S ⊆ V (G).
S is called a packing of G if for any two distinct vertices u and v in S,
NG[u] ∩ NG[v] = ∅.

Lemma 10 [4]. A tree T of order at least 3 satisfies γt(T ) = 2γ(T ) if and

only if the following three conditions hold:

(i) T has a unique γ-set D,

(ii) every vertex of D is a support vertex of T , and

(iii) D is a packing in T .

Theorem 11. Let T be a tree with order at least three. Then γ2,2(T ) =
2γ(T ) if and only if T satisfies the following three conditions:

(1) T has a unique γ-set D,

(2) each vertex of D is adjacent with at least two leaves of T , and

(3) D is a packing in T .
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Proof. Let T be a tree with order at least three and γ2,2(T ) = 2γ(T ).
Then, by Proposition 9, γ2,2(T ) ≤ γt(T ) ≤ 2γ(T ). Hence γt(T ) = 2γ(T ).
By Lemma 10, T satisfies three conditions: (1) T has a unique γ-set D,
(2) D is a packing of T , and, (3) each vertex of D is adjacent with at least
one leaf of T . So, in the following, we will prove that each vertex of D is
adjacent with at least two leaves of T .

If there is a vertex v ∈ D which is adjacent with only one leaf, say u, we
will construct a (2, 2)-dominating set S of T with |S| ≤ 2γ(T ) − 1. Since T
is a tree with order at least 3, N(v)\{u} 6= ∅. Let N(v)\{u} = {w1, . . . , wt}
(t ≥ 1). For 1 ≤ i ≤ t, N(wi) \ {v} 6= ∅ since wi is not a leaf of T . So we
can choose xi from N(wi) \ {v}. Since T is a tree, v does not dominate xi.
Hence there exists a vertex yi ∈ D \ {v} such that yi dominates xi. Clearly,
|{v, y1, . . . , yt}| = t + 1.

For each z ∈ D \ {v, y1, . . . , yt}, we choose a neighbor of it. Let S1 be
the set of these neighbors. Let

S = (D \ {v}) ∪ {u, x1, . . . , xt} ∪ S1.

Clearly, S \ {u} is a total dominating set of T − {v, u}. By the proof of
Proposition 9, S\{u} is a (2, 2)-dominating set of T−{v, u}. Since {u, x1} ⊆
N2(v, T ) ∩ S, S is a (2, 2)-dominating set of T with

|S| ≤ (γ(T ) − 1) + (t + 1) + [γ(T ) − (t + 1)] = 2γ(T ) − 1,

which contradicts γ2,2(T ) = 2γ(T ).

Conversely, assume a tree T satisfies the conditions (1), (2) and (3).
Let D = {x1, x2, . . . , xγ(T )} be the unique dominating set of T . Since D is
a packing of T , N [x1], N [x2], . . . , N [xγ(T )] is a partition of V (T ). Let S be
a γ2,2-set of T . For 1 ≤ i ≤ γ(T ), by Lemma 1, |N [xi] ∩ S| ≥ 2. So

γ2,2(T ) = |S| = |S ∩ V (T )| = |S ∩ (∪
γ(T )
i=1 N [xi])|

= | ∪
γ(T )
i=1 (S ∩ N [xi])| =

γ(T )∑

i=1

|S ∩ N [xi]| ≥ 2γ(T ).

By Proposition 9, γ2,2(T ) = 2γ(T ).

Remark. By the proof of Proposition 9, γ2,2(G) ≤ γt(G) ≤ 2γ(G). In this
section, we give a characterization of trees T with γ2,2(T ) = 2γ(T ) by a
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characterization of trees T with γt(T ) = 2γ(T ) given by Henning [4]. The
characterization of trees T with γ2,2(T ) = γt(T ) seems a little more difficult.
We leave it as an open problem.
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