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Abstract

We describe how the simple planar quadrangulations with vertices
of degree 3 and 4, whose duals are known as octahedrites, can all be
obtained from an elementary family of starting graphs by repeatedly
applying two expansion operations. This allows for construction of a
linear time generator of all graphs in the class with at most a given
order, up to isomorphism.
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1. Introduction

By a simple planar quadrangulation with vertices of degree 3 and 4
(SPQ(3,4)) we mean a connected simple graph imbedded on the sphere
whose faces have size 4 and whose vertices have degree 3 or 4. We do not
distinguish an outer face. The duals of SPQ(3,4)s are sometimes called octa-

hedrites. They are the connected simple 4-regular planar graphs whose faces
have size 3 and 4. Figure 10 shows all the SPQ(3,4)s with size at most 16.

Two planar graphs are regarded as the same if there is an embedding-
preserving isomorphism (possibly reflectional) between them. This is the
same as graph isomorphism in the case of 3-connected graphs, which is the
case for the graphs in this paper. Table 1 gives the numbers of SPQ(3,4)s
up to 133 vertices.

Let C be a class of planar graphs, S a subset of C, and F a set of map-
pings from C to the power set 2C . We say that (S,F) recursively generates C
if for every G ∈ C there is a sequence G1, G2, . . . , Gk = G in C where G1 ∈ S
and, for each i, Gi+1 ∈ F (Gi) for some F ∈ F . In many practical examples,
including that in this paper, there is some integral graph parameter (such as
the number of vertices) which is always increased by mappings in F ; in this
case we refer to these mappings as expansions, their inverses as reductions,
and the graphs in S as irreducible. In this terminology, (S,F) recursively
generates C if every graph in C − S is reducible.

Recursive generation algorithms for very many classes of planar graphs
have appeared in the literature. Expansions usually take the form of re-
moving some small subgraph and replacing it by a larger subgraph. We will
note the examples of 3-connected [16], 3-regular [8], minimum degree 4 [1],
4-regular [7, 13], 5-regular [12], minimum degree 5 [6], and fullerenes (whose
duals have minimum degree 5 and maximum degree 6) [2, 11]. Such con-
structions can be used to build practical generators [5] as well as to prove
properties of graph classes by induction.

The structure and generation of different classes of planar quadrangu-
lations are studied in [3, 4, 15]. The quadrangulations considered in this
paper have been studied by Deza, Shtogrin and Dutour [9, 10]. Generation
of them is included in a more general algorithm of Brinkmann, Harmuth and
Heidemeier [4]. Their algorithm generates the 4-regular graphs dual to these
quadrangulations by stitching together “patches” formed by straight-ahead
paths. Our approach is the more traditional one of expansions as described
generally above.
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(C1) (C2) (Ck)

Figure 1. The set S of starting graphs.

Our starting set S consists of the infinite family {Ci | i ≥ 1} depicted in
Figure 1. We employ two types of expansion, which we define via their
corresponding reductions, as shown in Figure 2.

Let p = v1 · · · vk be a path in an SPQ(3,4) such that all the internal
vertices of p have degree 4. We say that p has a bend at vertex vi, i ∈
{2, . . . , k−1}, if vi−1 and vi+1 appear consecutively around vi. In that case,
vi is a right bend if vi+1 appears in anticlockwise order after vi−1 around vi

and otherwise a left bend.

Let F be the set of expansions inverse to the reductions {P1, P2} shown
in Figure 2. Our aim is to prove that the class of all SPQ(3,4)s is generated
by (S,F).

Reduction P1(p) requires a path without bends between two distinct
vertices of degree 3. Reduction P2(p) requires such a path with exactly one
bend. The mirror image of P1(p) is also allowed and we will not consider it
different from P1(p).

For all the reductions, the vertices on the path and their neighbours,
plus the outside corner vertex drawn as an open circle in the figure, must
be distinct.

The following rules should be considered in interpreting the pictures of this
paper:

• half-edges indicate that at an edge must occur at this position in the
cyclic order around the vertex;

• a triangle indicates that zero or more edges may occur at this position
in the cyclic order around the vertex;
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• if neither a half-edge nor a triangle is present in the angle between two
edges in the picture, then these two edges must follow each other directly
in the cyclic ordering of edges around that vertex.

P1(p)

P2(p)

Figure 2. Reductions P1 and P2 (path p is drawn as a thick line).

2. Generation Algorithm

A cycle with length k of a plane graph is a separating k-cycle if it is not a
face.

Theorem 1 in [9] proves that all SPQ(3,4)s are 3-connected. Every
SPQ(3,4) is a bipartite graph, so it does not have any separating 3-cycles.
The following lemma proves the absence of separating 4-cycles in every
SPQ(3,4) which is not a member of S.

Lemma 1. If G is an SPQ(3,4) which is not a member of S, then G does

not have any separating 4-cycles.
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Figure 3. Cases for a separating 4-cycle.

Proof. Let G be a smallest SPQ(3,4) which has a separating 4-cycle but is
not in S. By the symmetry between the inside and outside of the separating
4-cycle, four cases can occur as shown in Figure 3. Cases (a) and (b) do
not happen because of the 3-connectivity (in Figures 3(a1) and (b1), {x, y}
is a cut). Let C be a separating 4-cycle of G such that there is no other
separating 4-cycle inside C. Then C is not a separating 4-cycle of type (c),
since cycle C ′ = xywz (Figure 3(c1)) is a separating 4-cycle inside C. In
case (d), because there is no separating 4-cycle inside C, vertices a, b, c and
d are distinct and have degree 3 (Figure 3(d1)). Construct graph G′ from G

by deleting vertices a, b, c and d. Then G′ is an SPQ(3,4) which is smaller
than G and so does not have any separating 4-cycles by the definition of G.
Therefore, the degrees of vertices a′, b′, c′ and d′ are 3 and G′ is a cube. This
proves that G is C2 (the second member of S), which is a contradiction.
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The next lemma, due to Nakamoto, explains how vertices of degree 3 appear
in a simple planar quadrangulation with minimum degree 3.

(G1) (G2) (G3) (G4)

Figure 4. Subgraphs for Lemma 2.

Lemma 2 [15]. Let G be a simple quadrangulation with minimum degree 3
and let H be a component of the subgraph induced by the vertices of degree 3.
Then H is one of the following graphs:

• a cycle of even length at least 8;

• a path (possibly of a single vertex);

• a cube, in which case G = H;

• one of the four graphs of Figure 4.

By Euler’s formula, each SPQ(3,4) with n vertices has exactly 8 vertices
with degree 3, n − 2 faces and 2n − 4 edges. This implies the following
restriction of Lemma 2 to the case of SPQ(3,4)s.

vu

Figure 5. Pseudo-double wheel.

Lemma 3. Let G be an SPQ(3,4) and let D be the subgraph induced by the

vertices of degree 3. Then D is one of the following graphs:

• a cycle of length 8, in which case G is a pseudo-double wheel (Figure 5);

• a cube, in which case G = D;

• a union of two disjoint copies of G4 (Figure 4);
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• a union of two disjoint cycles of length 4, in which case G is a member

of S;

• a union of disjoint paths.

Proof. If D is a cycle of length 8, then G is a pseudo-double wheel (as
noted in [15]). If G is not a cube or a pseudo-double wheel and D is not
a union of disjoint paths, then by Lemma 2, D has a component H which
is one of the graphs in Figure 4. If H is one of G1, G2 or G3, then G has
a separating 4-cycle. Therefore, by Lemma 1, G is a member of S. This
implies that H is G1 and D consists of two disjoint cycles with length 4.
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Figure 6. Graph G0 and the method of constructing G′ from G in the proofs of

Lemma 3 and Theorem 1.

Now, suppose H is a copy of G4. We complete the proof by induction on
the number of vertices. Graph G has a subgraph as shown in Figure 6(a).
Because of the absence of separating 4-cycles, if the degree of one of a, b and
c is 3 then the degrees of all of them are 3 and G is G0 (Figure 6) which is
the smallest graph whose subgraph induced by the vertices of degree 3 has
G4 as a component. Suppose that G is not graph G0. Obtain graph G′ from
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G by removing vertices y, w and z and adding edges xd, xe and xf (Figure
6(b)). By induction the subgraph of G′ induced by the vertices of degree
3 consists of two copies of G4, which proves D also consists of two copies
of G4.

Theorem 1. The class of all SPQ(3,4)s is generated by (S,F).

Proof. Denote by B the set of all SPQ(3,4)s whose subgraphs induced by
their vertices of degree 3 consist of two copies of G4.

Let G be a graph in B, and let H1 and H2 be the two components of
the subgraph induced by the vertices of degree 3. Let u be a vertex of H1

and v a vertex of H2 whose distance in G is least among all such pairs. We
claim that there is a shortest path p from u to v such that P1(p) applies.

We prove the claim by induction on the number of vertices. The smallest
member of B is G0 (Figure 6) and P1(uwv) applies to it. Suppose that G is
the smallest member of B which does not satisfy the claim. By the definition
of B, G has a subgraph as shown in Figure 6(a). The degrees of a, b and c

are 4 since G is not G0. Obtain graph G′ from G as explained in the proof
of Lemma 3. Graph G′ is a member of B which is smaller than G. So,
it satisfies the claim and has two vertices u and v with a shortest path p

between them such that P1(p) applies. Without loss of generality, suppose
v = d. It is easy to see that P1(pw) applies in G, which proves the claim.

Let G be an SPQ(3,4) which is not in B ∪ S. If G is a pseudo-double
wheel then P1(uv) applies (Figure 5), and otherwise if G has some adjacent
vertices of degree 3, then by Lemma 3 the subgraph D induced by the
vertices of degree 3 is a union of paths. Let u be a vertex which has degree
1 in D, and let v be its neighbour in D. Then P1(uv) applies to G.

Finally suppose that G does not have any adjacent vertices of degree 3. Let
p be a path in G such that:

(i) p is a shortest path among all the paths between two vertices of degree
3, say u and v;

(ii) subject to condition (i), the segment of p from u to the first bend is as
long as possible.

We claim that p has at most one bend. Suppose p = v0v2 · · · vn where
v0 = u and vn = v. For i ∈ {0, . . . , n}, if vi is not a bend of p, let ui be the
neighbour of vi on the right and wi be the neighbour of vi on the left when
we move along p. Otherwise let xi and yi be the neighbours of vi other than
vi−1 and vi+1, in anticlockwise order.



Recursive Generation of Simple Planar ... 131

Suppose that p has more than one bend.
Let vi and vj, 0 < i < j < n, be the first two bends of p. If p

has the same type of bend, say a right bend, at vi and vj , then the walk
v0 · · · vi−1ui+1 · · · uj−1vj+1 · · · vn is shorter than p which is a contradiction
(see Figure 7(a)). If instead p has a left bend at vi and a right bend at vj

then consider the walk q = v0 · · · viyiui+1 · · · uj−1vj+1 · · · vn. Walk q has the
same length as p and so is a shortest path but the first straight segment of
q is longer than that of p (see Figure 7(b)). This is also a contradiction.
Therefore, p has at most one bend.

v i
v i+1

v i -1 u i -1=u i+1 u j -1=u j +1

v j -1 v j

v j +1

w i+1 w j -1 y j

v i
v i+1

v i -1

u i+1 u j -1=u j +1

v j -1 v j

v j +1y i

w j -1 y j

w i -1=w i+1

(a) (b)

x i

Figure 7. Bent paths in the proof of Theorem 1 (path p is drawn as a thick line).

It remains to show that the vertices of p and its neighbouring vertices are
all distinct, apart from the two neighbours which are necessarily the same
at the inside of a bend. Since p is a shortest path, it does not have any
chords. If the ui’s and wj ’s are all distinct, then p does not have any bend
and P1(p) applies.

Suppose that uj = wi for some 0 ≤ i 6= j ≤ n. Since p is a shortest path
from u to v and G does not have any cycle with odd length, |j − i| = 2. But
then cycle viv(i+j)/2vjuj is a separating 4-cycle, which contradicts Lemma 1.
By the same argument, ui 6= uj and wi 6= wj for i 6= j except for the case of
a bend at vi where ui−1 = ui+1 or wi−1 = wi+1. So suppose without loss of
generality that p has a left bend at vi. Vertices xi and yj are different from
uj and wk for all j, k by the same argument as before. Let z be the common
neighbour of xi and yi other than vi. Since there are no two vertices on p

other than vi−1 and vi+1 which have a common neighbour not lying on p,
z is not a vertex on p. Vertices xi and yi are different from vj , wk, u` for
all j, k, `, so z is different from uj and wj for 0 < j 6= i < n (otherwise z
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must have degree at least 5). Suppose z = u0. Since p is a shortest path
and G does not have any cycle with odd length, i = 3. According to the
definition of p, vertices u1 and u2 must have degree 4. So, cycle u0u1u2u3

is a separating 4-cycle of G, which proves z 6= u0. Suppose instead that
z = w0. For the same reason, i = 3. Since G is a quadrangulation, u3 is
a neighbour of u0. This shows that u0u1u2u3 is a separating 4-cycle of G.
Similarly, z 6∈ {un, wn}. Therefore all conditions required to apply P2(p)
hold.

Figure 8 shows a graph which has only reductions of type P1. It is easy to
see how to make infinitely many SPQ(3,4)s with the same property.

Figure 8. An SPQ(3,4) without any P2 reductions.

The smallest SPQ(3,4) which has only reductions of type P2 has 136 vertices.
In Figure 9, we show a 158 vertex SPQ(3,4) which has only reductions of
type P2 even if we relax the definition of P1 reductions to allow some of the
vertices adjacent to the path to be equal. Further SPQ(3,4)s with the same
property can be made by drawing a set of concentric closed curves in the
place indicated by the dashed line and converting intersections to vertices.
The graphs in Figures 8 and 9 were found using the program ENU described
in [4].

Theorem 1 can be used in conjunction with the method of [14] to pro-
duce a generator of non-isomorphic SPQ(3,4)s. Briefly the method works as
follows. For each SPQ(3,4) G, one expansion is attempted from each equiv-
alence class of expansions under the automorphism group of G. If the new
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graph is H, then H is accepted if the reduction inverse to the expansion by
which H was constructed is equivalent under the automorphism group of H

to a “canonical” reduction of H. The essential algorithmic requirements
are computation of automorphism groups and canonical labelling, which are
both easy to do in linear time using a depth-first search starting at the ver-
tices of degree 3. In addition, we note that by restricting reductions (and
their inverse expansions) to the types proven to exist in the proof of The-
orem 1, no SPQ(3,4) has more than 756 reductions (1 straight and 2 bent
reductions for each pair of edges incident to different vertices of degree 3).
By [14, Theorem 3], this means that the set of all isomorphism types of
SPQ(3,4)s of order at most n can be found in amortised time O(n) per
graph.

Figure 9. An SPQ(3,4) without any P1 reductions.
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Appendix

Figure 10. All SPQ(3,4)s with at most 16 vertices.



Recursive Generation of Simple Planar ... 135

Table 1. The number Nn of SPQ(3,4)s with n vertices.

n Nn n Nn n Nn n Nn n Nn n Nn

8 1 29 78 50 2045 71 9097 92 47928 113 103581

9 0 30 144 51 1554 72 13428 93 37362 114 143658

10 1 31 106 52 2505 73 10481 94 53183 115 112273

11 1 32 218 53 1946 74 15562 95 41861 116 157549

12 2 33 150 54 3008 75 12034 96 59160 117 123277

13 1 34 274 55 2322 76 17744 97 46518 118 171531

14 5 35 212 56 3713 77 14021 98 66396 119 134957

15 2 36 382 57 2829 78 20277 99 51531 120 186242

16 8 37 279 58 4354 79 15814 100 73024 121 146663

17 5 38 499 59 3418 80 23311 101 57843 122 204872

18 12 39 366 60 5233 81 18112 102 81084 123 159091

19 8 40 650 61 4063 82 26257 103 63334 124 220351

20 25 41 493 62 6234 83 20666 104 89938 125 174644

21 13 42 815 63 4784 84 29741 105 70269 126 240238

22 30 43 623 64 7301 85 23345 106 98783 127 187785

23 23 44 1083 65 5740 86 33881 107 77795 128 260958

24 51 45 800 66 8514 87 26228 108 108424 129 204168

25 33 46 1305 67 6631 88 37786 109 85359 130 281936

26 76 47 1020 68 10103 89 29911 110 120378 131 221774

27 51 48 1653 69 7794 90 42471 111 93426 132 303638

28 109 49 1261 70 11572 91 33187 112 130756 133 239100
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