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Université Libre de Bruxelles

Abstract

Almost all d-regular graphs are Hamiltonian, for d ≥ 3 [8]. In
this note we conjecture that in a similar, yet somewhat different, sense
almost all cubic non-Hamiltonian graphs are bridge graphs, and present
supporting empirical results for this prevalence of the latter among all
connected cubic non-Hamiltonian graphs.
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1. A Conjecture

In 1994, Robinson and Wormald [8] proved a striking result, which states
that almost all d-regular graphs are Hamiltonian, for d ≥ 3. The interested
reader is referred to [1] for an excellent discussion on Hamiltonian cycles in
regular graphs.

All graphs in this note are connected and undirected. A cubic, or 3-
regular, graph is a graph where every vertex is connected to exactly three
other vertices. More generally, in a k-regular graph, every vertex is con-
nected to exactly k other vertices. A Hamiltonian cycle is a simple cycle
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that goes through every vertex in the graph exactly once. A graph is Hamil-

tonian if it possesses at least one Hamiltonian cycle, and non-Hamiltonian

otherwise. One statement of the famous NP-complete Hamiltonian cycle

problem (HCP) is: given a graph, determine whether it is Hamiltonian.

Given a graph, a bridge is an edge the removal of which disconnects
the graph. A bridge graph is a graph that contains at least one bridge.
Bridge graphs are non-Hamiltonian [4]. Moreover, it is straightforward that
we can detect bridge graphs in polynomial time. In this note, we consider
two exhaustive and mutually exclusive subsets of non-Hamiltonian graphs:
bridge graphs, to which we refer as easy non-Hamiltonian graphs, and non-
Hamiltonian graphs that are not bridge graphs, are hard non-Hamiltonian

graphs.

From numerical experiments using GENREG software [6] and the cub-
hamg utility in the package nauty [5] on cubic graphs of various orders,
we observe that bridge graphs constitute the majority of non-Hamiltonian
graphs. Moreover, as the graph order N increases, so does the ratio of cubic
bridge graphs over all cubic non-Hamiltonian graphs of the same order. This
can be seen from Table 1.

Table 1. Ratio of cubic bridge graphs over cubic non-Hamiltonian graphs,
of order 10 to 22.

Graph Order Number of Number of Cubic Number of Cubic Ratio of
N Cubic Graphs Non-H Graphs Bridge Graphs Bridge/Non-H

10 19 2 1 0.5000

12 85 5 4 0.8000

14 509 35 29 0.8286

16 4060 219 186 0.8493

18 41301 1666 1435 0.8613

20 510489 14498 12671 0.8740

22 7319447 148790 131820 0.8859

24 117940535 1768732 1590900 0.8995

For cubic graphs of order 40 and 50, we consider a 1000000-graph sample
for each order. The observed ratios of cubic bridge graphs to cubic non-
Hamiltonian graphs in Table 2 are even closer to 1. This naturally gives rise
to a conjecture on the prevalence of cubic bridge graphs.
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Table 2. Ratio of cubic bridge graphs over cubic non-Hamiltonian graphs,
of order 40 and 50.

Graph Order Number of Number of Cubic Number of Cubic Ratio of
N Cubic Graphs Non-H Graphs Bridge Graphs Bridge/Non-H
40 1000000 912 855 0.9375
50 1000000 549 530 0.9650

Conjecture 1. Consider cubic graphs of order N .

lim
N→∞

#cubic bridge graphs

#cubic non-Hamiltonian graphs
=

lim
N→∞

#cubic easy non-Hamiltonian graphs

#[cubic easy non-Hamiltonian graphs + cubic hard non-Hamiltonian graphs]
= 1.

2. Discussion

If the above conjecture were, indeed, true it would be possible to argue that
the difficulty of the NP-completeness of the HCP for cubic graphs is even
more of an anomaly than indicated by the result of [8]. In particular, if
an arbitrary cubic graph is considered, a polynomial algorithm can tell us
whether or not it is a bridge graph. If it is, then it is non-Hamiltonian and
if not, then it is even more likely to be Hamiltonian than might have been
expected on the basis of [8] alone.

Furthermore, it is reasonable to assume that if the conjecture holds for
cubic graphs then its obvious extension to all d-regular graphs (with d ≥ 3)
will also hold. The underlying intuition is that, somehow, the “easiest” way
to create non-Hamiltonian, d-regular, graphs with N vertices is to join via
bridges graphs with fewer than N vertices. Regrettably, we do not know how
to prove the stated conjecture. An approach, based on recursive counting
arguments, along those outlined in Chapter 5 of Nguyen [7] may be worth
pursuing. Another, approach could, perhaps, be based on the location of
bridge graphs in the 2-dimensional multifilar structure introduced in [2]
and [3].

We include an adaptation of Figure 5.1 from [3], but here we only dis-
tinguish bridge graphs, represented by crosses, from the rest. Given a graph
of order N , let λi be eigenvalues of the adjacency matrix A. Define the ex-
pected value function µ(A, t) of (1 − tλi)

−1 to be 1

N

∑
i
(1 − tλi)

−1, and the
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variance function σ2(A, t) to be 1

N

∑
i
(1− tλi)

−2−µ2(A, t). Let t = 1/9 and
plot the mean-variance coordinates (µ(A, t), σ2(A, t)) across all cubic graphs
of order 14 in Figure 1. We obtain a self-similar multifilar structure, zoom-
ing into each large and approximately linear cluster reveals smaller, also
approximately linear, clusters with different slopes and between-distances
[3]. Figure 1 indicates that bridge graphs are at, or near, the top of their
clusters.
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Figure 1. Mean-variance plot for all cubic graphs of order 14.
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